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ABSTRACT

Northern Corn Leaf Blight, incited by the fungal pathogen exserohilum turcicum, poses a significant threat to
maize production worldwide, necessitating innovative and sustainable control strategies. In this paper, a
mathematical modeling for the control and management of northern corn leaf blight in maize with early
chemical application. The model has been analyzed, in the local stability subsection, it has been shown that the
disease-free equilibrium is locally asymptotically stable if the basic reproduction number is less than one. The
global stability of disease-free equilibrium shows that; the system is globally asymptotically stable is the basic
reproduction number is less than one. Further, we assess the global stability of endemic equilibrium point,
which showed that the endemic equilibrium point is globally asymptotically stable if the basic reproduction
number is greater than one. In numerical simulation section, we were able to assessed the impact of early
chemical spray on maize plant and treating the infected maize plant with chemical spray, it has been noticed
that, early chemical spray on maize plant is the best way to control the northern corn leaf blight in maize
population. It is now recommended that early chemical spray on maize plant is the best way to control the

northern corn leaf blight in maize.
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INTRODUCTION

Maize (Zea mays L.) is one of the world’s most important
staple crops, serving as a critical source of food, feed, and
industrial raw material. However, its production is
significantly threatened by a range of biotic stressors, among
which Northern Corn Leaf Blight (NCLB)—caused by the
fungus Exserohilum turcicum is a major foliar disease leading
to substantial yield losses, especially under favorable weather
conditions like high humidity and moderate temperatures
(Munkvold & White, 2016).

Traditional NCLB management strategies rely heavily on
cultural practices (e.g., crop rotation, residue management),
the deployment of resistant maize cultivars, and fungicide
applications (Wise et al., 2009). While these methods have
shown varying levels of success, they are often reactive and
lack the precision needed for sustainable, cost-effective
disease control under dynamic environmental conditions.

In recent years, mathematical modeling has emerged as a
powerful tool in plant epidemiology, enabling researchers and
practitioners to understand disease dynamics, predict
outbreaks, and design optimal control strategies (Madden et
al., 2007). Models—particularly compartmental systems such
as the Susceptible-Exposed-Infected-Removed (SEIR)
frameworks—are widely used to describe disease progression
in crop populations. These models can incorporate critical
biological parameters (e.g., latent periods, infection rates),
agronomic practices (e.g., spacing, planting time), and
environmental variables (e.g., rainfall, temperature), thereby

capturing the multifactorial nature of plant disease epidemics
(Jeger, 2004).

In addition to modeling disease spread, the integration of
optimal control theory allows for the development of
strategies that balance disease suppression with economic
costs. By treating interventions such as fungicide use or
resistant seed adoption as control variables, optimal control
models provide a framework to minimize both the disease
burden and the financial or environmental cost of
interventions (Lenhart & Workman, 2007). These tools are
especially valuable in precision agriculture, where decision-
support systems can help optimize input use and improve
sustainability.

Despite the critical importance of NCLB, relatively few
studies have developed tailored mathematical models for its
control. Most existing work either lacks specificity to E.
turcicum or does not fully early chemical spray on maize
plant. This research aims to address this gap by formulating a
disease-specific mathematical model for NCLB that
incorporates both epidemiological dynamics and early
chemical spray on maize plant, ultimately contributing to
more efficient and sustainable maize production systems.

MATERIALS AND METHODS
Model Formulation
The plant population N is sub-divided into four

compartments, the Susceptible plants (S)
Exposed (latent) plants (E), Infected (I), and
Recovered/resistant plants (R).
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Figure 1: Schematized diagram of northern corn leaf blight
The susceptible plants (S) are generated at rate of recruitment &V uN < A (6)
A. The compartment reduces due to the association of infected %% . .
) ) Bl ) using the integrating factor method, we have
plant with susceptible plant at the rate v where S is the Z_Neﬂt + uNekt < Aeht %
infection rate. The exposed (latent) plants (E) are generated siin lifying (7), we have
due to the association of infected plant with susceptible plant puiymg (1),
BI . . . — (Nekt) < Aett (8)
at the rate —, where £ is the infection rate. The compartment dt ;
..., N . taking the integral of (8), we have
diminishes due to progression of latent at the rate € and early d )
recovery due to chemical application at the rate y;. The J.E(Ne"t)ﬁ.[/\ewdf
infected . compartment (I) is generated due to due to integrating (3.38), gives
progression of latent at the rate &. The compartment ut — At
diminishes due to spore decay due to disease at the rate § and Net = u e+ C (10)
recovery due to chemical application at the rate y,. The g¢¢=0, ¢ = N(0) -2 (11)
recovered/resistant plal'{ts (R) is. gel?erated due to the early substituting (11 into ( 1‘(‘))7 we have
recovery due to chemical application at the rate y; and . Ao "
recovery due to chemical application at the rate y,. All the Nett < ;e #+N(0) - “ (12)
classes diminish due to spore decay y. The above assumption  simplifying (12), we have
and explanation result to the following equation. — —ut L A4 _ -ut
Q—A—@—MS N =N(0)e +”[1 e H] (13)
gg Bis N ’ If N(0) < ﬁ then N < ﬁ so, () is a positively invariant set
g_lt =5 ~(Etrn+E under the flow described in (1). Hence, no solution path leaves
P eE— (5 +y, + W, (1) through and boundary of Q. Also, since solution paths cannot

dR
2t = NE +7v2l —pR

Model Analysis
In this section, the analytical analysis of the model will be
ascertained

Boundedness and Positivity of Solutions
Boundedness of solution
Consider the region

s §>0
_J|E 4+ |E=0

=T € =0 )
R R>0

It can be shown that the set Q is positively invariant and a
global attractor of all positive solution of the system (1).
Lemma 1: The region Q is positively invariant for the system
(D).

Proof: The rate of change of the total human population is

given as

dN _ds  dE , dl | dR

watututa )
substituting (1) in (3), gives

S =A-pN -5 4)
by standard comparison theorem,

dn

T A —uN ®)
so, we have

leave (), solutions remain non-negative for non-negative
initial conditions. Solutions exist for all time t. In this region,
the model (1) is said to be well posed mathematically and
epidemiologically.

Positivity of Solution

Lemma 2. Let the initial data for the model (1) be S(0) > 0,
E(0) > 0,1(0) > 0, R(0) > 0, with positive initial data will
remain positive for all time ¢ > 0

Proof: Let t;={t>0:5(0)>0, E()>0,,I(0)>
0, R(O)>0}>0

Simplifying the first model equation of model (1), we have
S =A-Q+ws (14)

Where 1 = %, using the integrating factor method

I.F =exp [ut + {fot A + u)d(r)}] (15)
Applying (15) on (14), we have

Gls@em{ut+ [0 @ +wd}]

=A [exp {ut + fot IGE: u)d(r)}] (16)

integrating (16), gives
S(ty)exp {ut1 + fotl @+ #)d(T)}
=5(0) + fotl Alexpluy + [} (@ + wd(@)}]dy

a7
simplifying (17), we have
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— ty [—U4 0 B 0
S(t1) = S(0)expi—ut; — A(T) +wd() +
(t2) = 5(0) zto{ K=y O 40 @} 0 et ; }
[exp {—,ut1 — fol () + H)d(T)}] fol Alexp{uy + 0 0 @i tptes (32)
(e+y1+p) J
Iy Q@ +wd®}]dy >0 (18) L o 0 0 —u
for then the elgen values are given by
dE A
—=AS—(e+y, + WE 19 1
ar ) h( yit+w (19) /12=—(£+y1+u)
we have that L = _ @y w-cp (33)
= >—(e+y, +WE (20) 3 (e+y1+m)
for Ay =—l
a_ o all the eigen-values are less than zero except A3, simplifying
p N eE N (té‘ +y, + Wl (21) 15, we have
we have tha _ _ (et @yt —ef _ p _
> G +y, +wI 22) A5 = (e+v1+10) @+r+u [(e+y1+u)(6+yz+u)
for 1] =@ +y+wIR —1] (34)
dR i
IR y.E + 7,0 — uR 23) Therefore?, we conc}lude that the system  is lqcally
dt asymptotically stable if the basic reproduction number is less
we have that th
A an one.
%2 THR (24)
Similarly, we can also show that, Global stability of disease-free equilibrium
S(t) >0,e(t) >0, 1(t) >0, R(t)>0 (25) In this subsection, we will use linear Lyapunov function to

Hence Lemma 2 is proved.

Disease free equilibrium
The disease-free equilibrium can be solved when there bis no
association between the susceptible plant and infected plant.

Q° = (59, E%,I°, R%) = (ﬁ,o,o,o)

Basic reproduction

In this subsection, we will compute the basic reproduction
number, using spectral radius. Let F be a matrix of newly
infected and V be a matrix of remaining transition elements.

(0 B
F=( 0 0) (26)
and
_(etyitnu 0 )
V_< —¢ S+y,+u @7
then,
s+y1 +u 0
-1 _ 1
vt = . 1 (28)
(e+y1+W)(S+y2+1)  S+ya+u
the FV-! matrix can be given as
Be 1
FV—1= ((s+y1+u)(8+yz+u) 6+yz+u> (29)
0 0
The basic reproduction number of system (1), can be given as
Be
Ry=—""7"— (30)

(e+y1+)(S+y2+1)

Local stability of disease-free equilibrium

In this subsection, we analyzed the local stability of disease-
free equilibrium point using Jacobian matrix, with the result
of eigen-values of the Jacobian matrix.

Theorem 1: System (1) is locally asymptotically stable if all
the eigen-values of the system is less than zero while Ry < 1.
Proof: Let J be the Jacobian matrix of system (1), evaluate at
disease-free equilibrium

—u 0 - 0

o —(+vi+w) B 0
(@) = 0 81 —(+y,+u) O (1)

0 "1 Ya —K

we used maple software to get upper triangular matrix below

prove the global stability of disease-free equilibrium.
Theorem 2: The disease-free equilibrium of system (1) is
globally asymptotically stable if Ry < 0.

Proof: Let V be a linear Lyapunov function

V =AE + Ayl (35)
differentiating equation (35), we obtained
V =AE + A, (36)

substituting the values of the concerned derivatives in (1), we

have

V=A; (BE— 64y, + WE) + Ay(eE = (8 +y2 + 0D
(37)

expanding equation (37) and rearrange, we obtain

V= A1%_ [(e+v1 + WAL — eA)E — A (8 +y, + I
(38)

this implies that

A=l =c+y,+u 39)

substituting the values in equation (39) into equation (38), we
have
V=g

— e+ +w@ +y, +wi (40)

at dlsease free equilibrium, § < S and N < N°, equation
(40), becomes

V<efl—(e+y,+w)(8+vy,+wi (41)
Simplifying equation (41), we have

. EB

VS Etn 0@y + [l
Vs(e+y1 + W@ +v2+w[Ro — 111 (42)

Hence, we conclude using Lassalle’s invariant principle, the
disease free equilibrium is globally asymptotically stable if
V < 0andRy < 1.

Endemic equilibrium point
Let Q be an endemic equilibrium point, we solved equation
(1) at endemic equilibrium point
*x A
5= F \

*x

AN |
o = | = @ +u) |
| e |
\ (ﬂ+yz+8)(u+y1+6)(/’1 “+u)’ )
ylAA yzs/M**
T o | ) a2 e’
(43)
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Global stability of endemic equilibrium point

This subsection addresses global stability of endemic equilibrium point using non-linear Lyapunov function of Goh-Volterra
type.

Theorem 3: The endemic equilibrium point of system (1) is globally asymptotically stable if y; = 0 and Ry > 0.

Proof: Let F be a non-linear Lyapunov function

F= (s—s**—s**ln§)+ (E—E**—E**ln

E ) + (£+y£1+/,¢) (I _ 1** _ 1** lnIIT) + (e+y+)(S+y,+u) (R _ R** _ R** ln%)

P oy
(44)

differentiating equation (44), we have

(e ST s BTN (et (1T | Endm@Hetw) (5 R
F=(S=358)+ (6 -58) + St (j - 1) 4 SO0t (p _ T R) (45)
substituting system (1) into equation (45) with the condition that y; = 0, we have
F= <A—AS—yS—S?(A—AS—uS)>+</15—(s+u)E—EE (As—(g+u)5)>+@<55—(5+yz + I —
" (e+y; + ) (S+y2+10) R”
—(E=(E+y, + u)1)> + (Yzl —HR =@l - uR)> (46)
at endemic equilibrium point, we have
AZAS**+MS**,s+u=);*6+y2 +u=%,,uR**=y21** 47)
substituting equation (47) into (46), we have

ox s s” - s* EI" SE” R IR”
Feus”z-g-Gleas s -5 -fm - )
using geometric mean to arithmetic relation, we have that
[2-=-S=<o[s-S-F - - <0 (49)
s s s E"I S"E R I"R

Therefore, using Lassalle’s invariant principle, we have that F < 0, hence, we conclude that endemic equilibrium points of
system (1) is globally asymptotically stable.

Numerical Simulation

In this section, we simulated the compartments of model (1), assessing the impact of some control parameters on the
compartment of the model, also, the parameters and their values are given in Table 1. The simulation has been done using
ODE45 in MATLAB 14.
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Figure 2: Figure shows the behavior of all the compartment of model (1)
Figure 2 shows the behavior of all the compartment of model (1), while the values of parameters in Table 1 are not varied.
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Figure 3: Figure showing the effect of early spray of chemicals spray on all the compartment of model (1) to

control northern corn leaf blight in maize

Figure 3(a) shows the influence of early spray of chemicals
on maize plant in other the control the northern corn leaf
blight in maize population on susceptible maize plant, we seen
that spraying chemicals does not affect the population of
susceptible maize plant. Figure 3(b) shows the influence of
early spray of chemicals on maize plant in other the control
the northern corn leaf blight in maize population on exposed
maize plant, we have seen from the above simulation that
spraying chemicals affects the population of exposed maize
plant, as we increased the control the exposed maize plant
diminishes over time. Figure 3(c) shows the influence of early
spray of chemicals on maize plant in other the control the
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northern corn leaf blight in maize population on infected
maize plant, we have seen from the above simulation that
spraying chemicals affects the population of infected maize
plant, as we increased the control the infected maize plant
diminishes over time a little. Figure 3(d) shows the influence
of early spray of chemicals on maize plant in other the control
the northern corn leaf blight in maize population on recovered
maize plant, we have seen from the above simulation that
spraying chemicals affects the population of recovered maize
plant, as we increased the control the recovered maize plant
increases over time.
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Figure 4: Figure showing the effect of spray of chemicals spray on all the compartment of model (1) to control

northern corn leaf blight in maize

Figure 4(a) shows the influence of spray of chemicals on
maize plant in other the control the northern corn leaf blight
in maize population on susceptible maize plant, we’ve seen
that spraying chemicals does not affect the population of
susceptible maize plant. Figure 4(b) shows the influence of
spray of chemicals on maize plant in other the control the
northern corn leaf blight in maize population on exposed
maize plant, we have seen from the above simulation that
spraying chemicals affects the population of exposed maize
plant, as we increased the control the exposed maize plant
diminishes over time. Figure 4(c) shows the influence of spray
of chemicals on maize plant in other the control the northern
corn leaf blight in maize population on infected maize plant,
we have seen from the above simulation that spraying
chemicals affects the population of infected maize plant, as
we increased the control the infected maize plant diminishes
over time a drastically. Figure 4(d) shows the influence of
spray of chemicals on maize plant in other the control the
northern corn leaf blight in maize population on recovered
maize plant, we have seen from the above simulation that
spraying chemicals affects the population of recovered maize
plant, as we increased the control the recovered maize plant
increases over time.

CONCLUSION

In this paper, a mathematical modeling for the control and
management of northern corn leaf blight in maize with early
chemical application. The model has been analyzed, in the
local stability subsection, it has been shown that the disease-
free equilibrium is locally asymptotically stable if the basic
reproduction number is less than one. The global stability of
disease-free equilibrium shows that; the system is globally
asymptotically stable is the basic reproduction number is less
than one. Further, we assess the global stability of endemic
equilibrium point, which showed that the endemic
equilibrium point is globally asymptotically stable if the basic
reproduction number is greater than one. In numerical
simulation section, we were able to assessed the impact of
early chemical spray on maize plant and treating the infected
maize plant with chemical spray, it has been noticed that,
early chemical spray on maize plant is the best way to control
the northern corn leaf blight in maize population. It is now
recommended that early chemical spray on maize plant is the
best way to control the northern corn leaf blight in maize.
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