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ABSTRACT

This article investigates the robustness of ARIMA-GAS model to mis specified errors, through simulated
intradaily data. Three scenarios are involved. Scenario 1 utilizes Gaussian innovations, Scenario 2 utilizes
centered and scaled Student’s t while Scenario 3 introduces asymmetric shocks by drawing innovations from a
skew-normal distribution. For Gaussian errors, Classical ARIMA attains the lowest mean RMSE/MAE in this
benign linear—Gaussian setting, with ARIMA-GAS a close second. For student’s t innovations, ARIMA-GAS
achieves the lowest RMSE/MAE/MAPE, substantially improving on Classical ARIMA, which suffers from
sensitivity to outliers and mis specified (Gaussian) tails. Pure GAS performs competitively (second among
econometric models) yet combining GAS with the ARIMA backbone yields a further reduction in forecast
error. LSTM forecasts are competitive and outperform ARIMA’s and GARCH’s; however, ARIMA-GAS
retains a measurable edge in all three metrics, reflecting the benefit of combining statistical structure with
adaptive updating when tails are heavy. For the skew normal innovations, ARIMA-GAS attains the lowest
average RMSE/MAE/MAPE, improving materially over Classical ARIMA, whose Gaussian/symmetry
assumptions leave it vulnerable to skewed shocks. Pure GAS is competitive, but the ARIMA backbone adds
structure that reduces forecast loss further; GARCH’s volatility focus helps little with asymmetric innovations
affecting the conditional mean. LSTM forecasts are very close to ARIMA-GAS (slightly higher mean loss),
ARIMA-GAS preserves interpretability and achieves marginally better average accuracy. The robustness
broadens its applicability across different domains and datasets, enhancing its utility in practical applications
in areas as finance, economics, or environmental studies.
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INTRODUCTION

Time series forecasting is of crucial importance in decision-
making in various fields as finance, economics, and
environmental sciences. Among the numerous models
developed for forecasting time series is Autoregressive
Integrated Moving Average (ARIMA) model reputed for its
ability to capture a wide range of patterns. However, ARIMA
models have the assumption that parameters are constant over
time. To cater for this, hybrid ARIMA and Generalized
Autoregressive Score (GAS), which allows for time-varying
parameters has been proposed. The ARIMA-GAS framework
combines the strengths of both ARIMA and GAS, to yield
better forecasts.

Statistical models are sometimes subjected to violations of
their assumptions so that their performances under such
violations can be understood. That is, examining reliability of
models in the face of potential disruptions to its assumptions.
Conducting such on ARIMA-GAS model should be a
worthwhile venture. A few of the articles on robustness are:
Sharma and Yadav (2020), Biswas, Das and Mandal (2015),
Maas and Hox (2014), Warton (2007), Kim and Li (2023),
Chen (1997). Recent publications on time series modeling
include Agada, Eweh, and Aondoakaa (2022), Bawa, Dikko,
Garba, Sadiku, and Tasiu (2023), Enegesele, Eriyeva, and
Ejemah (2025), and Muhammad et al. (2025).

The flexibility offered by the hybrid ARIMA-GAS model
should make it suitable for analyzing intradaily data, known
for harboring complex, nonlinear patterns, and volatilities not
easily captured by traditional forecasting models. Intradaily
data is data collected at regular intervals within a single day.
It is a type of data often associated with financial markets to
analyze price movements, trading volumes, and other desired
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market dynamics over short periods. A large volume of
literature exists on analysis of intradaily data.

Such efforts range from univariate modeling, including score
driven (Creal, Koopman, and Lucas (2013), Huang, Wang,
and Zhang (2014), Blazsek, Ho, and Liu (2018), Ayala and
Blazsek (2019), Thiele (2020), Blazsek, Escribano, and
Kristof (2024), Blazsek, Licht, Ayala, and Liu (2024) ) to
hybrid models (Pwasong and Sathasivam (2018), Zhu, Zhao,
Zhang, Geng, and Huang (2019), Purwanto, Sunardi, Julfia,
and Paramananda (2019), Qiao, Huang, Azimi, and Han
(2019), Castan-Lascorz, Jimenez-Herrera, Troncoso, and
Asencio-Cortes (2021), Corizzo, Ceci, Fanaee, and Gama
(2021), De Oliveria, Silva, and de Mattos Neto (2022),
Elshewey, Shams, Elhady, Shoieb, Abdelhamid, Ibrahim, and
Tarek (2023)), all aimed an improved forecasting accuracy.
Despite the potential of ARIMA-GAS model, its robustness
remains a topic of ongoing research. This article aims to
investigate the robustness of this model to error distributional
assumption violation on intradaily data.

The rest of the article is arranged as follows: Section 2
presents the methodology of the research while Section 3
presents the results and discusses; the last section concludes
the article.

MATERIALS AND METHODS
Methodology

Model
The starting point is the ARIMA (p, d, q) model:
¢(BYAL-B)y = +06(Bey, ())
where:

i. B is the backshift operator (By; = y;_1),

ii. ¢(B)=1-¢B—-—¢,B? isthe AR polynomial,

iii. 8(B)=1+6,B+ -+ 6,B%is the MA polynomial,
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iv. e.is the white noise error term.

Introducing Time-Varying Parameters
To account for evolving dynamics, the time-varying mean
Uis introduced, driven by GAS dynamics:
Uty = @ + 25;1 AiSt_ipr + Z?:l Biue_ji1,
where:

i. w is aconstant term,

ii. A; and B; are coefficients for the GAS score terms and

lagged means,

iii. s;is the GAS score.

@

Step 3: Defining the GAS Score
The GAS score s;is defined as:

S¢ =8;-Vy, (3)
where:

oln p(y¢lpe,Fe;6)
V= FRPCLHID @

is the score of the log-likelihood with respect to ;.

Step 4: Scaling Matrix for Score Normalization
The scaling matrix S; ensures proper normalization of the
score:
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S; = lt_|%—1'lt|t—1 = E¢4[V: Ve (5)
The scaled score becomes:

__ v
St = B ®)

Step 5: Variance Dynamics

The conditional variance oZis allowed to vary dynamically
using a GAS-driven update:

01 = we + asf + pof,

wherea and S control the impact of the score and past
variance.

Step 6: Combined Model Specification
The complete ARIMA-GAS model is:

$(BYA = B)y; = pe + 0(Bey, @

Hey1 = W + 25;1 AiSt_ip1 t+ Z?:l Bipe_jr1, (8)
ol \ue,Fe;0

S = St -V, V= TREECETED ©)

S = lt_|g—1'lt|t—1 =E¢1[Ve V], (10)

0%, = wy + as? + Ba?. (11)

Connecting the GAS component to the ARMA component
through 4, allows the proposed hybrid model to adapt to
changes (jumps or structural breaks) in data over time.

Table 1: Summary of Simulation Scenarios and Model Parameters

Scenario ARIMA Order GAS Dynamics (A4, B;)  Disturbance n d Notes

Scenario 1 1,11 A; =0.20, B, = 0.60 Gaussian 1000 1 Baseline

Scenario 2 (2,1,2) A; =0.30, B, = 0.40 Student’st (v =15) 1000 1 Heavy tails

Scenario 3 1,11 A =0.50,B; =0.30 Skewed Normal 1000 1 Skewed error
Simulation evaluation split; one-step-ahead forecasts are generated in a

Scenario 1: Baseline - Gaussian Error, Moderate GAS
Scenariol is a deliberately benign environment in which the
innovations are i.i.d. Gaussian and the data-generating
process (DGP) is moderately complex: an ARIMA (1, 1, 1)
with score-driven updates embedded per the specification in
Methodology. Concretely, the true parameters are ¢; = 0.60,
6, =030, A; =0.20, and B; = 0.60. Unless otherwise
stated, the sample size is n = 1000, with an 80/20 split
between estimation and evaluation windows. One-step-ahead
forecasts are produced in a rolling fashion over the evaluation
window.

Scenario 2: Heavy-Tailed Noise — Student’s t Errors
Scenario 2 evaluates robustness to extreme observations by
generating innovations from a centered and scaled Student’s
t distribution with v = 5 degrees of freedom (leptokurtic,
heavy-tailed). The data-generating process (DGP) is ARIMA
(2,1,2) with moderate score dynamics (A, By) =
(0.30,0.40) described in the previous chapter. Unless stated
otherwise, the sample size is n = 1000 with an 80/20
estimation—evaluation split; one-step-ahead forecasts are
computed in a rolling fashion.

Scenario 3: Skewed Errors and Non-Gaussianity

Scenario 3 introduces asymmetric shocks by drawing
innovations from a skew-normal distribution with shape
parameter ¢ = 4 (light-to-moderate right skew). The data
generating process is ARIMA (1,1,1) with strong score
dynamics(A4, B;) = (0.50,0.30). Unless stated otherwise,
the sample size is n = 1000, with an 80/20 estimation—
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rolling fashion.

Estimation Technique

The parameters of the ARIMA-GAS model were estimated
using Maximum Likelihood Estimation (MLE).

The log-likelihood function for the ARIMA-GAS model is:
L(0) = Xi-y Inp(ye | p, 02, F; 0), (12)
whered = {w, 4;,B;,a, B, ¢;,0;} is the vector of model
parameters.

Gradient and Hessian Calculation
The gradient of the log-likelihood with respect to @ is:

L _ v (61npt dlnp, dp, alnpta;:f) (13)
a9 ~ “t=1 \' g9 due 00 dc2 86 )’
_ 2 .
where p, = p_(}’t | te, 08, Fe; 6).
The Hessian is calculated as:
9%L
= 14
0000"’ (14)

and is used to compute standard errors for parameter
estimates.
The GAS score s;is defined as:

S¢ =S; - Vg, (15)
dln p(yelue,Ft;0)
v, = HEOT0) (16)

St is a scaling matrix often the inverse of Fisher Information

matrix.
So, the ARMA-GAS likelihood function depends on the time

varying parameters, £, which are updated by the GAS
mechanism. The predictive likelihood is used to update
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parameters while ARMA-GAS likelihood function is used for 18y, v, (18)
. . ) _ MAPE = = > | —>1/X100%
estimating the model. It is worth noting that 44 is the ni= i
connection between the GAS component and the ARMA o\ 1o \/iz":(yi —9)? (19)
component. n <
) where
Performance Metrics n = number of observations.
Three performance metrics were used in gauging out-of- yi= the true value of it" observation.
sample forecasting performance. They are mean absolute  _ the forecast for i observation
error (MAE), mean absolute percentage error (MAPE) and Yi= '
root mean square error (RMSE) defined:
1w . an RESULTS AND DISCUSSION
MAE = ;;lya — Vil Results for Scenario 1 are hereby, presented:
Table 2: Estimation Accuracy — Scenario 1 (Baseline, Gaussian Innovations)
Parameter True Value MAE MSE Bias Abs. % Error
N 0.60000 0.01243 0.00024 -0.00178 0.2966700
61 0.30000 0.01062 0.00019 0.00089 0.2966670
Ay 0.20000 0.00988 0.00017 -0.00041 0.2050000
B, 0.60000 0.01105 0.00021 0.00112 0.1866667

The reported biases, maintaining a balance between positive error is 0.29667 %. This is certainly a bias that should not be
and negative biases are small relative to the true values as of serious concern.
portrayed by Table 2. The maximum absolute percentage

Table 3: Unified Forecasting Performance — Scenario 1 (One-Step-Ahead; Mean Across Replications)

Model RMSE MAE
Classical ARIMA 0.900; (0.045) 0.630; (0.032)
ARIMA-GAS 0.905; (0.043) 0.636; (0.031)
Pure GAS 0.928; (0.047) 0.655; (0.034)
GARCH (1, 1) 0.946; (0.049) 0.669; (0.036)
LSTM 0.958; (0.055) 0.680; (0.039)

Notes: Parentheses report simulation standard deviations across replications. All models trained on the same 80% window;
evaluation on the last 20% with rolling updates

1.2

1
0.8 -

0.6 - W RMSE

0.4 - = MAE

0.2 -

0 -
Classical ARIMA-GAS Pure GAS GARCH (1, 1) LSTM
ARIMA

Figure 1: Unified Forecasting Performance — Scenario 1 (One-Step-Ahead; Mean Across Replications)
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Table 3 and Figure 1 display the unified forecasting
performance of the ARIMA-GAS and the benchmarks.
Classical ARIMA attains the lowest mean RMSE/MAE in this
benign linear-Gaussian setting, with ARIMA-GAS a close
second. The small gap reflects ARIMA’s parsimony when the
DGP is close to linear-Gaussian and volatility dynamics are
mild. Both GAS and GARCH models are outperformed by

Adedayo et al.,
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ARIMA/ARIMA-GAS on mean-squared metrics. GARCH’s
focus on volatility adds little when conditional mean
dynamics dominate and innovations are Gaussian. LSTM
model is competitive but exhibits mild over-parameterization
costs (higher dispersion across replications), which is typical
when the true process is simple and the signal-to-noise ratio
is modest.

Table 4: Residual Diagnostics — Scenario 1 (Means of p-Values Across Replications)

Model Ljung-Box Q(20) Jarque-Bera ARCH-LM(10)
Classical ARIMA 0.53 0.47 0.41
ARIMA-GAS 0.58 0.45 0.44
Pure GAS 0.49 0.39 0.38
GARCH (1,1) 0.51 0.40 0.62
LSTM 0.46 0.36 0.35

Notes: Values are average p-values for tests on standardized residuals over the evaluation window. Higher values indicate
fewer rejections; all models clear basic whiteness at 5% on average

Both ARIMA and ARIMA-GAS produce white standardized
residuals on average and do not exhibit significant non-
normality or remaining ARCH effects in this baseline setting.
GARCH shows (as expected) elevated ARCH-LM p-values,

but this does not translate into lower mean-squared loss
because volatility clustering is weak by design here.

Table 5: Multi-horizon forecasting — Scenario 1 (Mean RMSE Across Replications)

Model h=1 h=5 h=10
Classical ARIMA 0.900 0.947 0.989
ARIMA-GAS 0.905 0.950 0.992
Pure GAS 0.928 0.969 1.006
GARCH (1, 1) 0.946 0.978 1.014
LSTM 0.958 0.961 0.995

Notes: Horizon-wise RMSE computed from direct multi-step forecasts. LSTM narrows the gap as h increases, consistent with
flexible non-linear mappings benefiting longer-horizon aggregation

1.05
1
0.95 mh=1
0.9 ~—  mh=5
0.85 — h=10
0.8 - \ T
Classical ~ ARIMA-GAS ~ Pure GAS GARCH(1,1)  LSTM
ARIMA

Figure 2: Multi-horizon forecasting — Scenario 1 (Mean RMSE Across Replications)

At h = 1, Classical ARIMA retains a small edge. Differences
between ARIMA and ARIMA-GAS remain negligible out to
h =10. The LSTM narrows the gap at longer horizons

FUDMA Journal of Sciences (FJS) Vol

(aggregation smooths noise and benefits flexible function
classes), but does not dominate in this simple DGP.
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Unified Forecasting Performance
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Table 6: Unified forecasting performance — Scenario 2 (t5; One-Step-Ahead; Mean Across Replications)

Model RMSE MAE MAPE (%0)
ARIMA-GAS 1.24317 0.98543 6.42718
Pure GAS 1.31225 1.02678 7.00213
Classical ARIMA 1.45864 1.11352 7.93204
GARCH (1, 1) 1.31786 1.04591 7.40125
LSTM 1.29521 1.00847 7.11378

9

8

7 T

6 I

S —  mRMSE

4 [ MAE

3 I

MAPE (%)

2 I

‘'l I B B 1 B

0 -

ARIMA-GAS  Pure GAS Classical  GARCH ( LSTM
ARIMA

Figure 3: Unified Forecasting Performance — Scenario 2 (t_5; One-Step-Ahead; Mean Across Replications)

ARIMA-GAS achieves the lowest RMSE/MAE/MAPE,
substantially improving on Classical ARIMA, which suffers
from sensitivity to outliers and misspecified (Gaussian) tails
See Table 6 and Figure 3). The score-driven updates adapt the
conditional mean/scale in response to large shocks, mitigating
the influence of extremes. GARCH (1, 1) improves over
ARIMA by modeling conditional variance, but without score-
driven mean adaptation its forecast loss remains higher than
ARIMA-GAS (and Pure GAS) under ts shocks. Pure GAS

performs competitively (second among econometric models)
by dynamically updating parameters, yet combining GAS
with the ARIMA backbone yields a further reduction in
forecast error. LSTM model forecasts are competitive and
outperform ARIMA and GARCH; however, ARIMA-GAS
retains a measurable edge in all three metrics, reflecting the
benefit of combining statistical structure with adaptive
updating when tails are heavy.

Table 7: Residual Diagnostics — Scenario 2 (Means of p-Values Across Replications)

Model Ljung-Box Q(20) Jarque-Bera ARCH-LM(10)
ARIMA-GAS 0.51 0.12 0.29
Pure GAS 0.48 0.10 0.27
Classical ARIMA 0.46 0.05 0.18
GARCH (1, 1) 0.49 0.09 0.41
LSTM 0.44 0.07 0.22

Under heavy tails, Jarque-Bera p-values are small for all
models, indicating residual non-normality; whiteness (Q-

statistics) is broadly acceptable. GARCH reduces ARCH-LM
rejections but does not minimize mean-squared loss.
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Table 8: Unified Forecasting Performance — Scenario
Replications)
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3 (Skew-Normal & = 4; one-Step-Ahead; Mean Across

Model RMSE MAE MAPE (%)
ARIMA-GAS 1.1266 0.8921 6.78
LSTM 1.1344 0.8998 6.88
Pure GAS 1.1439 0.9041 6.94
GARCH (1, 1) 1.1568 0.9162 7.05
Classical ARIMA 1.1823 0.9345 7.28
8
7 |
6 |
5 |
A . mRMSE
3 | MAE
2 | MAPE (%)
1 4 |
N I I
ARIMA-GAS LSTM Pure GAS GARCH (1,1) Classical
ARIMA

Figure 4: Unified Forecasting Performance — Scenario 3 (Skew-Normal &=4; One-Step-Ahead;

Mean Across Replications)

ARIMA-GAS attains the lowest average
RMSE/MAE/MAPE, improving materially over Classical
ARIMA, whose Gaussian/symmetry assumptions leave it
vulnerable to skewed shocks (See Table 8 and Figure 4). Pure
GAS is competitive, but the ARIMA backbone adds structure
that reduces forecast loss further; GARCH’s volatility focus
helps little with asymmetric innovations affecting the
conditional mean. LSTM model forecasts are very close to
ARIMA-GAS (slightly higher mean loss), reflecting the
flexibility of non-linear mappings under asymmetry;
however, ARIMA-GAS preserves interpretability and
achieves marginally better average accuracy.

Adaptive forecasting models can learn from data, adjust to
changes and produce improved forecasts, having significant
implications for industries as finance, supply chain
management, and weather forecasting. By continuously
learning from new data and adapting to changes, forecast
errors are minimized, patterns and trends are better identified
and shifts in data dynamics are quickly adjusted to, ensuring
that forecasts remain relevant. Such can inform significant
benefits in inventory management (by leveraging on accuracy
of forecasts to help optimize inventory levels); financial
planning (by utilizing forecasts accuracy to achieve better
budgeting and resource allocation); and supply chain
optimization through better management of demand and
supply fluctuations.

CONCLUSION

This article studies the robustness of ARIMA-GAS model to
misspecified innovations. For Gaussian baseline, Classical
ARIMA attains the lowest RMSE and MAE; under heavy tails
and skewness, ARIMA-GAS delivers the best average
RMSE/MAE. ARIMA-GAS attains the lowest RMSE in 2 of
3 regimes (Scenarios 2 & 3), while Classical ARIMA leads in
1 (Scenario 1). The hybrid ARIMA-GAS model provides a
statistically principled, interpretable and robust alternative
across diverse data-generating conditions, matching
parsimonious ARIMA under linear-Gaussian stability and
outperforming linear baselines under heavy tails, and
asymmetry. These properties make ARIMA-GAS particularly
attractive for intradaily asset pricing and other applications
where distributional departures are endemic. The robustness
broadens its applicability across different domains and
datasets, enhancing its utility in practical applications in areas
as finance, economics, or environmental studies.
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