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ABSTRACT 

Northern Corn Leaf Blight, incited by the fungal pathogen exserohilum turcicum, poses a significant threat to 

maize production worldwide, necessitating innovative and sustainable control strategies. In this paper, a 

mathematical modeling for the control and management of northern corn leaf blight in maize with early 

chemical application. The model has been analyzed, in the local stability subsection, it has been shown that the 

disease-free equilibrium is locally asymptotically stable if the basic reproduction number is less than one. The 

global stability of disease-free equilibrium shows that; the system is globally asymptotically stable is the basic 

reproduction number is less than one. Further, we assess the global stability of endemic equilibrium point, 

which showed that the endemic equilibrium point is globally asymptotically stable if the basic reproduction 

number is greater than one. In numerical simulation section, we were able to assessed the impact of early 

chemical spray on maize plant and treating the infected maize plant with chemical spray, it has been noticed 

that, early chemical spray on maize plant is the best way to control the northern corn leaf blight in maize 

population. It is now recommended that early chemical spray on maize plant is the best way to control the 

northern corn leaf blight in maize. 
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INTRODUCTION 

Maize (Zea mays L.) is one of the world’s most important 

staple crops, serving as a critical source of food, feed, and 

industrial raw material. However, its production is 

significantly threatened by a range of biotic stressors, among 

which Northern Corn Leaf Blight (NCLB)—caused by the 

fungus Exserohilum turcicum is a major foliar disease leading 

to substantial yield losses, especially under favorable weather 

conditions like high humidity and moderate temperatures 

(Munkvold & White, 2016). 

Traditional NCLB management strategies rely heavily on 

cultural practices (e.g., crop rotation, residue management), 

the deployment of resistant maize cultivars, and fungicide 

applications (Wise et al., 2009). While these methods have 

shown varying levels of success, they are often reactive and 

lack the precision needed for sustainable, cost-effective 

disease control under dynamic environmental conditions. 

In recent years, mathematical modeling has emerged as a 

powerful tool in plant epidemiology, enabling researchers and 

practitioners to understand disease dynamics, predict 

outbreaks, and design optimal control strategies (Madden et 

al., 2007). Models—particularly compartmental systems such 

as the Susceptible-Exposed-Infected-Removed (SEIR) 

frameworks—are widely used to describe disease progression 

in crop populations. These models can incorporate critical 

biological parameters (e.g., latent periods, infection rates), 

agronomic practices (e.g., spacing, planting time), and 

environmental variables (e.g., rainfall, temperature), thereby 

capturing the multifactorial nature of plant disease epidemics 

(Jeger, 2004). 

In addition to modeling disease spread, the integration of 

optimal control theory allows for the development of 

strategies that balance disease suppression with economic 

costs. By treating interventions such as fungicide use or 

resistant seed adoption as control variables, optimal control 

models provide a framework to minimize both the disease 

burden and the financial or environmental cost of 

interventions (Lenhart & Workman, 2007). These tools are 

especially valuable in precision agriculture, where decision-

support systems can help optimize input use and improve 

sustainability. 

Despite the critical importance of NCLB, relatively few 

studies have developed tailored mathematical models for its 

control. Most existing work either lacks specificity to E. 

turcicum or does not fully early chemical spray on maize 

plant. This research aims to address this gap by formulating a 

disease-specific mathematical model for NCLB that 

incorporates both epidemiological dynamics and early 

chemical spray on maize plant, ultimately contributing to 

more efficient and sustainable maize production systems. 

 

MATERIALS AND METHODS 

Model Formulation 

The plant population N is sub-divided into four 

compartments, the Susceptible plants (S) 

Exposed (latent) plants (E), Infected (I), and 

Recovered/resistant plants (R).  
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Figure 1: Schematized diagram of northern corn leaf blight 

 

The susceptible plants (S) are generated at rate of recruitment 

Λ. The compartment reduces due to the association of infected 

plant with susceptible plant at the rate 
𝛽𝐼

𝑁
, where 𝛽 is the 

infection rate. The exposed (latent) plants (E) are generated 

due to the association of infected plant with susceptible plant 

at the rate 
𝛽𝐼

𝑁
, where 𝛽 is the infection rate. The compartment 

diminishes due to progression of latent at the rate 𝜀 and early 

recovery due to chemical application at the rate 𝛾1.  The 

infected compartment (I) is generated due to due to 

progression of latent at the rate 𝜀. The compartment 

diminishes due to spore decay due to disease at the rate 𝛿 and 

recovery due to chemical application at the rate 𝛾2.  The 

recovered/resistant plants (R) is generated due to the early 

recovery due to chemical application at the rate 𝛾1 and 

recovery due to chemical application at the rate 𝛾2. All the 

classes diminish due to spore decay 𝜇. The above assumption 

and explanation result to the following equation. 
𝑑𝑆

𝑑𝑡
= Λ −

𝛽𝐼𝑆

𝑁
− 𝜇𝑆,  

𝑑𝐸

𝑑𝑡
=

𝛽𝐼𝑆

𝑁
− (𝜀 + 𝛾1 + 𝜇)𝐸,  

𝑑𝐼

𝑑𝑡
= 𝜀𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼,   (1) 

𝑑𝑅

𝑑𝑡
= 𝛾1𝐸 + 𝛾2𝐼 − 𝜇𝑅   

 

Model Analysis 

In this section, the analytical analysis of the model will be 

ascertained 

 

Boundedness and Positivity of Solutions 

Boundedness of solution 

Consider the region 

Ω = {(

𝑆
𝐸
𝐼
𝑅

) ∈ ℝ+
4 |

𝑆 ≥ 0
𝐸 ≥ 0
𝐼 ≥ 0
𝑅 ≥ 0

}     (2) 

It can be shown that the set Ω is positively invariant and a 

global attractor of all positive solution of the system (1). 

Lemma 1: The region Ω is positively invariant for the system 

(1). 

Proof: The rate of change of the total human population is 

given as  
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
     (3) 

substituting (1) in (3), gives 
𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑁 − 𝛿𝐼     (4) 

by standard comparison theorem,  
𝑑𝑁

𝑑𝑡
≤ 𝛬 − 𝜇𝑁       (5) 

so, we have  

𝑑𝑁

𝑑𝑡
+ 𝜇𝑁 ≤ 𝛬       (6) 

using the integrating factor method, we have 
𝑑𝑁

𝑑𝑡
𝑒𝜇𝑡 + 𝜇𝑁𝑒𝜇𝑡 ≤  Λ𝑒𝜇𝑡     (7) 

simplifying (7), we have          
𝑑

𝑑𝑡
(𝑁𝑒𝜇𝑡) ≤  𝛬𝑒𝜇𝑡         (8) 

taking the integral of (8), we have 

( )  Λt td
Ne e dt

dt

  
     (9)   

 integrating (3.38), gives  

𝑁𝑒𝜇𝑡 ≤  
𝛬

𝜇
𝑒𝜇𝑡 + 𝐶     (10) 

𝑎𝑡 𝑡 = 0,  𝐶 = 𝑁(0) −
𝛬

𝜇
     (11) 

substituting (11) into (10), we have 

𝑁𝑒𝜇𝑡 ≤  
𝛬

𝜇
𝑒𝜇𝑡 + 𝑁(0) −

𝛬

𝜇
     (12)  

simplifying (12), we have 

𝑁 = 𝑁(0)𝑒−𝜇𝑡 +
𝛬

𝜇
[1 − 𝑒−𝜇𝑡]    (13)   

If 𝑁(0) ≤  
𝛬

𝜇
 then 𝑁 ≤  

𝛬

𝜇
 so, Ω is a positively invariant set 

under the flow described in (1). Hence, no solution path leaves 

through and boundary of Ω. Also, since solution paths cannot 

leave Ω, solutions remain non-negative for non-negative 

initial conditions. Solutions exist for all time 𝑡. In this region, 

the model (1) is said to be well posed mathematically and 

epidemiologically. 

 

Positivity of Solution 

Lemma 2. Let the initial data for the model (1) be 𝑆(0) > 0, 

𝐸(0) > 0, 𝐼(0) > 0, 𝑅(0) > 0, with positive initial data will 

remain positive for all time t > 0 

Proof: Let  𝑡1 = {𝑡 > 0: 𝑆(0) > 0,  𝐸 (0) > 0,  ,  𝐼(0) >
0,   𝑅(0) > 0} > 0 

Simplifying the first model equation of model (1), we have  
𝑑𝑆

𝑑𝑡
= 𝛬 − (𝜆 + 𝜇)𝑆     (14) 

Where 𝜆 =
𝛽𝐼

𝑁
, using the integrating factor method   

𝐼. 𝐹 = 𝑒𝑥𝑝 [𝜇𝑡 + {∫
𝑡

0
(𝜆(𝜏) + 𝜇)𝑑(𝜏)}]   (15) 

Applying (15) on (14), we have 
𝑑

𝑑𝑡
[𝑆(𝑡)𝑒𝑥𝑝 {𝜇𝑡 + ∫

𝑡

0
(𝜆(𝜏) + 𝜇)𝑑(𝜏)}]  

= 𝛬 [𝑒𝑥𝑝 {𝜇𝑡 + ∫
𝑡

0
(𝜆(𝜏) + 𝜇)𝑑(𝜏)}]   (16) 

integrating (16), gives 

𝑆(𝑡1)𝑒𝑥𝑝 {𝜇𝑡1 + ∫
𝑡1

0
(𝜆(𝜏) + 𝜇)𝑑(𝜏)}  

= 𝑆(0) + ∫
𝑡1

0
𝛬[𝑒𝑥𝑝{𝜇𝑦 + ∫

𝑦

0
(𝜆(𝜏) + 𝜇)𝑑(𝜏)}]𝑑𝑦   

     (17) 

simplifying (17), we have 
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𝑆(𝑡1) = 𝑆(0)𝑒𝑥𝑝 {−𝜇𝑡1 − ∫
𝑡1

0
(𝜆(𝜏) + 𝜇)𝑑(𝜏)} +

[𝑒𝑥𝑝 {−𝜇𝑡1 − ∫
𝑡1

0
(𝜆(𝜏) + 𝜇)𝑑(𝜏)}] ∫

𝑡1

0
𝛬[𝑒𝑥𝑝{𝜇𝑦 +

∫
𝑦

0
(𝜆(𝜏) + 𝜇)𝑑(𝜏)}]𝑑𝑦 > 0    (18)  

for 
𝑑𝐸

𝑑𝑡
= 𝜆𝑆 − (𝜀 + 𝛾1 + 𝜇)𝐸     (19) 

we have that 
𝑑𝐸

𝑑𝑡
≥ −(𝜀 + 𝛾1 + 𝜇)𝐸     (20) 

for 
 𝑑𝐼

𝑑𝑡
= 𝜀𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼     (21) 

we have that 
𝑑𝐼

𝑑𝑡
≥ −(𝛿 + 𝛾2 + 𝜇)𝐼    (22) 

for 
𝑑𝑅

𝑑𝑡
= 𝛾1𝐸 + 𝛾2𝐼 − 𝜇𝑅     (23) 

we have that 
𝑑𝑅

𝑑𝑡
≥ −𝜇𝑅        (24) 

Similarly, we can also show that, 

𝑆(𝑡) > 0, 𝑒(𝑡) > 0,  𝐼(𝑡) > 0,   𝑅(𝑡) > 0     (25) 

Hence Lemma 2 is proved. 

 

Disease free equilibrium 

The disease-free equilibrium can be solved when there bis no 

association between the susceptible plant and infected plant. 

Ω0 = (𝑆0, 𝐸0, 𝐼0 , 𝑅0) = (
Λ

𝜇
, 0,0,0)  

 

Basic reproduction 

In this subsection, we will compute the basic reproduction 

number, using spectral radius. Let F be a matrix of newly 

infected and V be a matrix of remaining transition elements. 

𝐹 = (
0 𝛽
0 0

)      (26) 

 and                           

𝑉 = (
𝜀 + 𝛾1 + 𝜇 0

−𝜀 𝛿 + 𝛾2 + 𝜇
)    (27) 

then,  

𝑉−1 = (

1

𝜀+𝛾1+𝜇
0

𝜀

(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)

1

𝛿+𝛾2+𝜇

)    (28)   

the FV-1 matrix can be given as 

𝐹𝑉−1 = (
𝛽𝜀

(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)

1

𝛿+𝛾2+𝜇

0 0
)    (29) 

The basic reproduction number of system (1), can be given as 

𝑅0 =
𝛽𝜀

(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)
      (30) 

 

Local stability of disease-free equilibrium 

In this subsection, we analyzed the local stability of disease-

free equilibrium point using Jacobian matrix, with the result 

of eigen-values of the Jacobian matrix. 

Theorem 1: System (1) is locally asymptotically stable if all 

the eigen-values of the system is less than zero while 𝑅0 < 1. 

Proof: Let J be the Jacobian matrix of system (1), evaluate at 

disease-free equilibrium 

𝐽(Ω0) = [

−𝜇 0 −𝛽 0

0 −(𝜀 + 𝛾1 + 𝜇) 𝛽 0

0 𝜀 −(𝛿 + 𝛾2 + 𝜇) 0
0 𝛾1 𝛾2 −𝜇

]  (31) 

we used maple software to get upper triangular matrix below 

[
 
 
 
 
−𝜇 0 −𝛽 0

0 −(𝜀 + 𝛾1 + 𝜇) 𝛽 0

0 0
−(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)+𝜀𝛽

(𝜀+𝛾1+𝜇)
0

0 0 0 −𝜇]
 
 
 
 

   (32) 

then, the eigen-values are given by 

[
 
 
 
 

𝜆1 = −𝜇

𝜆2 = −(𝜀 + 𝛾1 + 𝜇)

𝜆3 = −
(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)−𝜀𝛽

(𝜀+𝛾1+𝜇)

𝜆4 = −𝜇 ]
 
 
 
 

    (33) 

all the eigen-values are less than zero except 𝜆3, simplifying 

𝜆3, we have 

𝜆3 = −
(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)−𝜀𝛽

(𝜀+𝛾1+𝜇)
= (𝛿 + 𝛾2 + 𝜇) [

𝜀𝛽

(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)
−

1] = (𝛿 + 𝛾2 + 𝜇)[𝑅0 − 1]      (34) 

Therefore, we conclude that the system is locally 

asymptotically stable if the basic reproduction number is less 

than one. 

 

Global stability of disease-free equilibrium 

In this subsection, we will use linear Lyapunov function to 

prove the global stability of disease-free equilibrium. 

Theorem 2: The disease-free equilibrium of system (1) is 

globally asymptotically stable if 𝑅0 < 0. 

Proof: Let V be a linear Lyapunov function 

𝑉 = 𝐴1𝐸 + 𝐴2𝐼        (35) 

differentiating equation (35), we obtained 

𝑉̇ = 𝐴1𝐸̇ + 𝐴2𝐼 ̇    (36) 

substituting the values of the concerned derivatives in (1), we 

have 

𝑉̇ = 𝐴1 (
𝛽𝐼𝑆

𝑁
− (𝛿 + 𝛾2 + 𝜇)𝐸) + 𝐴2(𝜀𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼)  

     (37) 

expanding equation (37) and rearrange, we obtain 

𝑉̇ = 𝐴1
𝛽𝐼𝑆

𝑁
− [(𝜀 + 𝛾1 + 𝜇)𝐴1 − 𝜀𝐴2]𝐸 − 𝐴2(𝛿 + 𝛾2 + 𝜇)𝐼     

     (38) 

this implies that 

𝐴1 = 𝜀, 𝐴2 = 𝜀 + 𝛾1 + 𝜇        (39) 

substituting the values in equation (39) into equation (38), we 

have 

𝑉̇ = 𝜀
𝛽𝐼𝑆

𝑁
− (𝜀 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)𝐼      (40) 

at disease-free equilibrium, 𝑆 ≤ 𝑆0 and 𝑁 ≤ 𝑁0,  equation 

(40), becomes 

𝑉̇ ≤ 𝜀𝛽𝐼 − (𝜀 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)𝐼   (41) 

Simplifying equation (41), we have 

𝑉̇ ≤ (𝜀 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇) [
𝜀𝛽

(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)
− 1] 𝐼  

𝑉̇ ≤ (𝜀 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)[𝑅0 − 1]𝐼    (42) 

Hence, we conclude using Lassalle’s invariant principle, the 

disease free equilibrium is globally asymptotically stable if 

𝑉̇ ≤ 0𝑎𝑛𝑑𝑅0 < 1.         
 

Endemic equilibrium point 

Let Ω**be an endemic equilibrium point, we solved equation 

(1) at endemic equilibrium point 

Ω** =

(

 
 
 
 
 

𝑆** =
Λ

𝜆**+𝜇
,

𝐸** =
Λ𝜆**

(𝜇+𝛾1+𝜀)(𝜆**+𝜇)
,

𝐼** =
𝜀Λ𝜆**

(𝜇+𝛾2+𝛿)(𝜇+𝛾1+𝜀)(𝜆**+𝜇)
,

𝑅** =
𝛾1Λ𝜆**

(𝜇+𝛾1+𝜀)(𝜆**+𝜇)𝜇
+

𝛾2𝜀Λ𝜆**

(𝜇+𝛾2+𝛿)(𝜇+𝛾1+𝜀)(𝜆**+𝜇)𝜇
,
)

 
 
 
 
 

  

     (43) 
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Global stability of endemic equilibrium point 

This subsection addresses global stability of endemic equilibrium point using non-linear Lyapunov function of Goh-Volterra 

type. 

Theorem 3: The endemic equilibrium point of system (1) is globally asymptotically stable if 𝛾1 = 0 and 𝑅0 > 0. 

Proof: Let F be a non-linear Lyapunov function 

𝐹 = (𝑆 − 𝑆** − 𝑆** 𝑙𝑛
𝑆

𝑆**
) + (𝐸 − 𝐸** − 𝐸** 𝑙𝑛

𝐸

𝐸**
) +

(𝜀+𝛾1+𝜇)

𝜀
(𝐼 − 𝐼** − 𝐼** 𝑙𝑛

𝐼

𝐼**
) +

(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)

𝜀𝛾2
(𝑅 − 𝑅** − 𝑅** 𝑙𝑛

𝑅

𝑅**
)

            (44) 

differentiating equation (44), we have 

𝐹 = (𝑆̇ −
𝑆**

𝑆
𝑆̇) + (𝐸̇ −

𝐸**

𝐸
𝐸̇) +

(𝜀+𝛾1+𝜇)

𝜀
(𝐼̇ −

𝐼**

𝐼
𝐼)̇ +

(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)

𝜀𝛾2
(𝑅̇ −

𝑅**

𝑅
𝑅̇)     (45) 

substituting system (1) into equation (45) with the condition that 𝛾1 = 0, we have 

𝐹 = (Λ − 𝜆𝑆 − 𝜇𝑆 −
𝑆**

𝑆
(Λ − 𝜆𝑆 − 𝜇𝑆)) + (𝜆𝑆 − (𝜀 + 𝜇)𝐸 −

𝐸**

𝐸
(𝜆𝑆 − (𝜀 + 𝜇)𝐸)) +

(𝜀+𝛾1+𝜇)

𝜀
(𝜀𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼 −

𝐼**

𝐼
(𝜀𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼)) +

(𝜀+𝛾1+𝜇)(𝛿+𝛾2+𝜇)

𝜀𝛾2
(𝛾2𝐼 − 𝜇𝑅 −

𝑅**

𝑅
(𝛾2𝐼 − 𝜇𝑅))       (46) 

at endemic equilibrium point, we have 

Λ = 𝜆𝑆** + 𝜇𝑆**, 𝜀 + 𝜇 =
𝜆𝑆**

𝐸** 𝛿 + 𝛾2 + 𝜇 =
𝜀𝐸**

𝐼**
, 𝜇𝑅** = 𝛾2𝐼

**       (47) 

substituting equation (47) into (46), we have 

𝐹 ≤ 𝜇𝑆** [2 −
𝑆

𝑆**
−

𝑆**

𝑆
] + 𝜆𝑆** [5 −

𝑆**

𝑆
−

𝐸𝐼**

𝐸**𝐼
−

𝑆𝐸**

𝑆**𝐸
−

𝑅

𝑅**
−

𝐼𝑅**

𝐼**𝑅
]        (48) 

using geometric mean to arithmetic relation, we have that 

[2 −
𝑆

𝑆**
−

𝑆**

𝑆
] ≤ 0, [5 −

𝑆**

𝑆
−

𝐸𝐼**

𝐸**𝐼
−

𝑆𝐸**

𝑆**𝐸
−

𝑅

𝑅**
−

𝐼𝑅**

𝐼**𝑅
] ≤ 0         (49) 

Therefore, using Lassalle’s invariant principle, we have that 𝐹 ≤ 0, hence, we conclude that endemic equilibrium points of 

system (1) is globally asymptotically stable. 

 

Numerical Simulation 

In this section, we simulated the compartments of model (1), assessing the impact of some control parameters on the 

compartment of the model, also, the parameters and their values are given in Table 1. The simulation has been done using 

ODE45 in MATLAB 14.  

  

  
Figure 2: Figure shows the behavior of all the compartment of model (1) 

Figure 2 shows the behavior of all the compartment of model (1), while the values of parameters in Table 1 are not varied.  
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Figure 3: Figure showing the effect of early spray of chemicals spray on all the compartment of model (1) to 

control northern corn leaf blight in maize 

 

Figure 3(a) shows the influence of early spray of chemicals 

on maize plant in other the control the northern corn leaf 

blight in maize population on susceptible maize plant, we seen 

that spraying chemicals does not affect the population of 

susceptible maize plant. Figure 3(b) shows the influence of 

early spray of chemicals on maize plant in other the control 

the northern corn leaf blight in maize population on exposed 

maize plant, we have seen from the above simulation that 

spraying chemicals affects the population of exposed maize 

plant, as we increased the control the exposed maize plant 

diminishes over time. Figure 3(c) shows the influence of early 

spray of chemicals on maize plant in other the control the 

northern corn leaf blight in maize population on infected 

maize plant, we have seen from the above simulation that 

spraying chemicals affects the population of infected maize 

plant, as we increased the control the infected maize plant 

diminishes over time a little. Figure 3(d) shows the influence 

of early spray of chemicals on maize plant in other the control 

the northern corn leaf blight in maize population on recovered 

maize plant, we have seen from the above simulation that 

spraying chemicals affects the population of recovered maize 

plant, as we increased the control the recovered maize plant 

increases over time.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4: Figure showing the effect of spray of chemicals spray on all the compartment of model (1) to control 

northern corn leaf blight in maize  

 

Figure 4(a) shows the influence of spray of chemicals on 

maize plant in other the control the northern corn leaf blight 

in maize population on susceptible maize plant, we’ve seen 

that spraying chemicals does not affect the population of 

susceptible maize plant. Figure 4(b) shows the influence of 

spray of chemicals on maize plant in other the control the 

northern corn leaf blight in maize population on exposed 

maize plant, we have seen from the above simulation that 

spraying chemicals affects the population of exposed maize 

plant, as we increased the control the exposed maize plant 

diminishes over time. Figure 4(c) shows the influence of spray 

of chemicals on maize plant in other the control the northern 

corn leaf blight in maize population on infected maize plant, 

we have seen from the above simulation that spraying 

chemicals affects the population of infected maize plant, as 

we increased the control the infected maize plant diminishes 

over time a drastically. Figure 4(d) shows the influence of 

spray of chemicals on maize plant in other the control the 

northern corn leaf blight in maize population on recovered 

maize plant, we have seen from the above simulation that 

spraying chemicals affects the population of recovered maize 

plant, as we increased the control the recovered maize plant 

increases over time. 

 

CONCLUSION 

In this paper, a mathematical modeling for the control and 

management of northern corn leaf blight in maize with early 

chemical application. The model has been analyzed, in the 

local stability subsection, it has been shown that the disease-

free equilibrium is locally asymptotically stable if the basic 

reproduction number is less than one. The global stability of 

disease-free equilibrium shows that; the system is globally 

asymptotically stable is the basic reproduction number is less 

than one. Further, we assess the global stability of endemic 

equilibrium point, which showed that the endemic 

equilibrium point is globally asymptotically stable if the basic 

reproduction number is greater than one. In numerical 

simulation section, we were able to assessed the impact of 

early chemical spray on maize plant and treating the infected 

maize plant with chemical spray, it has been noticed that, 

early chemical spray on maize plant is the best way to control 

the northern corn leaf blight in maize population. It is now 

recommended that early chemical spray on maize plant is the 

best way to control the northern corn leaf blight in maize. 
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