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ABSTRACT 

Many inventory models for deteriorating items are developed on the assumptions that deteriorated items are 

not fixed or replaced; instead, they are thrown away and inventory carrying costs are not considered while 

developing inventory policies. However, in real-world, deteriorated items such as roofs, ceilings, doors, locks, 

windows, plumbing pipes and taps, electronics, desks, seats, spare parts, and so on are repairs or replaced. 

Similarly, carrying charges affect inventory total cost, influence order quantity, determine the level of stock to 

keep, and influence profit, pricing, and budgeting decisions, thus their impact cannot be overlooked when 

designing inventory policies. In this work, a two-stage consumption rate replenishment policy with variable 

storage costs under allowable payment delays is examined for partially repaired non-instantaneous decaying 

goods. Prior to product deterioration, the rate of consumption is a quadratic function of time, and it remains 

constant thereafter after that. The main aim of this model is to identify optimal cycle length and order quantity 

amount that minimize the overall variable cost. It is established that solution exist and are unique solutions exist 

and are distinct. The model is validated using numerical test based on tests of some existing data, and a 

comparison with the current model reveals that the proposed model performs better in terms of cost 

minimization and turnover. Some suggestions for lowering the total variable cost of the inventory system are 

provided based on in light of the sensitivity analysis. The model could be used in inventory management and 

control of items such as doors, windows, plumbing pipes and taps, electronics, and so on. 

 

Keywords: Replenishment, Two-Stage Consumption rates, Partially Repaired Non-Instant Decaying goods, 

Variable Storage Cost Varying Storage Cost, Allowable Payment Delay 

 

INTRODUCTION 

The majority of studies on inventory models have assumed 

assumed that holding costs were constant. However, in real-

life settings, the holding cost of many products may fluctuate 

as the time value of money and price index change alter. The 

cost of storing decaying and perishable commodities when 

additional storage facilities and services are required can  

might always be expensive. The holding cost for some items 

in stock varies linearly with the amount of time they are 

stored. Typically, the cost of keeping commodities in stock, 

such as fruits, vegetables, fish, meat, and milk, is higher when 

better-preserving facilities are utilized to maintain freshness 

and prevent decomposition, resulting in a lower degradation 

rate. Furthermore, holding costs can rise due to inflation, bank 

interest, hiring charges, and so on. Thus, it is critical to 

examine an inventory model with time-varying holding costs. 

Baraya and Sani (2011) proposed an EPQ model for delayed 

deteriorating degrading items that includes a stock-dependent 

demand rate and a linear time-dependent holding cost. Musa 

and Sani (2012a) developed created an EOQ model for 

delayed deteriorating degrading products with a linear time-

dependent holding cost. Tayal et al. (2015) proposed created 

an EPQ model for non-instantaneous deteriorating items in 

which the demand rate is exponential, the production rate is a 

function of the demand rate, the holding cost varies over time, 

partially deteriorated items are sold at a discount from the 

original price, and completely deteriorated items are 

superfluous.Sivashankari (2016) investigated an EPQ model 

for instantaneously decaying items with constant, linear, and 

quadratic holding costs, and conducted a comparative analysis 

of these three holding cost constant, linear, and quadratic 

holding costs. Selvaraju and Ghuru (2018) formulated created 

EOQ models for instantaneously decaying items with 

constant, linear, and quadratic holding costs and shortages, 

and conducted a comparative assessment of constant, linear, 

and quadratic holding costs. Singhal and Singh (2018) 

investigated an integrated replenishment model for 

deteriorating degrading items with multiple market demand 

rates under volume flexibility, in which the deterioration rate 

is determined by quality level and time and follows a two-

parameter Weibull distribution. Holding cost is assumed 

supposed to increase linearly over time. Furthermore, Mishra 

and Singh (2011), Tyagi et al. (2014), and others have 

published relevant research on inventory models with time-

varying holding costs. 

When creating inventory policies for items like electronics, 

fashion, cars and their parts, seasonal goods, rice, beans, yam, 

maize, and so forth, it would be incorrect to assume that 

deterioration begins as soon as the items are placed in stock. 

Therefore, businesses may overestimate the total relevant 

inventory cost if they are unaware of this characteristic 

uninformed of the feature of these kinds of things, which 

could lead to poor decision-making. An inventory model for 

non-instantaneous deteriorating items with an allowable 

payment delay was examined by Ouyang et al. (2006). An 

optimal ideal replenishment strategy for non-instantaneous 

deteriorating items with stock-dependent demand rates was 

proposed created by Wu et al. (2006).Shortages are allowed 

and partially backlogged; the backlogging rate is variable and 

depends on the waiting time for the next replenishment.  

Chung (2009) established a thorough proof of the solution 

technique for non-instantaneous deteriorating products with 

allowable payment delays. Musa and Sani (2012b) developed 

created ordering strategies for deteriorating degrading 

commodities with an acceptable payment delay. The demand 

rates before and after deterioration occurs set in are different, 

and both are assumed to remain constant. Maihami and Abadi 

(2012) examined cooperative pricing and inventory control 
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for non-instantaneous deteriorating products with an 

allowable payment delay. Shortages are permitted and may 

result in partial backlog. Wu et al. (2014) gave a remark on 

optimal replenishment policies for non-instantaneous 

deteriorating items with price and stock sensitive demand 

rates where a payment delay is acceptable.Chang et al. (2015) 

developed an EOQ model for non-instantaneously 

deteriorating products with order-size-dependent payment 

delays. The model calculates the appropriate pricing and 

ordering procedures to maximize total profit per unit time. 

Babangida and Baraya (2018) created an inventory model for 

non-instantaneous degrading items with time-dependent 

quadratic demand under a trade credit regime. The demand 

rate before degradation is considered to be a time-dependent 

quadratic, whereas the demand rate after deterioration is 

believed to be constant because some customers are eager to 

buy after deterioration has occurred. Muazu et al. (2023) 

developed an economic order quantity model for non-instant 

deteriorating decaying goods with three-stage demand rates, 

linear holding cost and linear reciprocal partial backlogging 

amount. The average annual demand rates before goods start 

deteriorating after deterioration decaying, after goods start 

decaying and during stockouts are not the same are and both 

taken as constant. The model determined the best time with 

positive inventory, cycle length and order quantity that reduce 

entire total variable cost. Ahmed et al. (2025) developed an 

order quantity model for non-instantaneous deteriorating 

items with two-level pricing strategies under trade credit 

policy, two-phase demand rates, linear holding costs, and 

time-dependent partial backlog rates. The model determines 

determine the optimal period for positive inventory, cycle 

length, and order quantity amount to maximize the inventory 

system's overall profit. 

Babangida and Baraya (2019) established an inventory model 

for non-instantaneous deteriorating items with two 

components: demand and linear time varying time holding 

costs under trade credit.The things do not decay quickly while 

in stock and have a period of preserving their original qualities 

before deterioration occurs. However, degraded objects are 

not repaired fixed or replaced; instead, they are discarded 

thrown, and inventory carrying costs are not considered. Real-

world repairs or replacements include roofs, ceilings, doors, 

locks, windows, plumbing pipes and taps, electronics, desks, 

seats, spare parts, and so on. Similarly, carrying charges affect 

inventory total cost, influence order quantity, determine the 

level of stock to keep, and influence profit, pricing, and 

budgeting decisions, thus their impact cannot be overlooked 

when designing inventory policies rules. 

This model proposes a replenishment policy with two-stage 

consumption rates for partially repaired non-instant decaying 

products and time-varying changing storage costs within the 

permissible payment delay (see Table 1). The model 

determines will calculate the ideal cycle length and order 

quantity to minimize reduce the average total variable cost. 

Some numerical examples are have been provided to 

demonstrate the theoretical results of the model. Sensitivity 

analysis of some model parameters was performed to 

determine the effect of changing these parameters on the 

decision variables, and ideas for reducing the average total 

variable cost of the inventory system were also presented 

provided. 

 

Table 1: Comparison of Some Existing Literatures Relevant to the Proposed Model 

Authors and year Non-Instant 

Decaying 

goods 

Two-Stage 

Consumption 

rates 

Varying 

Storage 

Cost 

Payment 

Delay 

Closed 

form 

solution 

Carrying 

charges 

Repairment 

of item 

Ouyang et al. 

(2006) 

Yes No No Yes Yes No No 

Chung (2009) Yes No Yes No Yes No No 

Baraya and Sani 

(2011) 

Yes No Yes No Yes No No 

Musa and Sani 

(2012a) 

Yes yes Yes No Yes No No 

Musa and Sani 

(2012b) 

Yes yes No Yes Yes No No 

Maihami and Abadi 

(2012) 

Yes No No Yes No No No 

Wu et al. (2014) Yes No No Yes No No No 

Chang et al. (2015) Yes No No Yes No No No 

Babangida&Baraya 

(2018) 

Yes Yes No Yes Yes No No 

Babangida&Baraya 

(2019) 

Yes Yes Yes Yes Yes No No 

Zulkifilu M. et al. 

(2023) 

Yes Yes Yes No Yes  No  No  

Ahmed et al. 

(2025) 

Yes Yes Yes  Yes Yes No No 

Proposed model Yes Yes Yes Yes Yes Yes Yes 

 

MATERIALS AND METHODS 

Methodology Model Description and Formulation  

This section describes the proposed model notation, 

assumptions and formulation. The inventory system is 

developed based on the following assumptions and notation.  

 

 

Notation 

𝑂𝐶 The ordering cost per order. 

𝑃𝐶 The purchasing cost per unitper unit time ($/unit/ 

year). 

𝑆𝑃 The selling price per unit per unit time ($/unit/ 

year). 
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𝐼𝑝 The Commission paid commissionpaid in stock by 

the supplier per Dollar per year ($/unit/year)(𝐼𝑐 ≥ 𝐼𝑒). 

𝐼𝑔 The Commission gained commissiongained per 

Dollar per year ($/unit/year). 

𝑇 The trade credit period (in year) for settling 

accounts. 

𝜃 Deterioration rate(0 < 𝜃 < 1). 

𝜋 The rate at which goods are repaired  

𝑖 Carrying charges 

𝜇 The length of time in which the product exhibits no 

deterioration. 

𝑃 The length of the replenishment cycle time (time 

unit). 

𝐼0 The number of items received at the beginning of 

the inventory system (units). 

𝐼1(𝑡) The inventory level before deterioration sets in. 

𝐼2(𝑡) The inventory level after deterioration begins. 

 

Assumptions 

i. The replenishment rate is infinite.   

ii. The lead time is zero. 

iii. A single non-instantaneous deteriorating item is 

considered. 

iv. During the fixed period,𝑙, there is no deterioration and 

at the end of this period, the inventory item 

deteriorates at the constant rate𝜑. 

v. Deteriorated items are either replaced or repaired. 

vi. Demand rate before deterioration begins is a quadratic 

function of time 𝑡 and is given by 

vii. 𝛼 + 𝑏𝑡 + 𝑐𝑡2where𝛼 ≥ 0, 𝑏 ≠ 0, 𝑐 ≠ 0. 

viii. Demand rate after deterioration sets in is assumed to 

be constant and is given by𝑑. 

ix. Storage cost 𝐻(𝑡)per unit time is linear time 

dependent and is assumed to be 

x. 𝐻(𝑡) = ℎ1 + ℎ2𝑡; whereℎ1 > 0and ℎ2 > 0. 

xi. During the trade credit period𝑇(0 < 𝑇 < 1), the 

account is not settled; generated sales revenue is 

deposited in acommission bearing account. At the end 

of the period, the retailer pays off all units bought, and 

starts to pay the capital opportunity cost for the items 

in stock. 

xii. Shortages are not allowed. 

 

Formulation of the Model 

The inventory system is designed as follows.𝐼0units of a 

single product from the manufacturer arrive at the inventory 

system at the start of each cycle (i.e., at time𝑡 = 0). During 

the time span [0, 𝜇], the inventory level𝐼1(𝑡)gradually 

depletes due to market demand and is assumed to be a 

quadratic function of time.  At time interval [𝜇, 𝑃]the 

inventory level𝐼2(𝑡) is depleting due to combined effects of 

demand and deterioration and the demand rate at this time is 

reduced to a constant𝑑. At time 𝑡 = 𝑃, the inventory level 

depletes to zero. The behaviour of the inventory system is 

described in figure 1 below. 

 

 
Figure 1: Graphical Representation of Inventory System 

 

Based on the above description, the inventory level 𝐼1(𝑡) at 

time𝑡 ∈ [0, 𝑃] is given by 
𝑑𝐼1(𝑡)

𝑑𝑡
= −(𝑎 + 𝑏𝑡 + 𝑐𝑡2),    0 ≤ 𝑡 ≤ 𝜇    (1) 

𝑑𝐼2(𝑡)

𝑑𝑡
+ (𝜃 − 𝜋)𝐼2(𝑡) = −𝑑,     𝜇 ≤ 𝑡 ≤ 𝑃   (2) 

with boundary conditions 𝐼1(0) =  𝐼0,𝐼1(𝜇) = 𝐼2(𝜇) = 𝐼𝑑, 

and 𝐼2(𝑃) =  0 at 𝑡 = 𝑃 

The solutions of equations (1) and (2) are 

𝐼1(𝑡) =
𝑑

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑇−𝜇) − 1) + 𝑎(𝜇 − 𝑡) +

𝑏

2
(𝜇2 −

𝑡2) +
𝑐

3
(𝜇3 − 𝑡3)    0 ≤ 𝑡 ≤ 𝜇   (3) 

𝐼2(𝑡) =
𝑑

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑃−𝑡) − 1),     𝜇 ≤ 𝑡 ≤  𝑃  (4) 

Also applying the condition𝐼2(𝜇) =  𝐼𝑑 at 𝑡 = 𝜇 into (4) and  

𝐼1(0) =  𝐼0 at 𝑡 = 0 into (3) to obtain 

𝐼𝑑 =
𝑑

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑃−𝜇) − 1)    (5) 

𝐼0 =
𝑑

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑃−𝜇) − 1) + (𝑎𝜇 + 𝑏

𝜇2

2
+ 𝑐

𝜇3

3
) (6) 

(i) The total demand during the period  [𝜇, 𝑇] is given by  

𝐷𝑖 = ∫ 𝑑
𝑃

𝜇
𝑑𝑡 = 𝑑(𝑃 − 𝜇)     (7) 

 

The Total Number of Deteriorated Items Per Cycle is given 

by 

𝑁𝑖 = 𝐼𝑑 − 𝐷𝑖 

Substituting 𝐼𝑑 and 𝐷𝑖 from (11) and (14) respectively into𝑁𝑖, 

we obtain 

𝑁𝑖 =
𝑑

(𝜃−𝜋)
[𝑒(𝜃−𝜋)(𝑃−𝜇) − 1 − (𝜃 − 𝜋)(𝑃 − 𝜇)]   (8) 

 

The Deterioration Cost is given by 

𝐷𝐶 = 𝑃𝐶 [
𝑑

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑃−𝜇) − 1 − (𝜃 − 𝜋)(𝑃 − 𝜇))]   (9) 

(iv) The ordering cost per order is given by C0 

 

The Inventory Storage Cost During the Period [0, P] is given 

by 

𝐻(𝑡) = 𝑖 [∫ (𝐶1 + 𝐶2𝑡)𝐼1(𝑡)𝑑𝑡
𝜇

0
+ ∫ (𝐶1 + 𝐶2𝑡)𝐼2(𝑡)𝑑𝑡

𝑃

𝜇
]  (10) 

Substituting (3)and(4) into (10)to obtain 

= 𝑖𝐶1 (
𝑑𝜇

(𝜃−𝜋)
𝑒(𝜃−𝜋)(𝑃−𝜇) +

𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 +

𝑑

(𝜃−𝜋)2 𝑒(𝜃−𝜋)(𝑃−𝜇) −
𝑑

(𝜃−𝜋)2 −
𝑑𝑃

(𝜃−𝜋)
) +
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𝑖𝐶2 (
𝑑𝜇2

2(𝜃−𝜋)
𝑒(𝜃−𝜋)(𝑃−𝜇) +

𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 +

𝑑𝜇

(𝜃−𝜋)2
𝑒(𝜃−𝜋)(𝑃−𝜇) −

𝑑𝑃

(𝜃−𝜋)2
−

𝑑

(𝜃−𝜋)3
+

𝑑

(𝜃−𝜋)3
𝑒(𝜃−𝜋)(𝑃−𝜇) −

𝑑𝑃2

2(𝜃−𝜋)
)      (11) 

 

The Commission Payable 

This is the commission paid for the inventory not being sold 

after the expiration of trade credit period which are 

categorised into Case 1(0 < 𝑇 ≤ 𝜇and Case 2(𝜇 < 𝑇 ≤ 𝑃). 

Case 1: (0 < 𝑇 ≤ 𝜇) 

This is the period before deterioration sets in, and payment for 

goods is settled with the capital opportunity cost rate 𝐼𝑐 for the 

items in stock. Thus, the commission payable is given by 

𝐼𝑃1 = 𝑃𝐶𝐼𝑝 [∫ 𝐼1(𝑡)𝑑𝑡
𝜇

𝑇
+ ∫ 𝐼2(𝑡)𝑑𝑡

𝑃

𝜇
]  (12) 

= 𝑃𝐶𝐼𝑝 [
𝑑(𝜇−𝑇)

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑃−𝜇) − 1) +

𝑎

2
(𝜇 − 𝑇)2 +

𝑏

6
(2𝜇 +

𝑇)(𝜇 − 𝑇)2 +
𝑐

12
(3𝜇2 + 2𝜇𝑇 + 𝑇2)(𝜇 − 𝑇)2 +

𝑑

(𝜃−𝜋)2
(𝑒(𝜃−𝜋)(𝑃−𝜇) − 1 − (𝜃 − 𝜋)(𝑃 − 𝜇))] (13) 

Case 2: (𝜇 < 𝑇 ≤ 𝑃) 

This is when the end point of credit period is greater than the 

period with no deterioration but shorter than or equal to the 

length of period with positive inventory. The commission 

payable is 

𝐼𝑃2 = 𝑃𝐶𝐼𝑝 [∫ 𝐼2(𝑡)𝑑𝑡
𝑃

𝑇
]   (14) 

= 𝑃𝐶𝐼𝑝 [
𝑑

(𝜃−𝜋)2
(𝑒(𝜃−𝜋)(𝑃−𝑇) − 1 − (𝜃 − 𝜋)(𝑃 − 𝑇))] (15) 

 

The Commission Gained 

It is assumed that during the period when the account is not 

settled, the retailer sells the goods and continues to 

accumulate sales revenue and gains the commission with 

rate 𝐼𝑒. Therefore, the commissiongained per cycle for two 

different cases are given below 

Case 1:  (0 < 𝑇 ≤ 𝜇) 

In this case, the retailer can gain commission on revenue 

generated from the sales up to the trade credit period 𝑇. 

Although, the retailer has to settle the accounts at period 𝑇, 

for that he has to arrange money at some specified rate of 

commission in order to get his remaining stocks financed for 

the period 𝑇 to 𝜇. The commissiongain is  

𝐼𝐸1 = 𝑆𝑃𝐼𝑔 [∫ (𝛼 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑇

0
] = 𝑆𝑃𝐼𝑔 (𝑎

𝑇2

2
+ 𝑏

𝑇3

3
+ 𝑐

𝑇4

4
)   

   (16) 
Case 2: (𝜇 < 𝑇 ≤ 𝑃) 

In this case, the retailer can gain commission on revenue 

generated from the sales up to the trade credit period 𝑇. 

Although, the retailer has to settle the accounts at period 𝑇, 

for that he has to arrange money at some specified rate of 

commission in order to get his remaining stocks financed for 

the period 𝑇 to 𝑃. The commissiongain is  

𝐼𝐸2 = 𝑆𝑃𝐼𝑔 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝜇

0
+ ∫ 𝑑𝑡𝑑𝑡

𝑇

𝜇
] = 𝑆𝑃𝐼𝑔 [(𝛼

𝜇2

2
+ 𝑏

𝜇3

3
+ 𝑐

𝜇4

4
) +

𝑑𝑇2

2
−

𝑑𝜇2

2
]   (17) 

(viii) The Average Total Variable Cost per Unit Time  

The average total variable cost per unit time for case 1 (0 <
𝑇 ≤ 𝜇) is given by 

𝑍1(𝑃) =
1

𝑃
{Ordering cost +inventory storage cost + 

deterioration cost + commission payable during the 

permissible delay period – commissiongained during the 

cycle} 

=
𝟏

𝑻
{𝑶𝑪 + 𝒊𝑪𝟏 (

𝒅𝝁

(𝜽−𝝅)
𝒆(𝜽−𝝅)(𝑻−𝝁) +

𝒂

𝟐
𝝁𝟐 +

𝒃

𝟑
𝝁𝟑 +

𝒄

𝟒
𝝁𝟒 +

𝒅

(𝜽−𝝅)𝟐
𝒆(𝜽−𝝅)(𝑻−𝝁) −

𝒅

(𝜽−𝝅)𝟐
−

𝒅𝑷

(𝜽−𝝅)
) + 𝒊𝑪𝟐 (

𝒅𝝁𝟐

𝟐(𝜽−𝝅)
𝒆(𝜽−𝝅)(𝑷−𝝁) +

𝒂

𝟔
𝝁𝟑 +

𝒃

𝟖
𝝁𝟒 +

𝒄

𝟏𝟎
𝝁𝟓 +

𝒅𝝁

(𝜽−𝝅)𝟐
𝒆(𝜽−𝝅)(𝑷−𝝁) −

𝒅𝑷

(𝜽−𝝅)𝟐
−

𝒅

(𝜽−𝝅)𝟑
+

𝒅

(𝜽−𝝅)𝟑
𝒆(𝜽−𝝅)(𝑷−𝝁) −

𝒅𝑷𝟐

𝟐(𝜽−𝝅)
) + 𝑷𝑪 [

𝒅

(𝜽−𝝅)
(𝒆(𝜽−𝝅)(𝑷−𝝁) − 𝟏 − (𝜽 −

𝝅)(𝑷 − 𝝁))] + 𝑷𝑪𝑰𝒑 [
𝒅(𝝁−𝑻)

(𝜽−𝝅)
(𝒆(𝜽−𝝅)(𝑷−𝝁) − 𝟏) +

𝒂

𝟐
(𝝁 − 𝑻)𝟐 +

𝒃

𝟔
(𝟐𝝁 + 𝑻)(𝝁 − 𝑻)𝟐 +

𝒄

𝟏𝟐
(𝟑𝝁𝟐 + 𝟐𝝁𝑻 + 𝑻𝟐)(𝝁 − 𝑻)𝟐 +

𝒅

(𝜽−𝝅)𝟐 (𝒆(𝜽−𝝅)(𝑷−𝝁) − 𝟏 − (𝜽 − 𝝅)(𝑷 − 𝝁))] − 𝑺𝑷𝑰𝒈 (𝜶
𝑻𝟐

𝟐
+ 𝒃

𝑻𝟑

𝟑
+

𝒄
𝑻𝟒

𝟒
)}     (18) 

The average total variable cost per unit time for case 2(𝜇 <
𝑇 ≤ 𝑃) is given by 

𝑍2(𝑃) =
1

𝑃
{Ordering cost +inventory storage cost + 

deterioration cost + commission payable during the 

permissible delay period – commission gained during the 

cycle} 

=
1

𝑃
{𝑂𝐶 + 𝑖𝐶1 (

𝑑𝜇

(𝜃−𝜋)
𝑒(𝜃−𝜋)(𝑃−𝜇) +

𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 +

𝑑

(𝜃−𝜋)2
𝑒(𝜃−𝜋)(𝑃−𝜇) −

𝑑

(𝜃−𝜋)2
−

𝑑𝑃

(𝜃−𝜋)
) + 𝑖𝐶2 (

𝑑𝜇2

2(𝜃−𝜋)
𝑒(𝜃−𝜋)(𝑃−𝜇) +

𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 +

𝑑𝜇

(𝜃−𝜋)2
𝑒(𝜃−𝜋)(𝑃−𝜇) −

𝑑𝑃

(𝜃−𝜋)2
−

𝑑

(𝜃−𝜋)3
+

𝑑

(𝜃−𝜋)3
𝑒(𝜃−𝜋)(𝑃−𝜇) −

𝑑𝑃2

2(𝜃−𝜋)
) + 𝑃𝐶 [

𝑑

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑃−𝜇) − 1 − (𝜃 −

𝜋)(𝑃 − 𝜇))] + 𝑃𝐶𝐼𝑝 [
𝑑

(𝜃−𝜋)2 (𝑒(𝜃−𝜋)(𝑃−𝑇) − 1 − (𝜃 − 𝜋)(𝑃 − 𝑇))] −

𝑆𝑃𝐼𝑔 [(𝑎
𝜇2

2
+ 𝑏

𝜇3

3
+ 𝑐

𝜇4

4
) +

𝑑𝑇2

2
−

𝑑𝜇2

2
]}  (19) 

Since 0 < (𝜃 − 𝜋) < 1,by utilizing a quadratic 

approximation for the exponential terms in equations (16) and 

(17) to obtain: 

𝑍1(𝑇) =
1

𝑇
{𝑂𝐶 + 𝑖𝐶1 (

𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 −

𝑑𝜇2

2
+

𝑑𝜇3(𝜃−𝜋)

2
+

𝑑𝜇(𝜃−𝜋)𝑃2

2
+

𝑑𝑃2

2
− 𝑑𝜇2(𝜃 − 𝜋)𝑃) + 𝑖𝐶2 (

𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 +

𝑑𝜇4(𝜃−𝜋)

4
+

𝑑𝜇2(𝜃−𝜋)𝑃2

4
+

𝑑𝜇𝑃2

2
−

𝑑𝜇3(𝜃−𝜋)𝑃

2
−

𝑑𝜇2𝑃

2
) +

𝑃𝐶𝑑(𝜃−𝜋)

2
(𝜇2 +

𝑃2 − 2𝜇𝑃) + 𝑃𝐶𝐼𝑝 [
𝑎

2
(𝜇 − 𝑇)2 +

𝑏

6
(2𝜇 + 𝑇)(𝜇 − 𝑇)2 +

𝑐

12
(3𝜇2 +

2𝜇𝑇 + 𝑇2)(𝜇 − 𝑇)2 −
𝑑𝜇2

2
+ 𝑑𝑇𝜇 +

𝑑(𝜇−𝑇)(𝜃−𝜋)𝜇2

2
+

𝑑𝑇2

2
+

𝑑(𝜇−𝑇)(𝜃−𝜋)𝑃2

2
− 𝑑𝑇𝑃 − 𝑑(𝜇 − 𝑇)(𝜃 − 𝜋)𝜇𝑃] − 𝑆𝑃𝐼𝑔 (𝑎

𝑇2

2
+ 𝑏

𝑇3

3
+

𝑐
𝑇4

4
)}     (20) 

and 

𝑍2(𝑇) =
1

𝑇
{𝑂𝐶 + 𝑖𝐶1 (

𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 −

𝑑𝜇2

2
+

𝑑𝜇3(𝜃−𝜋)

2
+

𝑑𝜇(𝜃−𝜋)𝑃2

2
+

𝑑𝑃2

2
− 𝑑𝜇2(𝜃 − 𝜋)𝑃) + 𝑖𝐶2 (

𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 +

𝑑𝜇4(𝜃−𝜋)

4
+

𝑑𝜇2(𝜃−𝜋)𝑃2

4
+

𝑑𝜇𝑃2

2
−

𝑑𝜇3(𝜃−𝜋)𝑃

2
−

𝑑𝜇2𝑃

2
) +

𝑃𝐶𝑑(𝜃−𝜋)

2
(𝜇2 + 𝑃2 − 2𝜇𝑃) + 𝑃𝐶𝐼𝑝

𝑑

2
[𝑇2 + 𝑃2 −

2𝑇𝑃] − 𝑆𝑃𝐼𝑔 (𝑎
𝜇2

2
+ 𝑏

𝜇3

3
+ 𝑐

𝜇4

4
+

𝑑𝑇2

2
−

𝑑𝜇2

2
)} (21) 

 

Optimal Decision 

We define the necessary and sufficient conditions for 

determining the best ordering strategies that minimize the 

average total variable cost per unit time. The required 

condition for the average total variable cost per unit 

ime.𝑍𝑖(𝑃)to be minimum is obtained by differentiating 𝑍𝑖(𝑃) 

with respect 𝑃 for 𝑖 = 1,2 and equates to zero. The optimum 

value of 𝑃 for which the sufficient condition 
𝑑2𝑍𝑖(𝑃)

𝑑𝑃2 > 0 is 

satisfied gives a minimum for the average total variable cost 

per unit time𝑍𝑖(𝑃). 

Optimality condition for Case 1: (0 < 𝑇 ≤ 𝜇) 

The necessary and sufficient conditions that minimize 

𝑍1(𝑃)are respectively,
𝑑𝑍1(𝑃)

𝑑𝑃
= 0 and 

𝑑2𝑍1(𝑃)

𝑑𝑃2 > 0 

The first derivatives of the average total variable cost, in (18), 

with respect to 𝑃 is as follows. 
𝑑𝑍1(𝑃)

𝑑𝑃
=

1

𝑃2
{

𝑃2

2
𝑑 [𝐶1(𝜇(𝜃 − 𝜋) + 1) + 𝐶2𝜇 (

𝜇(𝜃−𝜋)

2
+ 1) + 𝑃𝐶(𝜃 −

𝜋) + 𝑃𝐶𝐼𝑝((𝜃 − 𝜋)(𝜇 − 𝑇) + 1)] − [𝑂𝐶 + 𝐶1 (
𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 −

𝑑𝜇2

2
+

𝑑𝜇3(𝜃−𝜋)

2
) + 𝐶2 (

𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 +

𝑑𝜇4(𝜃−𝜋)

4
) +

𝑃𝐶𝑑(𝜃−𝜋)

2
𝜇2 + 𝑃𝐶𝐼𝑝 (

𝑎

2
(𝜇 − 𝑇)2 +

𝑏

6
(2𝜇 + 𝑇)(𝜇 − 𝑇)2 +

𝑐

12
(3𝜇2 +

2𝜇𝑇 + 𝑇2)(𝜇 − 𝑇)2 −
𝑑𝜇2

2
+ 𝑑𝑇𝜇 +

𝑑(𝜇−𝑇)(𝜃−𝜋)𝜇2

2
) − 𝑆𝑃𝐼𝑔 (𝑎

𝑇2

2
+

𝑏
𝑇3

3
+ 𝑐

𝑇4

4
)]}    (22) 
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Therefore,
𝑑𝑍1(𝑃)

𝑑𝑃
= 0 gives the following nonlinear equation 

in terms 𝑃 
1

𝑃2
{

𝑃2

2
𝑑 [𝐶1(𝜇(𝜃 − 𝜋) + 1) + 𝐶2𝜇 (

𝜇(𝜃−𝜋)

2
+ 1) + 𝑃𝐶(𝜃 − 𝜋) +

𝑃𝐶𝐼𝑝((𝜃 − 𝜋)(𝜇 − 𝑇) + 1)] 𝐶 − [𝑂𝐶 + 𝐶1 (
𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 −

𝑑𝜇2

2
+

𝑑𝜇3(𝜃−𝜋)

2
) + 𝐶2 (

𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 +

𝑑𝜇4(𝜃−𝜋)

4
) +

𝑃𝐶𝑑(𝜃−𝜋)

2
𝜇2 + 𝑃𝐶𝐼𝑝 (

𝑎

2
(𝜇 − 𝑇)2 +

𝑏

6
(2𝜇 + 𝑇)(𝜇 − 𝑇)2 +

𝛾

12
(3𝜇2 +

2𝜇𝑇 + 𝑇2)(𝜇 − 𝑇)2 −
𝑑𝜇2

2
+ 𝑑𝑇𝜇 +

𝑑(𝜇−𝑇)(𝜃−𝜋)𝜇2

2
) − 𝑆𝑃𝐼𝑔 (𝑎

𝑇2

2
+

𝑏
𝑇3

3
+ 𝑐

𝑇4

4
)]} = 0    (23) 

From (29), let 

𝑋1 = 𝑑 [𝐶1(𝜇(𝜃 − 𝜋) + 1) + 𝐶2𝜇 (
𝜇(𝜃−𝜋)

2
+ 1) + 𝑃𝐶(𝜃 −

𝜋) + 𝑃𝐶𝐼𝑝((𝜃 − 𝜋)(𝜇 − 𝑇) + 1)]  (24) 

and 

𝑋2 = 𝑂𝐶 + 𝐶1 (
𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 −

𝑑𝜇2

2
+

𝑑𝜇3(𝜃−𝜋)

2
) + 𝐶2 (

𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 +

𝑑𝜇4(𝜃−𝜋)

4
) +

𝑃𝐶𝑑(𝜃−𝜋)

2
𝜇2 + 𝑃𝐶𝐼𝑝 (

𝑎

2
(𝜇 − 𝑇)2 +

𝑏

6
(2𝜇 + 𝑇)(𝜇 − 𝑇)2 +

𝑐

12
(3𝜇2 + 2𝜇𝑇 + 𝑇2)(𝜇 − 𝑇)2 −

𝑑𝜇2

2
+ 𝜆𝑇𝜇 +

𝑑(𝜇−𝑇)(𝜃−𝜋)𝜇2

2
) − 𝑆𝑃𝐼𝑔 (𝑎

𝑇2

2
+

𝑏
𝑇3

3
+ 𝑐

𝑇4

4
)     (25) 

Substituting 𝑋1 and 𝑋2 into (21) to obtain 
1

𝑃2
{

𝑃2

2
𝑋1 − 𝑋2} = 0   (26) 

which implies 

𝑃2𝑋1 − 2𝑋2 = 0        (27) 

Let 

 ∆1= 𝑆𝑃𝐼𝑔 (𝑎
𝑇2

2
+ 𝑏

𝑇3

3
+ 𝑐

𝑇4

4
) − [𝑂𝐶 + 𝐶1 (

𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 − 𝑑𝜇2) +

𝐶2 (
𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 −

𝑑𝜇3

2
) + 𝑃𝐶𝐼𝑝 (

𝑎

2
(𝜇 − 𝑇)2 +

𝑏

6
(2𝜇 + 𝑇)(𝜇 − 𝑇)2 +

𝑐

12
(3𝜇2 + 2𝜇𝑇 + 𝑇2)(𝜇 − 𝑇)2 − 𝑑𝜇2 + 𝑑𝑇𝜇)]  (28) 

Lemma 1. For 0 < 𝑀 ≤ 𝜇, we have 

i. If   ∆1≤ 0, then the solution of 𝑃 ∈ [𝜇, ∞) (say𝑃1
∗) which 

satisfies (22) not only exists but also is unique 

ii. If   ∆1> 0, then the solution of 𝑃 ∈ [𝜇, ∞)  which 

satisfies (22) does not exist.   

Proof of (i). From (21), we define a new function 𝐹1( 𝑃) as 

follows 

𝐹1(𝑃) =
𝑃2

2
𝑑 [𝐶1(𝜇(𝜃 − 𝜋) + 1) + 𝐶2𝜇 (

𝜇(𝜃−𝜋)

2
+ 1) + 𝑃𝐶(𝜃 −

𝜋) + 𝑃𝐶𝐼𝑝((𝜃 − 𝜋)(𝜇 − 𝑇) + 1)] − [𝑂𝐶 + 𝐶1 (
𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 −

𝑑𝜇2

2
+

𝑑𝜇3(𝜃−𝜋)

2
) + 𝐶2 (

𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 +

𝑑𝜇4(𝜃−𝜋)

4
) +

𝑃𝐶𝜆(𝜃−𝜋)

2
𝜇2 + 𝑃𝐶𝐼𝑝 (

𝑎

2
(𝜇 − 𝑇)2 +

𝑏

6
(2𝜇 + 𝑇)(𝜇 − 𝑇)2 +

𝑐

12
(3𝜇2 +

2𝜇𝑇 + 𝑇2)(𝜇 − 𝑇)2 −
𝑑𝜇2

2
+ 𝑑𝑇𝜇 +

𝑑(𝜇−𝑇)(𝜃−𝜋)𝜇2

2
) − 𝑆𝑃𝐼𝑔 (𝑎

𝑇2

2
+

𝑏
𝑇3

3
+ 𝑐

𝑇4

4
)] , 𝑃 ∈ [𝜇, ∞)   (29) 

Taking the first-order derivative of 𝐹1( 𝑇)with respect to 𝑇 ∈
[𝜇, ∞), we have 
𝐹1(𝑃)

𝑑𝑃
= 𝑃𝑑 [𝐶1(𝜇(𝜃 − 𝜋) + 1) + 𝐶2𝜇 (

𝜇(𝜃−𝜋)

2
+ 1) + 𝑃𝐶(𝜃 − 𝜋) +

𝑃𝐶𝐼𝑝((𝜃 − 𝜋)(𝜇 − 𝑇) + 1)]   (30) 

= 𝑃𝑋1 > 0 

We obtain that 𝐹1( 𝑃)is an increasing function of 𝑃 in the 

interval [𝜇, ∞). Moreover, we have  

lim
𝑃→∞

𝐹1(𝑃) = ∞ 

and 

𝐹1(𝜇) = 𝑆𝑃𝐼𝑔 (𝑎
𝑇2

2
+ 𝑏

𝑇3

3
+ 𝛾

𝑇4

4
) − [𝑂𝐶 + 𝐶1 (

𝑎

2
𝜇2 +

𝑏

3
𝜇3 +

𝑐

4
𝜇4 −

𝑑𝜇2) + 𝐶2 (
𝑎

6
𝜇3 +

𝑏

8
𝜇4 +

𝑐

10
𝜇5 −

𝑑𝜇3

2
) + 𝑃𝐶𝐼𝑝 (

𝑎

2
(𝜇 − 𝑇)2 +

𝑏

6
(2𝜇 + 𝑀)(𝜇 − 𝑇)2 +

𝑐

12
(3𝜇2 + 2𝜇𝑇 + 𝑀2)(𝜇 − 𝑇)2 − 𝑑𝜇2 +

𝑑𝑇𝜇)]     (31) 

=  ∆1≤ 0 

Now𝐹1(𝜇) ≤ 0. Therefore, by applying intermediate value 

theorem, there exists a unique  𝑃1
∗ ∈ [𝜇, ∞) such that𝐹1(𝑃1

∗) =
0. Hence 𝑃1

∗ isthe unique solution of (22). Thus, the value of 

𝑃 (denoted by𝑃1
∗) can be found from (30) and is given by 

𝑃1
∗ = √

2𝑋2

𝑋1
    (32) 

Proof of (ii). If ∆1> 0, then from (23), we have𝐹1(𝑃) > 0. 

Since 𝐹1( 𝑃)is an increasing function of 𝑃 ∈
[𝜇, ∞),then𝐹1(𝑃) > 0 for all𝑃 ∈ [𝜇, ∞). Thus, we cannot find 

a value of 𝑃 ∈ [𝜇, ∞) such that𝐹1(𝑃) = 0. This completes the 

proof. 

Theorem 1. When0 < 𝑇 ≤ 𝜇, we have 

i. (i) If   ∆1≤ 0, then the average total variable cost𝑍1(𝑃)is 

convex and reaches its global minimum at the point𝑃1
∗ ∈

[𝜇, ∞), where 𝑃1
∗is the point which satisfies (22). 

ii. If   ∆1> 0, then the average total variable cost𝑍1(𝑃)has 

a minimum value at the point𝑃1
∗ = 𝜇. 

Proof of (i). When  ∆1≤ 0,we see that 𝑃1
∗is the unique solution 

of (22) from Lemma l(i). Taking the second derivative 

of𝑍1( 𝑃)with respect to 𝑃 and then finding the value of the 

function at the point𝑇1
∗, we obtain 

𝑑2𝑍1(𝑃)

𝑑𝑃2 |
𝑃1

∗
=

𝑋1

𝑃1
∗ > 0    (33) 

We thus conclude from (25) and Lemma 1 that𝑍1(𝑃1
∗) is 

convex and 𝑃1
∗is the global minimum point of𝑍1(𝑃). Hence 

the value of 𝑃  in (24) is optimal. 

Proof of (ii). When   ∆1> 0, then we know that 𝐹1( 𝑃) > 0for 

all 𝑃 ∈ [𝜇, ∞).Thus,
𝑑𝑍1(𝑃)

𝑑𝑃
=

𝐹1(𝑃)

𝑃2 > 0 for all  𝑃 ∈ [𝜇, ∞) 

which implies 𝑍1(𝑃) is an increasing function of 𝑃. Thus 

𝑍1(𝑃) has a minimum value when 𝑃 is minimum. Therefore, 

𝑍1(𝑃) has a minimum value at the point 𝑃 = 𝜇. This 

completes the proof. 

Optimality condition for Case 2: (𝜇 < 𝑇 ≤ 𝑃) 

Applying the same procedure as in case 1, the value of the 

optimal cycle length denoted by 𝑃2
∗is given by 

𝑃2
∗ = √

2𝑌2

𝑌1
     (34) 

Thus the EOQ corresponding to the best cycle length 𝑃∗will 

be computed as follows: 

𝐸𝑂𝑄∗ =Total demand before deterioration set in+total 

demand after deterioration set in+total number of deteriorated 

items 

= ∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡
𝜇

0
+ ∫ 𝑑𝑑𝑡 +

𝑃∗

𝜇
[

𝑑

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑃∗−𝜇) −

1) − 𝑑(𝑃∗ − 𝜇)]    (35) 

= 𝑎𝜇 + 𝑏
𝜇2

2
+ 𝑐

𝜇3

3
+

𝑑

(𝜃−𝜋)
(𝑒(𝜃−𝜋)(𝑃∗−𝜇) − 1)  (36) 

 

Numerical Examples 

Example (Case 1) 

The model was validated numerically by adopting parameter 

values from Babangida and Baraya (2019), with 𝜋and i added 

𝑖added in this work, and their values were optimally 

estimated. The parameters’ values are summarized in table 1 

below: 

 

Table 1: Parameters’ Values 

Parameter Value 

𝑂𝐶 $200/Order 

𝑃𝐶 $45/unit/year 

𝑆𝑃 $50/unit/year 
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Parameter Value 

𝐶1 $4/unit/year 

𝐶2 $0.5/unit/year 

𝜃 0.02 units/year 

𝜋 0.008 units/year 

𝑎 1500 units 

𝑏 400 units 

𝑐 50 units 

𝑖 $0.5/unit/year 

𝑑 800 units 

𝜇 0.2190 year (80days) 

𝑇 0.1971 year (72days) 

𝐼𝑝 0.12 

𝐼𝑔 0.08 

 

RESULTS AND DISCUSSION 

We first check the condition ∆1= −175.9230 < 0. 

Substituting the above values into (24), (18) and(27), we 

obtain as follows the values of the optimal cycle length, the 

optimal average total cost, and the economic order quantity 

respectively in table 2 

 

Table 2: Decision Variables and Their Values 

Decision Variables Values 

𝑃1
∗ 0.3129 year (114 days) 

𝑍1(𝑃1
∗) $1127.3281 

𝐸𝑂𝑄1
∗ 413.3877 Units 

 

Example (Case 2) 

The data are same as in Example (Case 1) except that𝑇 =
0.2327 year (85 days).  

 

 

 

 

Results and Discussion Case 2 

We first check the condition ∆2= −31.9858 < 0. 

Substituting the above values into (26), (19) and(27), we 

obtain as follows the values of the optimal cycle length, the 

optimal average total constant the economic order quantity 

respectively in table 3 

Table 3: Decision Variables and Their Values 

Decision Variables Values 

𝑃2
∗ 0.2456 year (90 days) 

𝑍2(𝑃2
∗) $477.2484 

𝐸𝑂𝑄2
∗ 359.5421 Units 

Therefore, 𝒁(𝑷∗) = 𝒎𝒊𝒏{𝑍1(𝑃1
∗), 𝑍2(𝑃2

∗)} = 𝑍2(𝑃2
∗) = $477.2484 per year 

 

Comparison 

Since the proposed model and Babangida and Baraya (2019) 

both sought to determine the optimal cycle length order 

quantity that minimize minimized the average total variable 

cost per unit, and the proposed model is an extension of 

Babangida and Baraya (2019), the two models' results can be 

compared (see table 4). As the average total variable cost per 

unit in the proposed model ($2.7270for case1 and$1.3273for 

case 2) is lower than that of Babangida and Baraya 

(2019).($2.9285for case1 and $2.3285 for case 2), the 

proposed model performs better. As the average total variable 

cost per unit in the proposed model($2.7270for case1 

and$1.3273for case 2) is lower than that of Babangida and 

Baraya (2019).($2.9285for case1 and $2.3285 for case 2) the 

proposed model is more optimal to that of Babangida and 

Baraya (2019). 

 

Table 4: Comparison Between the Proposed and Existing Model 

Model Average Total Variable Cost for Case 11 Average Total Variable Cost ForCase 2 

Babangida and Baraya (2019) $2.9285 $2.3285 

Proposed Model $2.7270 $1.3273 

 

Sensitivity Analysis 

The sensitivity analysis associated with different parameters 

is performed by changing each of the parameters from 

 −10%, −5% , +5%  to +10% taking one parameter at a 

time and keeping the remaining parameters unchanged. The 

effects of these changes on the decision variables are 

discussed. 
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Table 5: Effect of Changes of Some Parameters on Decision Variables 

Parameter % Change in Parameter % Change in 𝑷∗ % Change in 𝑬𝑶𝑸∗ % Change in 𝒁(𝑷∗) 

 −10 0.1056 0.0576 -0.0180 

−5 0.0525 0.0286 -0.0089 

+5 -0.0520 -0.0284 0.0088 

+10 -0.1036 -0.0565 0.0176 

𝑷𝑪 −10 0.4581 0.25042 -0.0911 

−5 0.2202 0.1204 -0.0446 

+5 -0.2043 -0.1117 0.0430 

+10 -0.3944 -0.2156 0.0845 

𝑺𝑷 −10 3.8678 2.1144 14.1566 

−5 1.9523 1.0672 7.1453 

+5 -1.9912 -1.0884 -7.2873 

+10 -4.0236 -2.1993 -14.7254 

𝝅 

 

−10 -0.0417 -0.0227 0.0071 

−5 -0.0209 -0.0114 0.0035 

+5 0.0210 0.0114 -0.0036 

+10 0.0420 0.0229 -0.0071 

 

Discussion on Sensitivity Analysis 

The managerial insights presented below are based on the 

computational results reported in Table 3.2.1. 

i. As the rate of deterioration (𝜃)  increases, the optimal 

cycle length(𝑃∗) and economic order quantity (𝐸𝑂𝑄∗ ) 

decrease while total variable cost(𝑍(𝑃∗)) 

increase.Hence the retailer will order less quantity to 

avoid the items being deteriorating when the 

deterioration rate increases. 

 

ii. As the unit purchasing cost (𝑃𝐶) increases, the optimal 

cycle length(𝑃∗), and the economic order quantity 

(𝐸𝑂𝑄∗ ) decrease while the average total variable 

cost(𝑍(𝑃∗)) increase. In real market situation the higher 

the cost of an item, the higher the average total variable 

cost. This result implies that the retailer will order a 

smaller quantity to enjoy the benefits of permissible 

delay in payments more frequently in the presence of an 

increased unit purchasing price and consequently 

shortening cycle length. 

 

iii. As the unit selling price (𝑆𝑃) increases, the optimal cycle 

length(𝑃∗), the economic order quantity (𝐸𝑂𝑄∗ ) and the 

average total variable cost(𝑍(𝑃∗))decrease. In real 

market situation the higher the selling price of an item, 

the lower the demand. This means that when the unit 

selling price is increasing, the retailer will order less 

quantity to take the benefits of the trade credit more 

frequently. 

 

iv. As the number of repaired items (𝜋) increases, the 

optimal cycle length(𝑃∗), and the economic order 

quantity (𝐸𝑂𝑄∗ ) increase while the average total 

variable cost(𝑍(𝑃∗)) decreases. Whenever the number 

of repaired items increases, the number of deteriorated 

items decreases, and lead to the decrease in the average 

total variable cost. 

 

CONCLUSION 

This paper presents a two-stage consumption rate 

replenishment policy for partially repaired non-instantaneous 

decaying commodities with variable storage costs under  

allowable acceptable payment delays. The rate of 

consumption is a quadratic function of time before product 

deterioration and remains constant thereafter. The optimal 

best cycle duration and order quantity that minimize the total 

variable cost are determined. The existence uniqueness of 

solutions have been established.  of solutions and their 

uniqueness have been demonstrated. Tests on existing data 

were conducted are utilized to evaluate the model, and a 

comparison with the current model reveals that the proposed 

model outperforms beats the current model in terms of 

turnover and cost minimization. Based on the sensitivity 

analysis, recommendations are provided certain 

recommendations are made for reducing the inventory 

system's overall variable cost. Based on findings and 

sensitivity analysis, the total variables can be minimize by 

ordering less quantity when deterioration rate, unit purchasing 

price and unit selling price increase and the number of 

repaired items decreases.The model developed in this work is 

a generalisation of Babangida and Baraya (2019), i.e., if 𝜋 =
0and 𝑖 = 1, The findings in this study are consistent with 

those reported in Babangida and Baraya (2019). The proposed 

model can be expanded to account for shortages, varying 

deterioration rates, and other practical considerations. and so 

on. 
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