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ABSTRACT

Many inventory models for deteriorating items are developed on the assumptions that deteriorated items are
not fixed or replaced; instead, they are thrown away and inventory carrying costs are not considered while
developing inventory policies. However, in real-world, deteriorated items such as roofs, ceilings, doors, locks,
windows, plumbing pipes and taps, electronics, desks, seats, spare parts, and so on are repairs or replaced.
Similarly, carrying charges affect inventory total cost, influence order quantity, determine the level of stock to
keep, and influence profit, pricing, and budgeting decisions, thus their impact cannot be overlooked when
designing inventory policies. In this work, a two-stage consumption rate replenishment policy with variable
storage costs under allowable payment delays is examined for partially repaired non-instantaneous decaying
goods. Prior to product deterioration, the rate of consumption is a quadratic function of time, and it remains
constant thereafter after that. The main aim of this model is to identify optimal cycle length and order quantity
amount that minimize the overall variable cost. It is established that solution exist and are unique solutions exist
and are distinct. The model is validated using numerical test based on tests of some existing data, and a
comparison with the current model reveals that the proposed model performs better in terms of cost
minimization and turnover. Some suggestions for lowering the total variable cost of the inventory system are
provided based on in light of the sensitivity analysis. The model could be used in inventory management and
control of items such as doors, windows, plumbing pipes and taps, electronics, and so on.

Keywords: Replenishment, Two-Stage Consumption rates, Partially Repaired Non-Instant Decaying goods,

Variable Storage Cost Varying Storage Cost, Allowable Payment Delay

INTRODUCTION

The majority of studies on inventory models have assumed
assumed that holding costs were constant. However, in real-
life settings, the holding cost of many products may fluctuate
as the time value of money and price index change alter. The
cost of storing decaying and perishable commodities when
additional storage facilities and services are required can
might always be expensive. The holding cost for some items
in stock varies linearly with the amount of time they are
stored. Typically, the cost of keeping commodities in stock,
such as fruits, vegetables, fish, meat, and milk, is higher when
better-preserving facilities are utilized to maintain freshness
and prevent decomposition, resulting in a lower degradation
rate. Furthermore, holding costs can rise due to inflation, bank
interest, hiring charges, and so on. Thus, it is critical to
examine an inventory model with time-varying holding costs.
Baraya and Sani (2011) proposed an EPQ model for delayed
deteriorating degrading items that includes a stock-dependent
demand rate and a linear time-dependent holding cost. Musa
and Sani (2012a) developed created an EOQ model for
delayed deteriorating degrading products with a linear time-
dependent holding cost. Tayal et al. (2015) proposed created
an EPQ model for non-instantaneous deteriorating items in
which the demand rate is exponential, the production rate is a
function of the demand rate, the holding cost varies over time,
partially deteriorated items are sold at a discount from the
original price, and completely deteriorated items are
superfluous.Sivashankari (2016) investigated an EPQ model
for instantaneously decaying items with constant, linear, and
quadratic holding costs, and conducted a comparative analysis
of these three holding cost constant, linear, and quadratic
holding costs. Selvaraju and Ghuru (2018) formulated created
EOQ models for instantaneously decaying items with
constant, linear, and quadratic holding costs and shortages,

and conducted a comparative assessment of constant, linear,
and quadratic holding costs. Singhal and Singh (2018)
investigated an integrated replenishment model for
deteriorating degrading items with multiple market demand
rates under volume flexibility, in which the deterioration rate
is determined by quality level and time and follows a two-
parameter Weibull distribution. Holding cost is assumed
supposed to increase linearly over time. Furthermore, Mishra
and Singh (2011), Tyagi et al. (2014), and others have
published relevant research on inventory models with time-
varying holding costs.

When creating inventory policies for items like electronics,
fashion, cars and their parts, seasonal goods, rice, beans, yam,
maize, and so forth, it would be incorrect to assume that
deterioration begins as soon as the items are placed in stock.
Therefore, businesses may overestimate the total relevant
inventory cost if they are unaware of this characteristic
uninformed of the feature of these kinds of things, which
could lead to poor decision-making. An inventory model for
non-instantaneous deteriorating items with an allowable
payment delay was examined by Ouyang et al. (2006). An
optimal ideal replenishment strategy for non-instantaneous
deteriorating items with stock-dependent demand rates was
proposed created by Wu et al. (2006).Shortages are allowed
and partially backlogged; the backlogging rate is variable and
depends on the waiting time for the next replenishment.
Chung (2009) established a thorough proof of the solution
technique for non-instantaneous deteriorating products with
allowable payment delays. Musa and Sani (2012b) developed
created ordering strategies for deteriorating degrading
commodities with an acceptable payment delay. The demand
rates before and after deterioration occurs set in are different,
and both are assumed to remain constant. Maihami and Abadi
(2012) examined cooperative pricing and inventory control
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for non-instantaneous deteriorating products with an
allowable payment delay. Shortages are permitted and may
result in partial backlog. Wu et al. (2014) gave a remark on
optimal replenishment policies for non-instantaneous
deteriorating items with price and stock sensitive demand
rates where a payment delay is acceptable.Chang et al. (2015)
developed an EOQ model for non-instantaneously
deteriorating products with order-size-dependent payment
delays. The model calculates the appropriate pricing and
ordering procedures to maximize total profit per unit time.
Babangida and Baraya (2018) created an inventory model for
non-instantaneous degrading items with time-dependent
quadratic demand under a trade credit regime. The demand
rate before degradation is considered to be a time-dependent
quadratic, whereas the demand rate after deterioration is
believed to be constant because some customers are eager to
buy after deterioration has occurred. Muazu et al. (2023)
developed an economic order quantity model for non-instant
deteriorating decaying goods with three-stage demand rates,
linear holding cost and linear reciprocal partial backlogging
amount. The average annual demand rates before goods start
deteriorating after deterioration decaying, after goods start
decaying and during stockouts are not the same are and both
taken as constant. The model determined the best time with
positive inventory, cycle length and order quantity that reduce
entire total variable cost. Ahmed et al. (2025) developed an
order quantity model for non-instantaneous deteriorating
items with two-level pricing strategies under trade credit
policy, two-phase demand rates, linear holding costs, and
time-dependent partial backlog rates. The model determines
determine the optimal period for positive inventory, cycle
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length, and order quantity amount to maximize the inventory
system's overall profit.

Babangida and Baraya (2019) established an inventory model
for non-instantaneous deteriorating items with two
components: demand and linear time varying time holding
costs under trade credit. The things do not decay quickly while
in stock and have a period of preserving their original qualities
before deterioration occurs. However, degraded objects are
not repaired fixed or replaced; instead, they are discarded
thrown, and inventory carrying costs are not considered. Real-
world repairs or replacements include roofs, ceilings, doors,
locks, windows, plumbing pipes and taps, electronics, desks,
seats, spare parts, and so on. Similarly, carrying charges affect
inventory total cost, influence order quantity, determine the
level of stock to keep, and influence profit, pricing, and
budgeting decisions, thus their impact cannot be overlooked
when designing inventory policies rules.

This model proposes a replenishment policy with two-stage
consumption rates for partially repaired non-instant decaying
products and time-varying changing storage costs within the
permissible payment delay (see Table 1). The model
determines will calculate the ideal cycle length and order
quantity to minimize reduce the average total variable cost.
Some numerical examples are have been provided to
demonstrate the theoretical results of the model. Sensitivity
analysis of some model parameters was performed to
determine the effect of changing these parameters on the
decision variables, and ideas for reducing the average total
variable cost of the inventory system were also presented
provided.

Table 1: Comparison of Some Existing Literatures Relevant to the Proposed Model

Authorsand year  Non-Instant  Two-Stage Varying Payment Closed Carrying Repairment
Decaying Consumption Storage Delay form charges of item
goods rates Cost solution

Ouyang et al. Yes No No Yes Yes No No

(2006)

Chung (2009) Yes No Yes No Yes No No

Baraya and Sani Yes No Yes No Yes No No

(2011)

Musa and Sani Yes yes Yes No Yes No No

(2012a)

Musa and Sani Yes yes No Yes Yes No No

(2012b)

Maihami and Abadi  Yes No No Yes No No No

(2012)

Wau et al. (2014) Yes No No Yes No No No

Chang et al. (2015)  Yes No No Yes No No No

Babangida&Baraya Yes Yes No Yes Yes No No

(2018)

Babangida&Baraya Yes Yes Yes Yes Yes No No

(2019)

Zulkifilu M. et al. Yes Yes Yes No Yes No No

(2023)

Ahmed et al. Yes Yes Yes Yes Yes No No

(2025)

Proposed model Yes Yes Yes Yes Yes Yes Yes

MATERIALS AND METHODS Notation

Methodology Model Description and Formulation O¢ The ordering cost per order.

This section describes the proposed model notation, P, The purchasing cost per unitper unit time ($/unit/

assumptions and formulation. The inventory system is year).

developed based on the following assumptions and notation. S, The selling price per unit per unit time ($/unit/
year).
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I The Commission paid commissionpaid in stock by
the supplier per Dollar per year ($/unit/year)(l. = I).

Iy The Commission gained commissiongained per
Dollar per year ($/unit/year).

T The trade credit period (in year) for settling
accounts.

0 Deterioration rate(0 < 8 < 1).

T The rate at which goods are repaired

i Carrying charges

u The length of time in which the product exhibits no
deterioration.

P The length of the replenishment cycle time (time
unit).

Iy The number of items received at the beginning of

the inventory system (units).
L (t) The inventory level before deterioration sets in.
L(t) The inventory level after deterioration begins.

Assumptions
i.  The replenishment rate is infinite.

ii.  The lead time is zero.

iii. A single non-instantaneous deteriorating item is
considered.

iv.  During the fixed period,l, there is no deterioration and
at the end of this period, the inventory item
deteriorates at the constant rate.

v.  Deteriorated items are either replaced or repaired.

Inventory level

1
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vi.  Demand rate before deterioration begins is a quadratic

function of time ¢t and is given by

vii. a4+ bt + ct?wherea = 0,b # 0,c # 0.

viii.  Demand rate after deterioration sets in is assumed to
be constant and is given byd.

ix. Storage cost H(t)per unit time is linear time
dependent and is assumed to be

X.  H(t) = hy + hyt; whereh; > 0and h, > 0.

xi.  During the trade credit periodT(0 <T < 1), the
account is not settled; generated sales revenue is
deposited in acommission bearing account. At the end
of the period, the retailer pays off all units bought, and
starts to pay the capital opportunity cost for the items
in stock.

xii.  Shortages are not allowed.

Formulation of the Model

The inventory system is designed as follows.lyunits of a
single product from the manufacturer arrive at the inventory
system at the start of each cycle (i.e., at timet = 0). During
the time span[0,u], the inventory levell, (t)gradually
depletes due to market demand and is assumed to be a
quadratic function of time. At time interval [y, P]the
inventory levell,(t) is depleting due to combined effects of
demand and deterioration and the demand rate at this time is
reduced to a constantd. At time t = P, the inventory level
depletes to zero. The behaviour of the inventory system is
described in figure 1 below.

» Time

T P

P ’

Figure 1: Graphical Representation of Inventory System

Based on the above description, the inventory level I, (t) at
timet € [0, P] is given by

DO = —(@+bt+ct?), 0<t<p )
LO (9 -mp(t)=-d, p<t<P o)

with boundary conditions I,(0) = Iy,I; () = IL,(w) = 14,
and I,(P) = Oatt=P
The solutions of equations (1) and (2) are

d _ _ b
L(t) = T (e(e m)(T-p) _ 1) +a(u—1t)+ ;(HZ -
t2)+§(y3—t3) 0<t<u (3)
_ . a 09— —
L) === (@0 —1), pu<e<P (4

Also applying the conditionl, (1) = I at t = p into (4) and
1,(0) = Iy att = 0into (3) to obtain

d — -

I = G (00— 1) ®)
Iy = (efn) (e(g’”)(P"‘) - 1) + (a,u + b% + c%) (6)

(i) The total demand during the period [y, T] is given by

D= [} ddt = d(P - p) )

The Total Number of Deteriorated Items Per Cycle is given

by
Ni == Id - Di
Substituting I; and D; from (11) and (14) respectively intoN;,
we obtain
d - -
i =Gy eI - 1= (0 -m(P -] @)

The Deterioration Cost is given by

De = Pe |55 (e@¢0 —1— (6 - m)(P - )] (9)

(iv) The ordering cost per order is given by C,

The Inventory Storage Cost During the Period [0, P] is given
by

HE®) =i [fo”(cl +COL Ot + [ (Cy + Czt)Iz(t)dt]
Substituting (3)and(4) into (10)to obtain

(10)

- e -mP-p) 4 % ,2 b 3¢ 4

lCl((g_n)e P+ St
d_ o o-mp-p __4__ _dP )

(6-m)? (6-m)? (6-m)
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i @-m)(P-w) 4 2,3
162(2(9 7T)e + - S + u + u +

eO-m(P-1) _ 42 _ < + a e(0-mEP-1) _
(e-m? (6-m*  (6-m)?

G
dp?
2(9—1‘[))

The Commission Payable

This is the commission paid for the inventory not being sold
after the expiration of trade credit period which are
categorised into Case 1(0 < T < pand Case 2(u < T < P).
Casel: (0<T <p)

This is the period before deterioration sets in, and payment for

goods is settled with the capital opportunity cost rate I, for the
items in stock. Thus, the commission payable is given by

P
Ipy = Pl [fT" h(©)dt + [, Iz(t)dt] (12)
= Pely [SD (@M@ — 1) + 2 (4 = T)* + 2 (2 +

(6-m)
T)(# —T)? + 5 G2+ 2uT + T~ T)* +

DD 1@ =)

Case2: (u<T<P)

This is when the end point of credit period is greater than the
period with no deterioration but shorter than or equal to the
length of period with positive inventory. The commission
payable is

Ipz = Pcly [ L (0]
= Pely [55: (eOPFD — 1 - (6 - m)(P - T)]

(1)

(13)

(14)
(15)

The Commission Gained
It is assumed that during the period when the account is not
settled, the retailer sells the goods and continues to
accumulate sales revenue and gains the commission with
rate I,. Therefore, the commissiongained per cycle for two
different cases are given below
Casel: (0<T<uw
In this case, the retailer can gain commission on revenue
generated from the sales up to the trade credit period T.
Although, the retailer has to settle the accounts at period T,
for that he has to arrange money at some specified rate of
commission in order to get his remaining stocks financed for
the period T to p. The commissiongain is
Ipy = Spl, [for(a + bt + ctz)tdt] =Spl, (a%2 + b%3+ ch)

(16)
Case2: (u<T<P)
In this case, the retailer can gain commission on revenue
generated from the sales up to the trade credit period T.
Although, the retailer has to settle the accounts at period T,
for that he has to arrange money at some specified rate of
commission in order to get his remaining stocks financed for
the period T to P. The commissiongain is
g2 = Sply [[(a + bt + ct?)ede + [T dedt] = Sply [(a's + b2+ c2) +
ar? du an
(V|||) The Average Total Variable Cost per Unit Time
The average total variable cost per unit time for case 1 (0 <
T < p) is given by
Z(P) = %{Ordering cost +inventory storage cost +

deterioration cost + commission payable during the
permissible delay period — commissiongained during the

cycle}

{Oc+16‘1( € e@-mT-1 4 2 1 +2 S+ u
(0-m(T-p) __ 4 ___ _dP (0-m)(P—p)
(8 n)ze (CE n)2 (6- n)) (2(9 n)e +
a (e-mP-p _ _2 ___d
” + " + 10” tonz (9 ) e 0-m)2 (- n)3 +

(9-m)(P-p) _ _9P O-mP-1) _ 1 _ (g —
(CE 11) € (Bfn)) +Pc [(9 —1) (e (9
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m)(P ~ )|+ Pel, [“(g‘ D (@m0 — 1) + 4 (u—T)? +
g(Zu +T)(u—-T)*+

5 @B +2uT+ T3 (u—-T)* +
_)(P— T2 T3
s (e@EW — 1 — (9 —m)(P - w)| - ety (aZ+ b+

cT;)} (18)

The average total variable cost per unit time for case 2(u <
T < P) is given by

Z,(P) = %{Ordering cost +inventory storage cost +
deterioration cost + commission payable during the
permissible delay period — commission gained during the
cycle}

= +{0c +ic, (G5 £ 2 2y 4 St 4
6-mP-p) _ 4 _ _dP (6-m)(P—p)
= n)ze @-mz ~ G- 11)) G (2(9 ¢ +
_M + # _|_ H +F e(O-m(P-p) _ a___d

- n)z (6-m?  (6-m)3

ap?
_ar” O-m)(P-1) _ 1 — (g —
2(9—11')) + P [(9 —1) (e 1 (9
(@D —1- (0 -m)(P-T))| -

(e n)(P W
©- n) €

WP - )]+ Pely |55

Sply [(a'§+b‘§+c§)+d7ﬂ—d7“2} (19)
Since 0 < (6 —m) < 1,by utilizing a quadratic

approximation for the exponential terms in equations (16) and
(17) to obtain:
Z,(T) = 1{OC + iCl( w2+l /l +< u _ +—d”3(29_”)

+

2
M —du? (9—1‘[)P)+1C2( u +§u4+iu5+
du*(6-m) du (6-m)p? dﬂPZ du (9 T)P duZP Pcd(B )
4 4 2 )+ ( +

P2 = 2uP) + Pcl, [2 (u - T)2+ (2,u+T)(,u T)2+ (3% +
d(u-T)(6-m)u? _2

2yT+T2)(y—T)2—T+dT + —+

_ _ 2 2 3
LDODF _ aTP - d(u — T)(O — )P | = Sply (a =+ bZ +
T_")} 20
cx (20)
and
2,(1) = H{oc + i, (G2 +2u +Cu“ Wy 0oy Comr
dsz—dyz(e—ﬂ)P)+lCZ( /4 + # +C#5+M+M+
dp._Pz_d;ﬁ(G—rr)P

2
a P) Ped®- ")(u +P? = 2uP) + Pl

T e

[T2 +P? —
2 2

2TP] - Sy, ( +b“ +c —+

Optimal Decision

We define the necessary and sufficient conditions for
determining the best ordering strategies that minimize the
average total variable cost per unit time. The required
condition for the average total variable cost per unit
ime.Z;(P)to be minimum is obtained by differentiating Z; (P)
with respect P for i = 1,2 and equates to zero. The optimum
value of P for which the sufficient condition %2 (P) >0is
satisfied gives a minimum for the average total varlable cost
per unit timeZ; (P).

Optimality condition for Case 1: (0 < T < )

The necessary and sufficient conditions that minimize
Z,(P)are respectlvely, 1( ) = 0 and L&P) Zl(P) >0

The first derivatives of the average total varlable cost, in (18),
with respect to P is as follows.

dz;(P) 1 (0-m)
= G aawe -—m+ 0 +ou (G2 ”+1)+PC(9_
n)+Pcp((e—ﬂ)(u—T)+1)]_[06+C1(;,u +§# +Z# _
au? | dud(o-m) a3 pba g ey antomm
+ )+Cz(6# opt St ] )+
P 4 Py (S =TV + 2 @uA DI~ T)? + 5B +
2 _ \2 )

Z#T+T2)(#—T)2 T Rl B P

(22)
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le( )

Therefore,
in terms P
%{P;d [Cu(e —m) + 1) + Cou (M2 +1) +PC(9 )+
Pely((0 =) (u—T)+1)| ¢ = [0 + C; (Su? +2 + Spt —
el R,
P2 4 Py (S =T + 2 @uA TR =T + L 3% +
2;4T + 1)~ T)? = 4 arp + D) 5 g (oDt
pT+cT )l =0
From (29), let
Xy =d[C(u@ —m) + 1)+ Cou (M2 + 1) + Pe(6 -

= 0 gives the following nonlinear equation

< .5
10,u+ +

(23)

m) + Pely((6 = m)(u = T) +1)] (24)
and

Xy =00+ (B2 + 203 +Spt +M)+C(,u3+b,u4+
1CDHS+M)+MHZ+PC (Gu-1?+2@utnE-1)2+

S @+ 2T+ T (- TV =4 T + W) Splg( T: +
) (25)
Substituting X; and X, into (21) to obtain

xR -x)=0 26)
which implies

P2X, —2X, =0 @7)

Let

1= Spl, ( e [oc+cl(“u2+”u3+cu4 ) +

Co (4 gt + 5% = 20) 4 ety (5= T+ 2uA YW= ) +

Z@ut+ 2uT+T2)(u T)? = dy? + dTu)| (28)

Lemma 1. For 0 < M < u, we have

i. If A;<0,then the solutionof P € [u, ») (sayP;) which

satisfies (22) not only exists but also is unique

ii. If A;>0, then the solution of P € [u, )
satisfies (22) does not exist.

Proof of (i). From (21), we define a new function F;( P) as

follows

Fi(P) =2 [c,u(6 —m) + 1) + Cou (M52 + 1) +Pu(o -
™)+ P p((e_”)(ﬂ_T)+1)]_[0c+C1( WDy St
ﬂ+w)+c(#3+gu4+ dut(o- n))
P+ Pely (5 (u—T)2+§(2u+T)(u—T)2+§(3u2+
2uT+T2)(u T)? - LeDO) 5,1, (- +
b + —)] PE[ﬂoo) (29)

Taklng the first-order derivative of F; ( T)with respectto T €
[, o), we have
BO = pa|c,(ue —m) + 1) + Co (2 + 1) + Po(0 - ) +
Pel,((0 = m)(u—T) + 1)) (30)
=PX; >0
We obtain that F;( P)is an increasing function of P in the
interval [u, ). Moreover, we have
}lim F,(P) =
and
2 3 4
Fuw) = Sply (aZ+ b T+ y D) = [0c + € (22 + 202 + St -

dp?) + Gy (20 +2pt + S8 =) 4 Pl (S(u—T)7 +

which

¢ .5
1u+ +

2
S dTu+

Table 1: Parameters’ VValues
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2+ M) = T)? + 5 (B + 2uT + M?)(u = T)? — dp? +
ar)| (31)
= AM<0

NowF; (1) < 0. Therefore, by applying intermediate value
theorem, there exists a unique Py € [u, o0) such thatF, (P}) =
0. Hence Py isthe unique solution of (22). Thus, the value of
P (denoted byP;) can be found from (30) and is given by

pp= |22 (32)

X1
Proof of (ii). If A;> 0, then from (23), we haveF;(P) > 0.
Since F,(P)is an increasing function of PE€

[, o0),thenF; (P) > 0 for allP € [y, o). Thus, we cannot find

avalue of P € [u, ) such thatF; (P) = 0. This completes the

proof.

Theorem 1. When0 < T < pu, we have

i. (i) If A;<0,then the average total variable costZ, (P)is

convex and reaches its global minimum at the pointP; €
[, ), where Pis the point which satisfies (22).

ii. If A;> 0, then the average total variable costZ, (P)has
a minimum value at the pointP] = u.

Proof of (i). When A;< 0,we see that P;'is the unique solution

of (22) from Lemma I(i). Taking the second derivative

ofZ, ( P)with respect to P and then finding the value of the

function at the pointTy, we obtain

d?z,(P)

? P{f P1 > 0 (33)

We thus conclude from (25) and Lemma 1 thatZ,(P;)is

convex and P;is the global minimum point ofZ, (P). Hence

the value of P in (24) is optimal.

Proof of (ii). When A;> 0, then we know that F; ( P) > Ofor

all P € [y, ). Thus,——= le(P) Fl(P) >0 for all P e[y o)

which implies Zl(P) IS an |ncreasmg function of P. Thus
Z4(P) has a minimum value when P is minimum. Therefore,
Zy(P) has a minimum value at the pointP = pu. This
completes the proof.

Optimality condition for Case 2: (u < T < P)

Applying the same procedure as in case 1, the value of the
optimal cycle length denoted by Pyis given by

* 2Y;
Py = v (34)

Thus the EOQ corresponding to the best cycle length P*will
be computed as follows:

EOQ* =Total demand before deterioration set in+total
demand after deterioration set in+total number of deteriorated
items

e 2 P d
= [, @a+bt+ct )dt+f# ddt+[(9_n)
1)—d(P*—;t)]
u?
=au+b7+c

(e(e—n)(P’—u) _
(39)
(36)

- n) (3(9 m) (P —p) _ 1)

Numerical Examples

Example (Case 1)

The model was validated numerically by adopting parameter
values from Babangida and Baraya (2019), with wand i added
iadded in this work, and their values were optimally
estimated. The parameters’ values are summarized in table 1
below:

Parameter Value
O¢ $200/Order
P $45/unit/year
Sp $50/unit/year
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Parameter Value
C, $4/unit/year
C, $0.5/unit/year
6 0.02 units/year
s 0.008 units/year
a 1500 units
b 400 units
c 50 units
i $0.5/unit/year
d 800 units
u 0.2190 year (80days)
T 0.1971 year (72days)
I, 0.12
I 0.08

RESULTS AND DISCUSSION

We first check the condition A;= —175.9230 < 0.
Substituting the above values into (24), (18) and(27), we
obtain as follows the values of the optimal cycle length, the

Table 2: Decision Variables and Their Values

optimal average total cost, and the economic order quantity
respectively in table 2

Decision Variables Values

Py 0.3129 year (114 days)
Z, (P $1127.3281

EOQ; 413.3877 Units

Example (Case 2)
The data are same as in Example (Case 1) except thatT =
0.2327 year (85 days).

Table 3: Decision Variables and Their Values

Results and Discussion Case 2

We first check the condition A,= —31.9858 < 0.
Substituting the above values into (26),(19) and(27), we
obtain as follows the values of the optimal cycle length, the
optimal average total constant the economic order quantity
respectively in table 3

Decision Variables Values

P 0.2456 year (90 days)
Z,(P)) $477.2484

E0Q; 359.5421 Units

Therefore, Z(P*) = min{Z,(P}), Z,(P;)} = Z,(P;) = $477.2484 per year

Comparison

Since the proposed model and Babangida and Baraya (2019)
both sought to determine the optimal cycle length order
quantity that minimize minimized the average total variable
cost per unit, and the proposed model is an extension of
Babangida and Baraya (2019), the two models' results can be
compared (see table 4). As the average total variable cost per
unit in the proposed model ($2.7270for casel and$1.3273for
case 2) is lower than that of Babangida and Baraya

(2019).($2.9285for casel and $2.3285 for case 2), the
proposed model performs better. As the average total variable
cost per unit in the proposed model($2.7270for casel
and$1.3273for case 2) is lower than that of Babangida and
Baraya (2019).($2.9285for casel and $2.3285 for case 2) the
proposed model is more optimal to that of Babangida and
Baraya (2019).

Table 4: Comparison Between the Proposed and Existing Model

Average Total Variable Cost for Case 11  Average Total Variable Cost ForCase 2

Model
Babangida and Baraya (2019) $2.9285
Proposed Model $2.7270

$2.3285
$1.3273

Sensitivity Analysis

The sensitivity analysis associated with different parameters
is performed by changing each of the parameters from
—10%, —5%, +5% to +10% taking one parameter at a

time and keeping the remaining parameters unchanged. The
effects of these changes on the decision variables are
discussed.
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Table 5: Effect of Changes of Some Parameters on Decision Variables

Parameter % Change in Parameter % Change in P* % Change in EOQ* % Change in Z(P*)
0 -10 0.1056 0.0576 -0.0180
-5 0.0525 0.0286 -0.0089
+5 -0.0520 -0.0284 0.0088
+10 -0.1036 -0.0565 0.0176
Pc -10 0.4581 0.25042 -0.0911
-5 0.2202 0.1204 -0.0446
+5 -0.2043 -0.1117 0.0430
+10 -0.3944 -0.2156 0.0845
Sp -10 3.8678 2.1144 14.1566
-5 1.9523 1.0672 7.1453
+5 -1.9912 -1.0884 -7.2873
+10 -4.0236 -2.1993 -14.7254
/4 -10 -0.0417 -0.0227 0.0071
-5 -0.0209 -0.0114 0.0035
+5 0.0210 0.0114 -0.0036
+10 0.0420 0.0229 -0.0071

Discussion on Sensitivity Analysis
The managerial insights presented below are based on the
computational results reported in Table 3.2.1.

i. As the rate of deterioration (8) increases, the optimal
cycle length(P*) and economic order quantity (EOQ*)
decrease  while  total  variable  cost(Z(P*))
increase.Hence the retailer will order less quantity to
avoid the items being deteriorating when the
deterioration rate increases.

ii. As the unit purchasing cost (P.) increases, the optimal
cycle length(P*), and the economic order quantity
(E0Q*) decrease while the average total variable
cost(Z(P*)) increase. In real market situation the higher
the cost of an item, the higher the average total variable
cost. This result implies that the retailer will order a
smaller quantity to enjoy the benefits of permissible
delay in payments more frequently in the presence of an
increased unit purchasing price and consequently
shortening cycle length.

iii. Asthe unitselling price (Sp) increases, the optimal cycle
length(P*), the economic order quantity (EOQ* ) and the
average total variable cost(Z(P*))decrease. In real
market situation the higher the selling price of an item,
the lower the demand. This means that when the unit
selling price is increasing, the retailer will order less
quantity to take the benefits of the trade credit more
frequently.

As the number of repaired items (m) increases, the
optimal cycle length(P*), and the economic order
quantity (EOQ*) increase while the average total
variable cost(Z(P*)) decreases. Whenever the number
of repaired items increases, the number of deteriorated
items decreases, and lead to the decrease in the average
total variable cost.

CONCLUSION

This paper presents a two-stage consumption rate
replenishment policy for partially repaired non-instantaneous
decaying commodities with variable storage costs under
allowable acceptable payment delays. The rate of
consumption is a quadratic function of time before product

deterioration and remains constant thereafter. The optimal
best cycle duration and order quantity that minimize the total
variable cost are determined. The existence uniqueness of
solutions have been established. of solutions and their
uniqueness have been demonstrated. Tests on existing data
were conducted are utilized to evaluate the model, and a
comparison with the current model reveals that the proposed
model outperforms beats the current model in terms of
turnover and cost minimization. Based on the sensitivity
analysis,  recommendations are  provided  certain
recommendations are made for reducing the inventory
system's overall variable cost. Based on findings and
sensitivity analysis, the total variables can be minimize by
ordering less quantity when deterioration rate, unit purchasing
price and unit selling price increase and the number of
repaired items decreases. The model developed in this work is
a generalisation of Babangida and Baraya (2019), i.e., if T =
O0and i = 1, The findings in this study are consistent with
those reported in Babangida and Baraya (2019). The proposed
model can be expanded to account for shortages, varying
deterioration rates, and other practical considerations. and so
on.
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