



## EVALUATION OF BIOACTIVE COMPOUNDS, IN-VITRO ANTIOXIDANT PROFILE AND ANTI-INFLAMMATORY PROPERTIES OF ETHANOLIC EXTRACTS OF *Isoberlinia tomentosa*

\*<sup>1,2,3</sup>Habeebulahi Ajibola Adekilekun, <sup>1,3</sup>Olorunshola Dave Omodamiro, <sup>3</sup>Ngozi Kalu Achi,

<sup>4</sup>Habeebat Adekilekun Oyewusi, <sup>5,6</sup>Racheal Majekodunmi Omodamiro, <sup>7</sup>Bashar Adekilekun Tijani,

<sup>8</sup>Oluwatosin Olubunmi Oladipo and <sup>9</sup>Bolaji Fatai Oyeyemi

<sup>1</sup>Department of Biochemistry, Micheal Okpara University of Agriculture, P.M.B 7276, Umudike, Abia State, Nigeria.

<sup>2</sup>Department of Pharmacology, Federal University of Health Sciences, Ila-Orangun, Osun State, Nigeria.

<sup>3</sup>Department of Pharmacology and Toxicology, Kampala International University, P. O. Box 71, Bushenyi, Western Campus, Ishaka, Uganda

<sup>4</sup>Department of Medical Biochemistry, Federal University of Health Sciences, Ila-Orangun, Osun State, Nigeria.

<sup>5</sup>Department of Pharmaceutical Chemistry and Pharmacognosy, Kampala International University, P. O. Box 71, Bushenyi, Western Campus, Ishaka, Uganda

<sup>6</sup>National Root Crops Research Institute, P.M.B 7006, Umuahia, Umudike, Abia State, Nigeria

<sup>7</sup>Medical Laboratory Unit, Obafemi Awolowo University Teaching Hospital Complex, P.M.B 5538, Ile-Ife, Osun State, Nigeria.

<sup>8</sup>Microbiology Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti 360231, Ekiti State, Nigeria

<sup>9</sup>Cell Biology and Genetics Unit, Department of Zoology, University of Ilorin, P.M.B 1515, Ilorin, Nigeria.

\*Corresponding authors' email: [ajiboladekilekun@gmail.com](mailto:ajiboladekilekun@gmail.com)

### ABSTRACT

Oxidative stress and chronic inflammation are interlinked pathological processes implicated in the onset and progression of various chronic diseases. *Isoberlinia tomentosa*, a Fabaceae family species traditionally used in African medicine, has limited scientific validation despite its ethnomedicinal relevance. This study evaluated the phytochemical composition, in-vitro antioxidant profile, and in-vivo anti-inflammatory activity of the ethanolic fruit extract of *I. tomentosa*. Qualitative screening revealed significant levels of phenolic compounds, tannins, saponins, terpenoids, and alkaloids. Quantitative GC-FID analysis identified 22 bioactive compounds, including catechin, quercetin, kaempferol, rutin, and apigenin. Acute toxicity testing in Wistar rats indicated an LD<sub>50</sub> greater than 5000 mg/kg, suggesting a favorable safety profile. Antioxidant assays (DPPH, ABTS, H<sub>2</sub>O<sub>2</sub>, OH<sup>•</sup>, NO<sup>•</sup> scavenging, FRAP, and TAC) demonstrated strong, dose-dependent radical-scavenging and reducing activities. In an oval albumin-induced paw edema model, the extract significantly reduced inflammation in a dose-dependent manner, with the 1000 mg/kg dose outperforming indomethacin ( $p < 0.05$ ). These findings provide scientific evidence for the traditional use of *I. tomentosa*, highlighting its potent antioxidant and anti-inflammatory activities, high safety margin, and potential as a source of plant-based therapeutics for oxidative stress- and inflammation-related disorders.

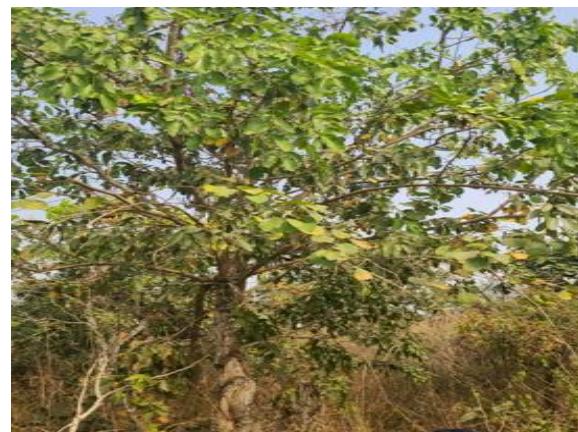
**Keywords:** Anti-inflammatory, Antioxidant, GC-FID, *Isoberlinia tomentosa*, Oxidative stress, Phytochemicals

### INTRODUCTION

Oxidative stress and inflammation are two interlinked pathological processes implicated in the development of numerous chronic diseases, including cardiovascular disorders, cancer, diabetes, neurodegenerative conditions, and autoimmune diseases (Wronka et al., 2022; Gambini, & Stromsnes, 2022; Krzeminska et al., 2022). Reactive Oxygen Species (ROS) and other free radicals produced during normal metabolic processes can lead to cellular damage if not effectively neutralized by endogenous antioxidant systems. Similarly, chronic inflammation, characterized by persistent activation of the immune response, contributes to tissue injury and disease progression (Gambini, & Stromsnes, 2022; Bezerra et al., 2023). As such, the search for effective natural agents with both antioxidant and anti-inflammatory effects has gained increasing attention in biomedical research. Inflammation is a dynamic physiological reaction to infection, tissue damage, or injury. This involves a complex chemistry of immune cells, chemical mediators, and signaling pathways aimed at repairing tissue homeostasis. Acute inflammation is protective and resolves quickly, chronic or uncontrolled inflammation can lead to many pathological conditions, including arthritis, asthma, cardiovascular diseases, metabolic disorders, neurodegenerative diseases, and cancer

(Medzhitov, 2021; Soliman, & Barreda, 2022; Hannoodie, & Nasuruddin, 2024).

Oxidative stress rises from a discrepancy between the reactive oxygen species (ROS) production and the capacity of the body to cleanse these reactive intermediates and/or repair the resulting injury. ROS including hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), hydroxyl radicals (•OH), and superoxide anion (O<sub>2</sub><sup>•</sup>) are produced as byproducts of normal cellular metabolism, especially in the mitochondria (Unsal et al., 2020; Afzal et al., 2023). In a physiological state, antioxidant defense systems such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) maintain redox homeostasis. Though, excessive ROS creation or impaired antioxidant protection can cause oxidative damage of proteins, lipids, and nucleic acids. This effect has a major role in the pathogenesis of different chronic and degenerative diseases, including cancer, cardiovascular disorders, diabetes, neurodegenerative diseases and accelerated aging (Sahoo et al., 2022; Afzal et al., 2023).


Medicinal plants have long served as cherished sources of bioactives for therapeutic use and in many parts of the world, especially in rural areas, traditional medicine remains a primary resource of medical remedy (Dehelean et al., 2021; Najmi et al., 2022). *Isoberlinia tomentosa*, a deciduous tree

belonging to the family of Fabaceae (ceasalpinoideae), is native to tropical Africa and commonly found in savannah regions. *Isoberlinia tomentosa* (Figure 1) exists as shrub or tree measuring about 10-20 m tall with a trunk of 40-50 cm in diameter, branches measure about 5 m upwards. The leaves are pinnate and paripinnate types of compound leaves with about 2-5 pairs of leaflets per leaf; arranged in opposite or sub-opposite; and petiolated with short stalk. The fruits are described as two-valved pod which twist during dehiscence; obliquely oblong, compressed, becoming woody (Hadiza et al., 2020; Yilangai et al., 2023). *I. doka* has been scientifically reported including its phytochemicals presence, antioxidant activities, and enhance sexuality in male Wistar rats (Hadiza et al., 2020), but scanty reports about *I. tomentosa*. It is important to determine the phytochemical constituents of *I. tomentosa*, so as to know the type of biological activity which might be exhibited by the plant. The plant is traditionally used for treating conditions such as fever, wounds, arthritis, and gastrointestinal disturbances. Despite its local medicinal relevance, there is limited scientific evidence on the pharmacological properties of its plant parts. This study aims to evaluate the phytochemical composition, *in-vitro* antioxidant profile, and anti-inflammatory properties of the ethanolic fruit extract of *Isoberlinia tomentosa*. Establishing a scientific basis for its traditional use could pave the way for the identification of a novel plant-based therapies for the management of oxidative stress and inflammation-related problems.



Figure 1: *Isoberlinia tomentosa* Plant

The therapeutic relevance of plant-derived antioxidants has inspired extensive pharmacological research aimed at validating traditional medicinal uses of various plants. Plants contain naturally occurring bioactive compounds (phytochemicals) that possess strong antioxidant properties. These include phenolics, flavonoids, tannins, alkaloids, terpenoids, and saponins, which are secondary metabolites that help plants protect themselves against environmental stressors such as UV radiation, pathogens, and herbivores. These phytochemicals can scavenge free radicals, inhibit lipid peroxidation, chelate pro-oxidant metal ions, and modulate the activity of antioxidant enzymes in the human body. In traditional medicine systems, numerous plants have been used to treat inflammatory conditions, and modern research has validated many of these claims. Investigating plants such as *Isoberlinia tomentosa*, which are traditionally used for treating pain, fever, or swelling, can lead to the discovery of novel anti-inflammatory compounds. Herein, the present study investigates the bioactive components using GC-FID, *in vitro* antioxidant and anti-inflammatory properties ethanolic extracts. Many identified phytochemicals act synergistically, enhancing the overall anti-inflammatory potential of the plant extracts. The study offers the advantage of fewer side effects compared to synthetic anti-inflammatory drugs like NSAIDs and corticosteroids, which are often associated with gastrointestinal, renal, and cardiovascular risks.



## MATERIALS AND METHODS

### Collection and Identification of Plant Parts

The fresh parts of *I. tomentosa* plant were first identified on the field using their morphological features, and samples were collected from Igangan village (9.4140°N latitude and 4.1058°E longitude) of Oyo State, Nigeria, authenticated and deposited (voucher specimen: 1142093) at Forestry Institute of Nigeria (FRIN) in Ibadan, Oyo State.

### Preparation of Plant Sample

The different plant parts (Fruit, Leaf, Stem stick, Stem back, root) were cut and washed in running clean water in order to remove all foreign matters. They were sliced into pieces before air-dried under the shade to obtain a constant weight, then pulverized into coarse powder with mortar and pestle before storage in cellophane bags at room temperature until further experiment.

### Extraction and Fractionation of Plant Materials

The air-dried powders of the parts of *I. tomentosa* were first extracted with 70% ethanol (5 L) at room temperature by maceration for 48 h. Extracts were filtered differently using whatman filter paper No 1 and the filtrates were concentrated to dryness using a rotary evaporator at reduced pressure and temperature (60°C).

### Qualitative Phytochemical Analysis

The preliminary phytochemical analyses of *I. tomentosa* fruit extract was carried-out for the presence of different phytochemical compounds such as phenolic compounds, alkaloids, flavonoids, saponins, and tannins using standard procedures of analysis (Shaikh & Patil, 2020; Mohan et al., 2021). The qualitative results were presented as (+) for the presence and (-) for the absence of phytochemical.

### Quantitative Phytochemicals Analysis Using GC-FID

Gas Chromatography (BUCK (M910) Scientific, USA) was used for the quantification of phytochemicals in the extracts. The specific gas chromatography was with a flame ionization detector, a RESTEK 15 m MKT-1 column (15 m × 20 m × 0.15 um). The injection temperature was set at 280 °C while the injection velocity 30cm/s was used with 2 µL splitless injection of the samples. Helium (5.0pa) was used as carrier gas with a flow rate of 40 mL/min. Then, the initial oven temperature was at 200 °C, the oven was also heated to attain a temperature of 330 °C at the rate of 3 °C/min while the detector was also operated at 320 °C. Phytochemicals were therefore determined by the ratio between area and mass of internal standard and the area of identified phytochemicals. The concentrations of individual phytochemicals were thus expressed in µg/mL (Forghe, & Nna, 2020).

### In-vitro Antioxidant Capacity Testing

The standard procedure of *in-vitro* antioxidant capacity test was utilized for determination of the antioxidant capacity of the *I. tomentosa* using ethanolic extract. The methods used by Oyewusi et al., 2024 with little adjustment was adopted to carry-out the free radical-scavenging action of DPPH (1,1-diphenyl-2- picrylhydrazyl), Hydrogen Peroxide scavenging potency, NO• radical inhibition, OH scavenging activities, total antioxidant capacity, in the crude extract. All the assays were carried out in triplicate.

### Animals and Experimental Design

Wistar rats weighing between 180 - 200 g were purchased and housed for acclimatization under standard conditions (25 ± 2°C; 12 h light/dark cycles). The rats were fed with animal diet and tap water ad libitum for a week before treatment in polypropylene cages with three animals in a cage. All the experimental procedures conducted on the rats were performed in best practices according to the internationally accepted principles for laboratory animal use and care and Institutional animal care and use committee. The study got approval from the Research and Ethics committee of Micheal OKpara University of Agriculture, Umudike (REC approval number: UI-ACUREC/049-0521/26).

### Acute Toxicity Studies

A total of 12 female Wistar rats were allocated in 2 phases randomly in order to estimate the oral median lethal dose (LD<sub>50</sub>) of *Isoberlina tomentosa*. Observations were noted and recorded accordingly 1, 2, 4 and 24h after extracts administration. The physical observations were also noted included mobility, skin changes, aggressiveness, responses to sound or pain, as well as respiratory changes. The number of survivors after 24 h were noted and further observation

continued once a day for 14 days. The LD<sub>50</sub> was therefore determined using the Lorke's (1983) method (Namadina et al., 2020).

#### Phase I (Oral administration):

- Group I (3 animals): 100 mg/kg of the *I. tomentosa* ethanolic fruit extract.
- Group II (3 animals): 500 mg/kg of the *I. tomentosa* ethanolic fruit extract.
- Group III (3 animals): 1000 mg/kg of the *I. tomentosa* ethanolic fruit extract.

The treated rats were fasted for an hour while under observations after the administration of the test extracts intermittently for 4 hours for over a period of 24 hours, and then daily for 14 days. Given that there was no death was recorded in phase I after 24 hours, then the need for phase II.

#### Phase II (Oral administration):

- Group I (1 animal): 1600 mg/kg of the *I. tomentosa* ethanolic fruit extract.
- Group II (1 animal): 2900 mg/kg of the *I. tomentosa* ethanolic fruit extract.
- Group III (1 animal): 5000 mg/kg of the *I. tomentosa* ethanolic fruit extract.

After extracts administration in phase II, the same observation procedure was repeated as was done during the phase I. Gross behavioral changes including salivation, hair erection, sweating, tremors, loss of appetite, seizures, loose stools, death, and other toxic manifestations were recorded.

### Anti-inflammatory Activities Using Oval Albumin-Induced Paw Edema Method in Rats

The acute inflammation was evaluated using oval albumin-induced paw edema assay as described by Omodamiro and Jimoh, 2014 with little adjustment. In this procedure, 24 albino rats were used and grouped into six containing four rats each. Groups D, E, and F served as control groups as shown in Table 1 (D was the negative control group, with 0.1ml oval albumin; E as the positive control group, with 50mg of indomethacin; F as normal control with 0.1ml/kg of distilled water). The plant extract was prepared by dissolving the *I. tomentosa* ethanolic fruit extract in sterile distilled water. The extract doses administered were based on the outcome of the acute toxicity (LD<sub>50</sub>) studies, where 20%, 10%, 5% were considered as high, medium and low doses respectively.

The high, medium and low doses were administered to the animal groups A, B and C respectively (Table 1). After 30 minutes, 0.1 ml, oval albumin solution was administered through the sub-plantar tissue of the left hind paw of the rats. The circumference of the left hind paws of all the rats were measured and recorded immediately using a vernier caliper. The procedure was repeated in thrice at 60mins, 90mins, 120mins, 150mins and 180mins in 30mins intervals.

**Table 1: Animal Treatment Model for Anti-inflammatory Test**

| Group | Treatment (dose) | Experimental groups (n=6)                      |
|-------|------------------|------------------------------------------------|
| A     | 1000mg (20%)     | High dose +oval albumin                        |
| B     | 500mg (10%)      | Medium dose + oval albumin                     |
| C     | 250mg (5%)       | Low dose + oval albumin                        |
| D     | 0.1ml            | Oval albumin (negative control), not treated   |
| E     | 50mg             | Indomethacin (positive control) + oval albumin |
| F     | 0.1ml/kg         | Distilled water only (normal control)          |

The percentage of anti-inflammatory response was calculated for each extract using the relation (Perez, 1986). Also, the anti-inflammatory activity was determined as the reduction in paw size when the drug was present, relative to control (Parvin, 2020).

$$\text{Inhibition (\%)} = \frac{(C_t - C_o) \text{ control} - (C_t - C_o) \text{ treated}}{(C_t - C_o) \text{ control}} \times 100$$

Where: C<sub>t</sub> = final circumference; C<sub>o</sub> = Initial circumference.

**Statistical Analysis**

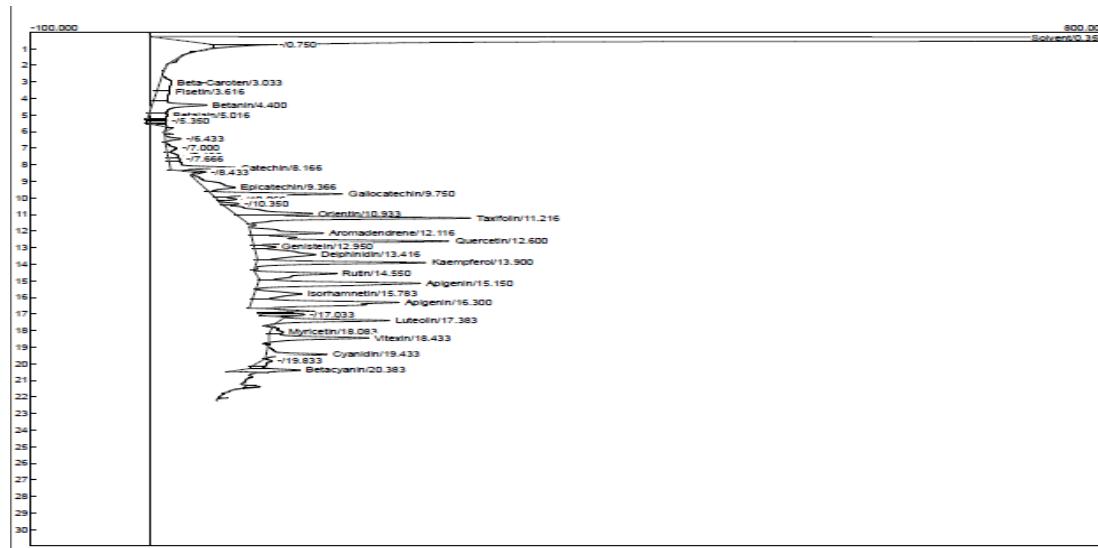
All values were expressed as Mean  $\pm$  Standard Error of the Mean (SEM). The data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's test using the Graph Pad Prism (statistical) software, version 8. The differences between means were then considered significant when  $p < 0.05$ .

**RESULTS AND DISCUSSION****Phytochemical Screening and GC-FID analysis**

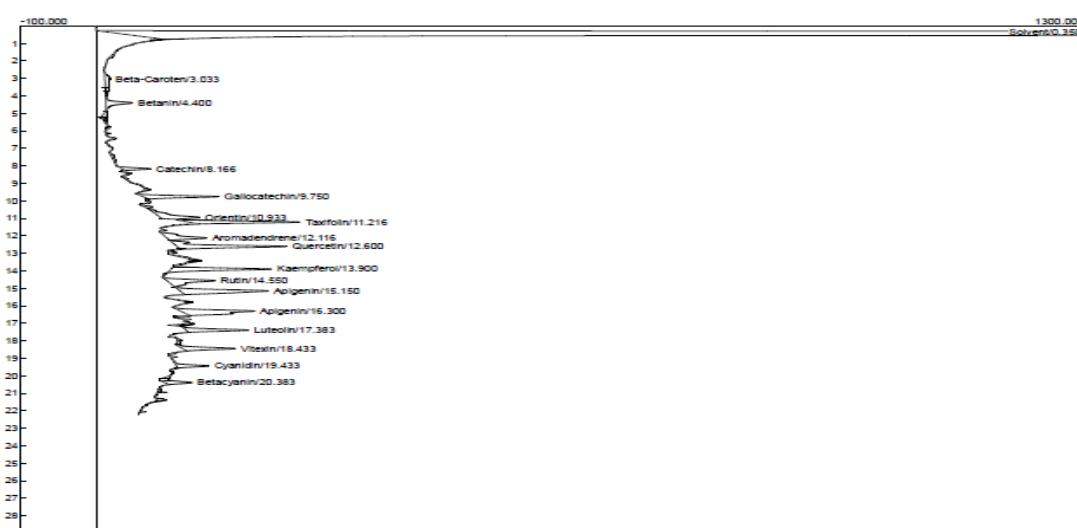
Phytochemical screening of *I. tomentosa* fruit extract shown that a substantial quantity of phenolic compounds, tannin, saponin, terpenoid, and alkaloids but without flavonoids, steroids, glycosides, amino acids, and phlobatanins were detected (Table 2).

**Table 2: Preliminary Phytochemical Screening of Ethanolic Extract of Isoberlina tomentosa Fruit Extract**

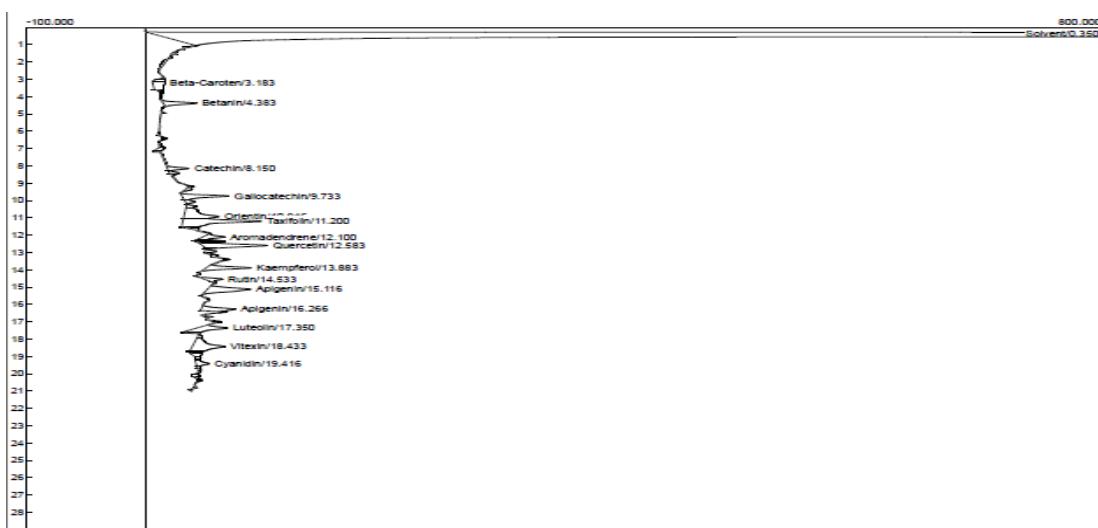
| Phytochemicals | Ethanol Extract of <i>Isoberlina tomentosa</i> |
|----------------|------------------------------------------------|
| Tannin         | ++                                             |
| Saponin        | ++                                             |
| Terpenoid      | ++                                             |
| Glycosides     | -                                              |
| Steroids       | -                                              |
| Alkaloids      | +                                              |
| Flavonoids     | -                                              |
| Amino acids    | -                                              |
| Phenols        | ++                                             |
| Phlobatannins  | -                                              |


+ Moderately presence; ++ significantly present; - absent.

The GC-FID analysis of *I. tomentosa* ethanolic extract aimed to identify and quantify the bioactive compounds present in this plant species (Table 3 and Figure 2a-e).


**Table 3: GC-FID Analysis of Different Parts of *Isoberlina tomentosa* Ethanolic Extract**

| S/N | Compound      | RT     | Peak Area |           |            |           |
|-----|---------------|--------|-----------|-----------|------------|-----------|
|     |               |        | Fruit     | Leaf      | Stem Stick | Stem Bark |
| 1   | Beta-Caroten  | 3.033  | 436.7920  | 255.0425  | 151.3610   | 232.5670  |
| 2   | Fisetin       | 3.616  | 361.0450  | --        | --         | --        |
| 3   | Betanin       | 4.400  | 959.0340  | 431.5290  | 207.9390   | 279.9820  |
| 4   | Betalain      | 5.016  | 291.1100  | --        | --         | --        |
| 5   | Catechin      | 8.166  | 688.8100  | 268.8085  | 352.3210   | 202.2730  |
| 6   | Epicatechin   | 9.366  | 695.2900  | --        | --         | --        |
| 7   | Gallocatechin | 9.750  | 1041.4755 | 808.0300  | 302.2870   | 391.6185  |
| 8   | Orientin      | 10.933 | 1119.8920 | 668.2570  | 377.0090   | 582.6550  |
| 9   | Taxifolin     | 11.216 | 2141.6660 | 1108.7980 | 636.0280   | 946.1670  |
| 10  | Aromadendrene | 12.116 | 854.2250  | 663.2030  | 143.2940   | 190.3270  |
| 11  | Quercetin     | 12.600 | 2100.3680 | 1481.7715 | 495.7280   | 630.0140  |
| 12  | Genistein     | 12.950 | 171.0630  | --        | --         | --        |
| 13  | Delphinidin   | 13.416 | 1192.1920 | --        | --         | --        |
| 14  | Kaempferol    | 13.900 | 1493.1860 | 1214.1220 | 316.6380   | 375.4420  |
| 15  | Rutin         | 14.550 | 1018.0185 | 823.6980  | 137.1390   | 137.1390  |
| 16  | Apigenin      | 15.150 | 2000.4480 | 1410.5710 | 461.4565   | 545.4980  |
| 17  | Isorhamnetin  | 15.783 | 745.7050  | --        | --         | --        |
| 18  | Apigenin      | 16.300 | 2266.9115 | 1328.6520 | 273.5065   | 273.5065  |
| 19  | Luteolin      | 17.383 | 880.0725  | 695.8040  | 271.7130   | 371.4210  |
| 20  | Myricetin     | 18.083 | 181.3510  | --        | 370.7000   | --        |
| 21  | Vitexin       | 18.433 | 961.6460  | 645.3150  | --         | 628.8650  |
| 22  | Cyanidin      | 19.433 | 574.2540  | 364.5080  | 172.7695   | 143.3550  |
| 23  | Betacyanin    | 20.383 | 448.8850  | 307.2870  | --         | --        |


(a)



(b)



(c)



(d)

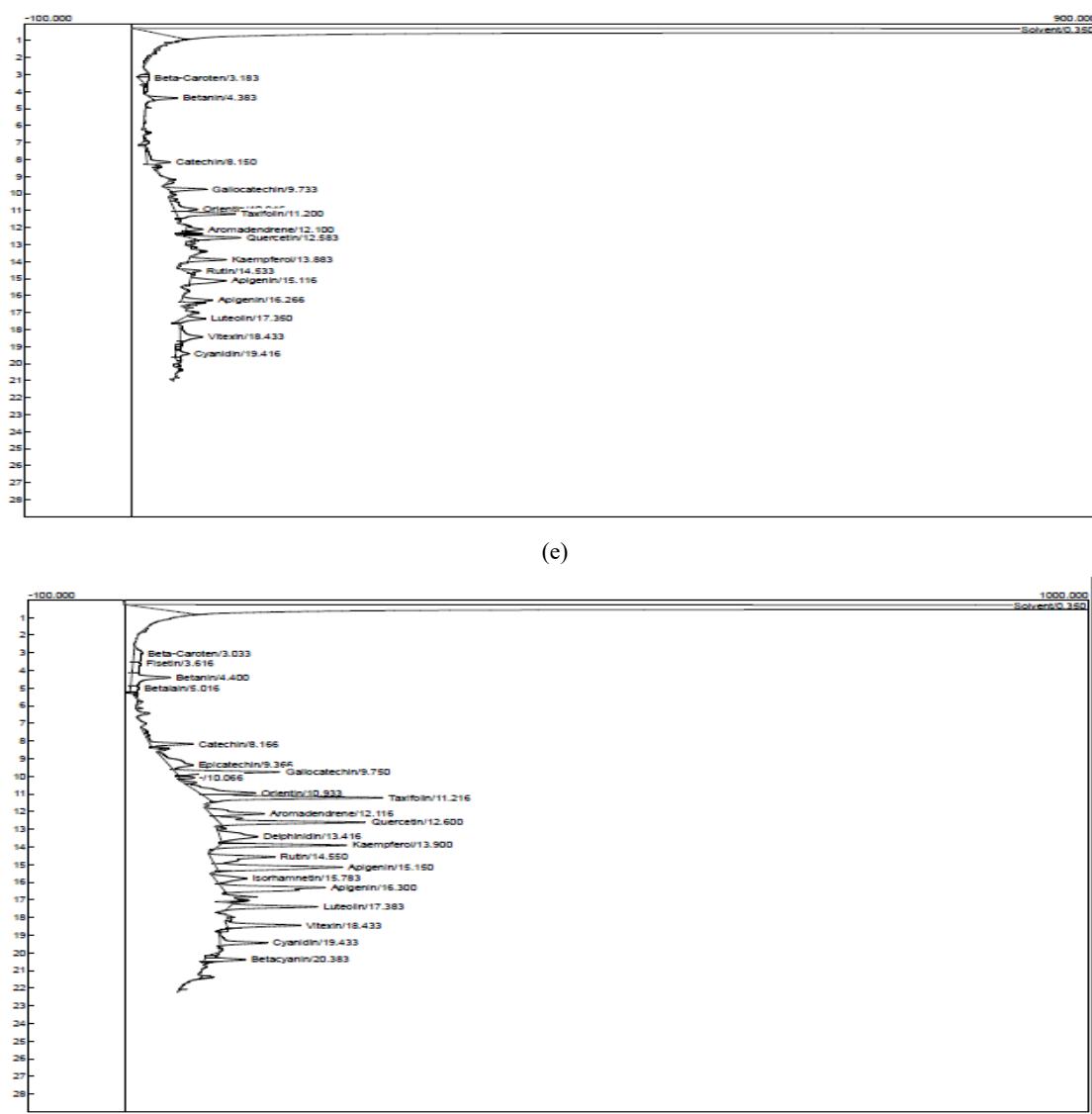



Figure 2: GC-FID result for ethanolic extract of *I. tomentosa* (a) Fruit (b) leaf extract (c) Stem stick (d) Stem bark, (e) Root

#### Determination of the Median Lethal Dose of the Ethanolic Fruit Extract of *Isoberlina tomentosa* in Wistar Rats

The results of the oral acute toxicity test for *I. tomentosa* ethanolic fruit extract using the Lorde's method guidelines are as shown in Table 4. Administration of *I. tomentosa* ethanolic fruit extract elicited various dose-dependent responses in the test animals: animals treated in phase I with doses between 100 – 1000 mg/kg showed mild to moderate effects such as hyperventilation, piloerection, and tremors. Animals treated in phase II of the study with doses between 1600 – 5000 mg/kg showed more pronounced effects including lethargy, urination, and diarrhea, which subsided by the second day.

Notably however, no mortality was recorded even at the highest tested dose of 5000 mg/kg.

The study then estimated the LD<sub>50</sub> of the *I. tomentosa* ethanolic fruit extract to be above 5000 mg/kg given there was no death at any of the experimental doses tested as guided by the Lorde's method.

Here LD<sub>50</sub> is determined from;  $LD_{50} = \sqrt{(D_0 \times D_{100})}$ ;

Where; D<sub>0</sub> = Highest dose with no death

D<sub>100</sub> = Lowest dose with death.

However, given that no mortality was seen at LD<sub>50</sub> > 5000 mg/kg.

Table 4: Behavioral Patterns with *Isoberlina tomentosa* Ethanolic Fruit Extract Treatment

| Treatment phase | Dose level (mg/kg) | Signs of toxicity observed in the treated Animals |                      |                      |
|-----------------|--------------------|---------------------------------------------------|----------------------|----------------------|
|                 |                    | Within 24 hours                                   | 7 days               | 14 days              |
| Phase I         | 100                | Piloerection, irritation                          |                      |                      |
|                 | 500                | Hyperventilation, tremors, piloerection           | No observable change | No observable change |
|                 | 1000               | Dyspnea, hyperventilation, tremors, piloerection  |                      |                      |
| Phase II        | 1600               | Sedation, hyperventilation, tremors, urination    |                      |                      |

|      |                                                                                                         |                      |                      |
|------|---------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| 2900 | Hyperventilation, tremors, piloerection, sedation, dyspnea, lethargy, diarrhea                          | No observable change | No observable change |
| 5000 | Dyspnea, hyperventilation, lethargy piloerection, irritation, tremors, defecation, urination, diarrhea. |                      |                      |

### In-vitro Antioxidant Capacity Screening

The Hydroxyl Radical (OH•) scavenging assay evaluates the ability of *I. tomentosa* extract to neutralize hydroxyl radicals (Figure 3A). Hydroxyl radicals are among the most reactive oxygen species (ROS), capable of causing severe damage to lipids, proteins, and DNA, leading to oxidative stress, aging, and diseases like cancer and neurodegenerative disorders. The absorbance values decrease as the extract concentration increases, confirming that higher concentrations are more effective at scavenging hydroxyl radicals. The DPPH (2,2-diphenyl-1-picrylhydrazyl) test was used to assess the free radical scavenging capacity using various concentrations (62.5 µg/ml to 1000 µg/ml). The absorbance values decrease as the concentration of the extract increases indicating that at higher concentrations, plant extract is more active in reducing DPPH radicals. The highest percentage inhibition was observed at 1000 µg/ml ( $\approx 85\%$ ), meaning the extract shows strong radical scavenging activity at high concentrations (Figure 3B). The ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay measures the ability of an antioxidant to neutralize ABTS radicals evaluating the total antioxidant capacity of plant extracts. This suggests strong antioxidant activity at higher concentrations (Figure 3C). This pattern is consistent with other assays (DPPH, ABTS), reinforcing the plant's strong radical scavenging ability. The H<sub>2</sub>O<sub>2</sub> scavenging assay evaluates the

ability of *I. tomentosa* extract to neutralize hydrogen peroxide, a reactive oxygen species (ROS) that can cause oxidative damage to cells. Figure 3D indicates that the higher concentrations have a stronger ability to neutralize H<sub>2</sub>O<sub>2</sub>. The inhibition decreases at lower concentrations but remains notable, confirming the plant extract's effectiveness in reducing oxidative damage. The Nitric Oxide (NO) scavenging assay result shows the ability of *I. tomentosa* extract to neutralize nitric oxide radicals. Nitric oxide (NO) is a reactive nitrogen species (RNS) that plays essential roles in physiological processes but can become harmful at high concentrations, leading to inflammation, neurodegeneration, and cardiovascular diseases. The absorbance values decrease with increasing concentrations of the extract, indicating higher scavenging activity. The percentage inhibition increases in a dose-dependent manner, meaning higher concentrations of the plant extract are more effective at neutralizing NO radicals (Figure 3E). Figure F indicates the almost equal result of FRAP of the extract and the control indicating greater antioxidant power, suggesting a higher content of reductants (such as polyphenols, Tanins, or other antioxidants) in the extract. The Total Antioxidant Capacity (TAC) assay measures the overall ability of a plant extract to neutralize free radicals by reducing molybdenum (VI) to molybdenum (V). This confirms that the plant extract contains compounds with strong reducing power (Figure 3G).

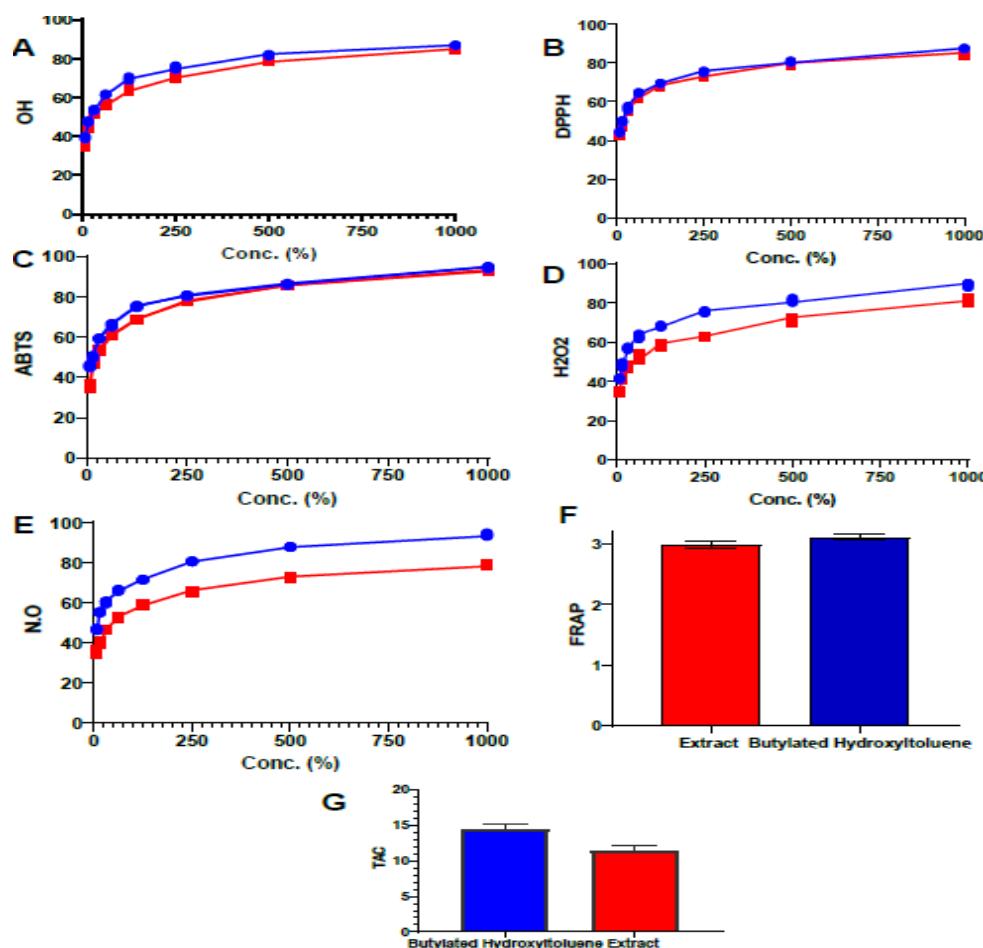



Figure 3: In-vitro Antioxidant Capacity Screening

**In-Vivo Anti-Inflammatory Effects of the Isoberlina Tomentosa Ethanolic Fruit Extract Using Egg Albumin-Induced Paw Inflammation**

The study demonstrates a substantial increase ( $p < 0.0001$  and  $p = 0.0106$ ) in the paw sizes at 60 minutes for the group D (negative control) and Group E (positive control) respectively, when compared to those in the normal control group (IT). Furthermore, compared to rats in Groups D, E and IT at 250, 500 and 1000 mg/kg respectively, showed a significant decrease ( $p < 0.0001$ ) in the paw sizes. The study also indicated that there was a significant decrease ( $p = 0.0106$ ) in the paw sizes for the Group IT(1000 mg/kg) when compared with those treated with Group E (Table 5,6).

The study's outcomes indicate that, after two hours, the rat paw sizes of the Group D were significantly larger ( $p < 0.0001$ ) than those of the Group F (normal control). Rats treated with the positive control and extract at IT(250),

IT(500), and IT(1000) respectively, showed significantly smaller paws ( $p < 0.0001$ ) than those in the group D. Additionally, paw sizes of animals treated with 1000 mg/kg were significantly smaller ( $p = 0.0106$ ) than those treated with the positive control (Table 5,6). After three hours, the paw sizes of the animals in the negative control group were significantly larger ( $p < 0.0001$ ) than those of the normal control group. Additionally, the study showed that, in comparison to the negative control group, the paw sizes of the animals treated with the positive control and *I. tomentosa* ethanolic fruit extract at 250, 500, and 1000 mg/kg, respectively were significantly smaller ( $p < 0.0001$ ). Comparing animals treated with 500 mg/kg and 1000 mg/kg of the *I. tomentosa* ethanolic fruit extract to those treated with the positive control, significant reductions ( $p = 0.0331$  and  $p = 0.0106$ ) in the rat paw sizes were observed (Table 5,6).

**Table 5: The Anti-inflammatory Activity of Ethanolic Fruit Extract of *I. tomentosa* in Rats**

| Groups                       | Circumference<br>in mm | Initial    | 30 mins    | 60 mins    | 90 mins    | 120 mins   | 150 mins   | 180 mins |
|------------------------------|------------------------|------------|------------|------------|------------|------------|------------|----------|
| IT=(1000mg)                  | 20.75±0.96             | 28.25±1.71 | 24.25±1.91 | 23.25±0.96 | 22.25±0.96 | 22±0.82    | 21.5±0.58  |          |
| IT=(500mg)                   | 23.25±2.36             | 29±1.82    | 28±2.31    | 27.5±2.08  | 26.5±2.08  | 26.25±2.22 | 25.5±2.08  |          |
| IT=(250mg)                   | 23.5±4.43              | 30.75±5.85 | 29.75±3.40 | 29.25±3.77 | 29.25±3.59 | 29.25±4.34 | 28.75±3.95 |          |
| D=(0.1ml)Oval albumin        | 21.5±1                 | 32±0.81    | 31.75±0.96 | 31.75±0.5  | 31±1.41    | 30.25±0.95 | 30.25±0.96 |          |
| E=(50mg)IND                  | 23±0.82                | 30.75±3.77 | 27.5±2.64  | 26±2.06    | 25.75±2.22 | 25.25±2.06 | 24.5±1.73  |          |
| F=(distilled water 0.1ml/kg) | 21.5±1                 | 21±1       | 21.5±1     | 21.5±1     | 21.5±1     | 21.5±1     | 21.5±1     |          |

Values were expressed as Mean ± SEM; n=4 animals per group. Results were analyzed by One-way Analysis of Variance (ANOVA), followed by Dunnett' post hoc test.\* $p < 0.05$ , \*\* $p < 0.01$ . **IT** = *Isoberlina tomentosa* plant extract; **IND** = Indomethacin (standard drug).

**Table 6: Percentage Anti-Inflammatory Response by the Ethanolic Fruit Extract of *Isoberlinia Tomentosa* as Compared with the Standard Drug (Indomethacin=Ind) Over Time**

| Group min/% | 30min | 60min | 90min | 120min | 150min | 180min |
|-------------|-------|-------|-------|--------|--------|--------|
| 1000mg      | 47    | 63.40 | 74.40 | 84.20  | 85.20  | 91.30  |
| 500mg       | 45.20 | 53.70 | 56.40 | 65.80  | 65.70  | 74.30  |
| 250mg       | 31.00 | 39.00 | 42.00 | 39.50  | 34.30  | 40.00  |
| IND(50mg)   | 26.20 | 56.10 | 67.80 | 71.10  | 74.30  | 82.90  |

### Discussion

Qualitative and quantitative investigations of secondary metabolites are very critical to identify the presence of phytochemicals which are the major reason for the medicinal and physiological values on every plant (Oseni et al., 2024). The pharmacological potentials of medicinal plants occur because of the quality and quantity of different secondary metabolites such as flavonoids, alkaloids, glycosides, saponins, phenols, and steroids, etc. identified in them (Hadiza et al., 2020; Sulyma & Ibrahim, 2024). Therefore, this research shows the presence of phenolic compounds, tannin, saponin, terpenoid, flavonoids, and alkaloids. These phytochemicals suggest that *I. tomentosa* definitely have some pharmacological importance like anti-inflammatory due to the presence of Saponin, polyphenol, and Terpinoids, (Saleh et al., 2021; Culhuac et al., 2023); antineoplastic because of the presence of Saponin, Alkaloid, and Flavonoids (Khalid et al., 2021; Ali et al., 2024); therefore with the presence of these phytochemicals and bioactive compounds, there many pharmacological potentials of *I. tomentosa*. The GC-FID result also revealed 22, 15, 14, 15, and 21 bioactive compounds from the fruit, leaf, stem stick, stem bark and root respectively. This makes the selection of the fruit extract as the choice for further investigations. This result also align

with the results of GC-FID/MS of other plants including *I. doka* (Hadiza et al., 2020), these active compounds make the potentials of many plants scientifically proven (Namadina et al., 2020; Adekilekun et al., 2024).

The test for acute toxicity of the *I. tomentosa* ethanolic fruit extract utilizing Lorke's method, with a maximum dose of 5000 mg/kg body weight indicated that the LD<sub>50</sub> is greater than 5000 mg/kg, as no mortality was observed even at the highest dose. This finding aligns with previous studies on other *Isoberlinia* species, especially *I. Doka*, which have also reported high LD<sub>50</sub> values *in-vivo*, suggesting a favourable safety margin for medicinal use (Hadiza et al., 2020). The observed mild to moderate symptoms such as hyperventilation and tremors are consistent with the effects noted in other studies involving herbal extracts, where similar dose-dependent responses were documented without fatal outcomes. These observations hint at mild toxic impacts, likely resulting from stimulation of both the autonomic and central nervous systems. These observations align with previous studies (Kathare et al., 2021), which identified similar symptoms as indicators of toxicity in animals subjected to harmful substance levels. Based on the globally harmonized classification system (GHS) for acute toxicity of chemicals, the LD<sub>50</sub> of the *Isoberlina tomentosa* ethanolic leaf

extract falls within GHS Category 5, suggesting a relatively low acute toxicity.

The high percentage inhibition at 1000  $\mu\text{g}/\text{ml}$  and 500  $\mu\text{g}/\text{ml}$  suggests that *I. tomentosa* contains potent antioxidant compounds capable of neutralizing free radicals indicating that the plant extract could be a potential natural antioxidant source, suitable for applications in pharmaceuticals, nutraceuticals, or food preservation. Also, *Isoberlinia tomentosa* extract is rich in compounds capable of neutralizing ABTS radicals, making it a strong antioxidant source. The gradual decline in inhibition with lower concentrations aligns with typical antioxidant behavior, where higher doses provide better radical scavenging. The high TAC values also suggest that *Isoberlinia tomentosa* is rich in bioactive compounds like polyphenols, and tannins, which contribute to its strong antioxidant potential, the result of the quantitative phytochemicals confirmed this. The scavenging capability of *Isoberlinia tomentosa* to hydrogen peroxide suggests that it contains bioactive compounds capable of reducing oxidative stress thereby preventing diseases associated with oxidative stress, such as neurodegenerative disorders, cardiovascular diseases, and aging-related conditions. The strong NO scavenging activity of *Isoberlinia tomentosa* suggests that it may be beneficial for reducing inflammation and oxidative stress-related diseases. The strong OH<sup>•</sup> scavenging ability of *Isoberlinia tomentosa* suggests it is rich in bioactive compounds like polyphenols and flavonoids, which help protect against oxidative stress-related diseases. It is noted that the antioxidant activities throughout the tested methods show a dose-dependent trend confirming that higher concentrations offer stronger antioxidant protection.

The anti-inflammatory potentials of the extract was evidenced by a significant decrease in paw sizes in rats treated with varying doses of the extract as compared to the negative control group. The doses at 250, 500, and 1000 mg/kg significantly reduced inflammation, indicating a dose-dependent response. The findings are corroborated by existing works that highlights the anti-inflammatory properties of plants including *I. tomentosa* as shown by this research are attributed to their phytochemical constituents such as tanins, saponins and terpenoids, which are known to inhibit the assembly of pro-inflammatory cytokines (Matara et al., 2021; Terefe et al., 2022; Alkali et al., 2025). The extract displayed a superior anti-inflammatory effect at 1000 mg/kg compared to the positive control, signifying a more effective agent than conventional anti-inflammatory medications in certain contexts. This finding is significant as it positions *I. tomentosa* as a potential alternative or complementary treatment for inflammatory conditions (Omodamiro and Umekwe, 2013; Omodamiro and Jimoh, 2014; Akinloye et al. 2020; Eidangbe. 2025).

## CONCLUSION

In conclusion, the study comprehensively evaluated the bioactive compounds, *in-vitro* antioxidant profile, and *in-vivo* anti-inflammatory properties of ethanolic fruit extract from *Isoberlinia tomentosa*, a plant traditionally use for many conditions. The phytochemical analysis shown significant presence of phenolic compounds, tannins, saponins, and alkaloids, which underline the pharmacological potential of the plant. Quantitative assessment using GC-FID identified 22 bioactive compounds, supporting the extract's therapeutic relevance. Acute toxicity studies indicated a high LD<sub>50</sub> greater than 5000 mg/kg, suggesting a favorable safety profile and mild toxic effects, consistent with other herbal studies. The *in-vitro* antioxidant tests indicated that the extract has high

antioxidant potentials with a dose-dependent trend making it a good plant with wide pharmacological benefits. Notably, the anti-inflammatory assessment demonstrated that the extract significantly reduced paw sizes in a dose-dependent fashion, outperforming the positive control, indomethacin. These results substantiate the anti-inflammatory activity linked to the phytochemical constituents, indicating that *Isoberlinia tomentosa* could serve as a viable alternative or adjunct to existing anti-inflammatory treatments, warranting further exploration for potential applications in complementary medicine. Consequently, this research lays a foundational framework for the scientific exploration of *Isoberlinia tomentosa*, amplifying its importance in drug development, safety validation, and conservation efforts within its native ecosystems.

## REFERENCES

Gambini, J., & Stromsnes, K. (2022). Oxidative stress and inflammation: from mechanisms to therapeutic approaches. *Biomedicines*, 10(4), 753. <https://doi.org/10.3390/biomedicines10040753>.

Krzemińska, J., Wronka, M., Mlynarska, E., Franczyk, B., & Rysz, J. (2022). Arterial hypertension—Oxidative stress and inflammation. *Antioxidants*, 11(1), 172. <https://doi.org/10.3390/antiox11010172>.

Wronka, M., Krzemińska, J., Mlynarska, E., Rysz, J., & Franczyk, B. (2022). The influence of lifestyle and treatment on oxidative stress and inflammation in diabetes. *International journal of molecular sciences*, 23(24), 15743. <https://doi.org/10.3390/ijms232415743>.

Bezerra, F. S., Lanzetti, M., Nesi, R. T., Nagato, A. C., Silva, C. P. E., Kennedy-Feitosa, E., & Valenca, S. S. (2023). Oxidative stress and inflammation in acute and chronic lung injuries. *Antioxidants*, 12(3), 548. <https://doi.org/10.3390/antiox12030548>.

Yilangai, R. M., Onoja, J. D., Saha, S., Elisha, E. B., Manu, S. A., Barshep, Y., & Molokwu-Odozi, M. (2023). Diversity, abundance, and conservation status of woody species in a West African dry forest. *Conservation Science and Practice*, 5(3), e12888.

Forghe, B. N., & Nna, P. J. (2020). Phytochemical screening and antimicrobial activities of methanolic extract of *Newbouldia laevis* roots. *World J Pharm Res*, 9(4), 73-83. <https://doi.org/10.20959/wjpr20204-16950>.

Akinloye, O. A., Alagbe, O. A., Ugbaja, R. N., & Omotainse, S. O. (2020). Evaluation of the modulatory effects of *Piper guineense* leaves and seeds on egg albumin-induced inflammation in experimental rat models. *Journal of ethnopharmacology*, 255, 112762. <https://doi.org/10.1016/j.jep.2020.112762>.

Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. *Molecules* 2022, 27, 349. <https://doi.org/10.3390/molecules27020349>.

Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-Derived Anticancer Compounds as New Perspectives in Drug

Discovery and Alternative Therapy. *Molecules*, 2021, 26, 1109. <https://doi.org/10.3390/molecules26041109>.

Hadiza B, Umar KA, Aminu AA, Bashir AY. Qualitative and Quantitative Phytochemicals Studies of Ethanol Stem bark Extracts of *Isoberlinia doka* Craib & Staph and *Isoberlinia tomentosa* (Harms) Craib & Staph. *Trop J Nat Prod Res*. 2020; 4(10):756-764. <https://doi.org/10.26538/tjnpr/v4i10.16>

Saleh, H. A., Yousef, M. H., & Abdelnaser, A. (2021). The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-κB-mediated inflammation. *Frontiers in immunology*, 12, 60609. <https://doi.org/10.3389/fimmu.2021.60609>.

Culhuac, E. B., Maggiolino, A., Elghandour, M. M., De Palo, P., & Salem, A. Z. (2023). Antioxidant and anti-inflammatory properties of phytochemicals found in the yucca genus. *Antioxidants*, 12(3), 574. <https://doi.org/10.3390/antiox12030574>.

Khalid, S., Tiwana, H., Saddiqi, F., Ali, K., Adil, M., Javed, T., & Riaz, S. (2021). In vitro antimutagenic, cytotoxic and anticancer potential of *Fagonia indica* phytochemicals. *Pakistan Journal of Pharmaceutical Sciences*, 34. <https://doi.org/10.36721/PJPS.2021.34.6.SUP.2325-2331.1>.

Ali, M. A., Khan, N., Ali, A., Akram, H., Zafar, N., Imran, K., Khan, T., Khan, K., Armaghan, M., Palma-Morales, M., Rodríguez-Pérez, C., Caunii, A., Butnariu, M., Habtemariam, S., & Sharifi-Rad, J. (2024). Oridonin from *Rabdosia rubescens*: An emerging potential in cancer therapy - A comprehensive review. *Food science & nutrition*, 12(5), 3046-3067. <https://doi.org/10.1002/fsn3.3986>.

Medzhitov, R. (2021). The spectrum of inflammatory responses. *Science*, 374(6571), 1070-1075. <https://doi.org/10.1126/science.abi5200>.

Hannoodee, S., & Nasuruddin, D. N. (2024). Acute inflammatory response. In *StatPearls [Internet]*. StatPearls Publishing. <https://www.ncbi.nlm.nih.gov/sites/books/NBK556083/>.

Soliman, A. M., & Barreda, D. R. (2022). Acute inflammation in tissue healing. *International journal of molecular sciences*, 24(1), 641. <https://doi.org/10.3390/ijms24010641>.

Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., & Li, Y. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. *Signal transduction and targeted therapy*, 6(1), 263. <https://doi.org/10.1038/s41392-021-00658-5>.

Ramírez-Pérez, S., Hernández-Palma, L. A., Oregon-Romero, E., Anaya-Macías, B. U., García-Arellano, S., González-Estevez, G., & Muñoz-Valle, J. F. (2020). Downregulation of inflammatory cytokine release from IL-1 $\beta$  and LPS-stimulated PBMC orchestrated by ST2825, a MyD88 dimerisation inhibitor. *Molecules*, 25(18), 4322. <https://doi.org/10.3390/molecules25184322>.

Shin, S. A., Joo, B. J., Lee, J. S., Ryu, G., Han, M., Kim, W. Y., ... & Lee, C. S. (2020). Phytochemicals as anti-inflammatory agents in animal models of prevalent inflammatory diseases. *Molecules*, 25(24), 5932.

Prasad, S., Kumar, V., Singh, C., & Singh, A. (2023). Crosstalk between phytochemicals and inflammatory signaling pathways. *Inflammopharmacology*, 31(3), 1117-1147. <https://doi.org/10.3390/molecules25245932>.

Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. *Molecules*, 27(9), 2901. <https://doi.org/10.3390/molecules27092901>.

Ge, J., Liu, Z., Zhong, Z., Wang, L., Zhuo, X., Li, J., ... & Bai, R. (2022). Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. *Bioorganic Chemistry*, 124, 105817. <https://doi.org/10.1016/j.bioorg.2022.105817>.

Wijesekara, T., Luo, J., & Xu, B. (2024). Critical review on anti-inflammation effects of saponins and their molecular mechanisms. *Phytotherapy Research*, 38(4), 2007-2022. <https://doi.org/10.1002/ptr.8164>.

Oluwole, O., Fernando, W. B., Lumanlan, J., Ademuyiwa, O., & Jayasena, V. (2022). Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health—a review. *International Journal of Food Science and Technology*, 57(10), 6326-6335. <https://doi.org/10.1111/ijfs.15936>.

Atchan, A. P. N., Monthe, O. C., Tchamgoue, A. D., Singh, Y., Shivashankara, S. T., Selvi, M. K., ... & Dell'Agli, M. (2023). Anti-inflammatory, antioxidant activities, and phytochemical characterization of edible plants exerting synergistic effects in human gastric epithelial cells. *Antioxidants*, 12(3), 591. <https://doi.org/10.3390/antiox12030591>.

Zhou, X., Münch, G., Wohlmuth, H., Afzal, S., Kao, M. H., Al-Khazaleh, A., ... & Li, C. G. (2022). Synergistic inhibition of pro-inflammatory pathways by ginger and turmeric extracts in RAW 264.7 cells. *Frontiers in pharmacology*, 13, 818166. <https://doi.org/10.3389/fphar.2022.818166>.

Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. *Frontiers in pharmacology*, 14, 1269581. <https://doi.org/10.3389/fphar.2023.1269581>.

Unsal, V., Dalkiran, T., Çiçek, M., & Kölükçü, E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. *Advanced pharmaceutical bulletin*, 10(2), 184. <https://doi.org/10.34172/apb.2020.023>.

Sahoo, B. M., Banik, B. K., Borah, P., & Jain, A. (2022). Reactive oxygen species (ROS): key components in cancer therapies. *Anti-Cancer Agents in Medicinal Chemistry-Anti-Cancer Agents*, 22(2), 215-222. <https://doi.org/10.2174/1871520621666210608095512>.

Muscolo, A., Mariateresa, O., Giulio, T., & Mariateresa, R. (2024). Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. *International journal of molecular sciences*, 25(6), 3264. <https://doi.org/10.3390/ijms25063264>.

Saleem, S., Ul Mushtaq, N., Shah, W. H., Rasool, A., Hakeem, K. R., & Ul Rehman, R. (2022). Beneficial role of phytochemicals in oxidative stress mitigation in plants. In *Antioxidant defense in plants: molecular basis of regulation* (pp. 435-451). Singapore: Springer Nature Singapore. [https://doi.org/10.1007/978-981-16-7981-0\\_20](https://doi.org/10.1007/978-981-16-7981-0_20).

Namadina, M. M., Aliyu, B. S., Haruna, H., Sunusi, U., Kamal, R. M., Balarabe, S., ... & Tasiu, S. (2020). Pharmacognostic and acute toxicity study of Burkea africana root. *Journal of Applied Sciences and Environmental Management*, 24(4), 565-573. <https://dx.doi.org/10.4314/jasem.v24i4.4>.

Oseni, T. E., Adejoh, M. E., Omowaye, O. S., Attah, F., Peter, J., Tennyson, M. A., Oladipe, T. T., Olubiyo, C. K., Oludare, T. T., Odiba, J. C., Ocean, H. O., & Olopade, T. T. (2024). GC-MS ANALYSIS, QUALITATIVE AND QUANTITATIVE PHYTOCHEMICAL COMPOSITION OF Boerhavia diffusa (Linn.) LEAF EXTRACT CHARACTERIZING ITS MEDICINAL USE. *FUDMA JOURNAL OF SCIENCES*, 8(6), 144-151. <https://doi.org/10.33003/fjs-2024-0806-2889>.

Alkali, K., Hamza, M. M., Shehu, M. M., Abdulhamid, M. B., & Audu, H. (2025). Qualitative and Quantitative

Phytochemical Screening of Aqueous, Methanol, and Hexane Leaf Extracts of Senna siamea. *Sahel Journal of Life Sciences FUDMA*, 3(1), 328–336. <https://doi.org/10.33003/sajols-2025-0301-40>.

Namadina, M. M., Haruna, H., & Sanusi, U. (2020). PHARMACOGNOSTIC, ANTIOXIDANT AND ACUTE TOXICITY STUDY OF Ficus sycomorus (Linn) (Moraceae) ROOT AND STEM BARK. *FUDMA JOURNAL OF SCIENCES*, 4(2), 605-614. <https://doi.org/10.33003/fjs-2020-0402-244>

Eidangbe, G. O. (2025). ANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITIES OF STEVIA REBAUDIANA LEAF EXTRACT IN DIABETIC RATS. *FUDMA JOURNAL OF SCIENCES*, 9(1), 301-306. <https://doi.org/10.33003/fjs-2025-0901-2944>.

Sulyman, R. A., & Ibrahim, A. S. (2024). AMELIORATIVE POTENTIALS OF Trigonella foenum-graecum (FENUGREEK) SEEDS ON PROTEIN-ENERGY MALNOURISHED RATS. *FUDMA JOURNAL OF SCIENCES*, 8(6), 385-392. <https://doi.org/10.33003/fjs-2024-0806-2946>



©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license viewed via <https://creativecommons.org/licenses/by/4.0/> which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited appropriately.