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ABSTRACT 

This article investigates the robustness of ARIMA-GAS model to mis specified errors, through simulated 

intradaily data. Three scenarios are involved. Scenario 1 utilizes Gaussian innovations, Scenario 2 utilizes 

centered and scaled Student’s t while Scenario 3 introduces asymmetric shocks by drawing innovations from a 

skew-normal distribution. For Gaussian errors, Classical ARIMA attains the lowest mean RMSE/MAE in this 

benign linear–Gaussian setting, with ARIMA–GAS a close second. For student’s t innovations, ARIMA–GAS 

achieves the lowest RMSE/MAE/MAPE, substantially improving on Classical ARIMA, which suffers from 

sensitivity to outliers and mis specified (Gaussian) tails. Pure GAS performs competitively (second among 

econometric models) yet combining GAS with the ARIMA backbone yields a further reduction in forecast 

error. LSTM forecasts are competitive and outperform ARIMA’s and GARCH’s; however, ARIMA–GAS 

retains a measurable edge in all three metrics, reflecting the benefit of combining statistical structure with 

adaptive updating when tails are heavy. For the skew normal innovations, ARIMA–GAS attains the lowest 

average RMSE/MAE/MAPE, improving materially over Classical ARIMA, whose Gaussian/symmetry 

assumptions leave it vulnerable to skewed shocks. Pure GAS is competitive, but the ARIMA backbone adds 

structure that reduces forecast loss further; GARCH’s volatility focus helps little with asymmetric innovations 

affecting the conditional mean. LSTM forecasts are very close to ARIMA–GAS (slightly higher mean loss), 

ARIMA–GAS preserves interpretability and achieves marginally better average accuracy. The robustness 

broadens its applicability across different domains and datasets, enhancing its utility in practical applications 

in areas as finance, economics, or environmental studies. 
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INTRODUCTION 

Time series forecasting is of crucial importance in decision-

making in various fields as finance, economics, and 

environmental sciences. Among the numerous models 

developed for forecasting time series is Autoregressive 

Integrated Moving Average (ARIMA) model reputed for its 

ability to capture a wide range of patterns. However, ARIMA 

models have the assumption that parameters are constant over 

time. To cater for this, hybrid ARIMA and Generalized 

Autoregressive Score (GAS), which allows for time-varying 

parameters has been proposed. The ARIMA–GAS framework 

combines the strengths of both ARIMA and GAS, to yield 

better forecasts.  

Statistical models are sometimes subjected to violations of 

their assumptions so that their performances under such 

violations can be understood. That is, examining reliability of 

models in the face of potential disruptions to its assumptions. 

Conducting such on ARIMA-GAS model should be a 

worthwhile venture. A few of the articles on robustness are: 

Sharma and Yadav (2020), Biswas, Das and Mandal (2015), 

Maas and Hox (2014), Warton (2007), Kim and Li (2023), 

Chen (1997). Recent publications on time series modeling 

include Agada, Eweh,  and Aondoakaa (2022), Bawa, Dikko, 

Garba,  Sadiku, and Tasiu (2023), Enegesele, Eriyeva, and 

Ejemah (2025), and Muhammad et al. (2025).  

The flexibility offered by the hybrid ARIMA-GAS model 

should make it suitable for analyzing intradaily data, known 

for harboring complex, nonlinear patterns, and volatilities not 

easily captured by traditional forecasting models. Intradaily 

data is data collected at regular intervals within a single day. 

It is a type of data often associated with financial markets to 

analyze price movements, trading volumes, and other desired 

market dynamics over short periods. A large volume of 

literature exists on analysis of intradaily data.  

Such efforts range from univariate modeling, including score 

driven (Creal, Koopman, and Lucas (2013), Huang, Wang, 

and Zhang (2014), Blazsek, Ho, and Liu (2018), Ayala and 

Blazsek (2019), Thiele (2020), Blazsek, Escribano, and 

Kristof (2024), Blazsek, Licht, Ayala, and Liu (2024) ) to 

hybrid models (Pwasong and Sathasivam (2018), Zhu, Zhao, 

Zhang, Geng, and Huang (2019), Purwanto, Sunardi, Julfia, 

and Paramananda (2019), Qiao, Huang, Azimi, and Han 

(2019), Castan-Lascorz, Jimenez-Herrera, Troncoso, and 

Asencio-Cortes (2021), Corizzo, Ceci, Fanaee, and Gama 

(2021), De Oliveria, Silva, and de Mattos Neto (2022), 

Elshewey, Shams, Elhady, Shoieb, Abdelhamid, Ibrahim, and 

Tarek (2023)), all aimed an improved forecasting accuracy.  

Despite the potential of ARIMA-GAS model, its robustness 

remains a topic of ongoing research. This article aims to 

investigate the robustness of this model to error distributional 

assumption violation on intradaily data. 

The rest of the article is arranged as follows: Section 2 

presents the methodology of the research while Section 3 

presents the results and discusses; the last section concludes 

the article. 

 

MATERIALS AND METHODS 

Methodology 

Model 

The starting point is the ARIMA (𝑝, 𝑑, 𝑞) model: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜇 + 𝜃(𝐵)𝑒𝑡 ,  (1) 

where: 

i. 𝐵 is the backshift operator (𝐵𝑦𝑡 = 𝑦𝑡−1), 

ii. 𝜙(𝐵) = 1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝 is the AR polynomial, 

iii. 𝜃(𝐵) = 1 + 𝜃1𝐵 +⋯+ 𝜃𝑞𝐵
𝑞 is the MA polynomial, 
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iv. 𝑒𝑡is the white noise error term. 

 

Introducing Time-Varying Parameters 

To account for evolving dynamics, the time-varying mean 

𝜇𝑡is introduced, driven by GAS dynamics: 

𝜇𝑡+1 = 𝜔 +∑  
𝑝
𝑖=1  𝐴𝑖𝑠𝑡−𝑖+1 + ∑  

𝑞
𝑗=1  𝐵𝑗𝜇𝑡−𝑗+1, (2) 

where: 

i. 𝜔 is a constant term, 

ii. 𝐴𝑖 and 𝐵𝑗  are coefficients for the GAS score terms and 

lagged means, 

iii. 𝑠𝑡is the GAS score. 

 

Step 3: Defining the GAS Score 

The GAS score 𝑠𝑡is defined as: 
𝑠𝑡 = 𝐒𝑡 ⋅ ∇𝑡 ,    (3) 

where: 

∇𝑡=
𝜕ln⁡𝑝(𝑦𝑡∣𝜇𝑡,ℱ𝑡;𝜽)

𝜕𝜇𝑡
    (4) 

is the score of the log-likelihood with respect to 𝜇𝑡. 
 

Step 4: Scaling Matrix for Score Normalization 

The scaling matrix 𝐒𝑡 ensures proper normalization of the 

score: 

𝐒𝑡 = 𝐈𝑡|𝑡−1
−1 , 𝐈𝑡|𝑡−1 = 𝔼𝑡−1[∇𝑡∇𝑡

′ ].  (5) 

The scaled score becomes: 

𝑠𝑡 =
∇𝑡

𝔼𝑡−1[∇𝑡
2]

    (6) 

 

Step 5: Variance Dynamics 

The conditional variance 𝜎𝑡
2is allowed to vary dynamically 

using a GAS-driven update: 

𝜎𝑡+1
2 = 𝜔𝜎 + 𝛼𝑠𝑡

2 + 𝛽𝜎𝑡
2, 

where𝛼 and 𝛽 control the impact of the score and past 

variance. 

 

Step 6: Combined Model Specification 

The complete ARIMA-GAS model is: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜇𝑡 + 𝜃(𝐵)𝑒𝑡,  (7) 

𝜇𝑡+1 = 𝜔 +∑  
𝑝
𝑖=1  𝐴𝑖𝑠𝑡−𝑖+1 + ∑  

𝑞
𝑗=1  𝐵𝑗𝜇𝑡−𝑗+1,⁡ (8) 

𝑠𝑡 = 𝐒𝑡 ⋅ ∇𝑡 , ∇𝑡=
𝜕ln⁡𝑝(𝑦𝑡∣𝜇𝑡,ℱ𝑡;𝜽)

𝜕𝜇𝑡
,  (9) 

𝐒𝑡 = 𝐈𝑡|𝑡−1
−1 , 𝐈𝑡|𝑡−1 = 𝔼𝑡−1[∇𝑡∇𝑡

′ ],  (10) 

𝜎𝑡+1
2 = 𝜔𝜎 + 𝛼𝑠𝑡

2 + 𝛽𝜎𝑡
2.   (11) 

Connecting the GAS component to the ARMA component 

through t allows the proposed hybrid model to adapt to 

changes (jumps or structural breaks) in data over time.  

 

Table 1: Summary of Simulation Scenarios and Model Parameters 

Scenario ARIMA Order GAS Dynamics (𝑨𝟏, 𝑩𝟏) Disturbance 𝒏 𝒅 Notes 

Scenario 1 (1,1,1) 𝐴1 = 0.20, 𝐵1 = 0.60 Gaussian 1000 1 Baseline 

Scenario 2 (2,1,2) 𝐴1 = 0.30, 𝐵1 = 0.40 Student’s 𝑡 (𝜈 = 5) 1000 1 Heavy tails 

Scenario 3 (1,1,1) 𝐴1 = 0.50, 𝐵1 = 0.30 Skewed Normal 1000 1 Skewed error 

 

Simulation 

Scenario 1: Baseline - Gaussian Error, Moderate GAS 

Scenario1 is a deliberately benign environment in which the 

innovations are i.i.d. Gaussian and the data-generating 

process (DGP) is moderately complex: an ARIMA (1, 1, 1) 

with score-driven updates embedded per the specification in 

Methodology. Concretely, the true parameters are 𝜙1 = 0.60, 

𝜃1 = 0.30, 𝐴1 = 0.20, and 𝐵1 = 0.60. Unless otherwise 

stated, the sample size is 𝑛 = 1000, with an 80/20 split 

between estimation and evaluation windows. One-step-ahead 

forecasts are produced in a rolling fashion over the evaluation 

window. 

 

Scenario 2: Heavy-Tailed Noise — Student’s 𝑡 Errors 

Scenario 2 evaluates robustness to extreme observations by 

generating innovations from a centered and scaled Student’s 

𝑡 distribution with 𝜈 = 5 degrees of freedom (leptokurtic, 

heavy-tailed). The data-generating process (DGP) is ARIMA 

(2, 1, 2) with moderate score dynamics (𝐴1, 𝐵1) =
(0.30, 0.40) described in the previous chapter. Unless stated 

otherwise, the sample size is 𝑛 = 1000 with an 80/20 

estimation–evaluation split; one-step-ahead forecasts are 

computed in a rolling fashion.  

 

Scenario 3: Skewed Errors and Non-Gaussianity 

Scenario 3 introduces asymmetric shocks by drawing 

innovations from a skew-normal distribution with shape 

parameter 𝜉 = 4 (light-to-moderate right skew). The data 

generating process is ARIMA⁡(1, 1, 1) with strong score 

dynamics(𝐴1, 𝐵1) = (0.50, 0.30). Unless stated otherwise, 

the sample size is 𝑛 = 1000, with an 80/20 estimation–

evaluation split; one-step-ahead forecasts are generated in a 

rolling fashion.  

 

Estimation Technique 

The parameters of the ARIMA-GAS model were estimated 

using Maximum Likelihood Estimation (MLE). 

The log-likelihood function for the ARIMA-GAS model is: 

ℒ(𝜽) = ∑  𝑛
𝑡=1   ln 𝑝( 𝑦𝑡 ∣∣ 𝜇𝑡, 𝜎𝑡

2, ℱ𝑡; 𝜽 ) ,  (12) 

where𝜽 = {𝜔, 𝐴𝑖 , 𝐵𝑗 , 𝛼, 𝛽, 𝜙𝑖 , 𝜃𝑗} is the vector of model 

parameters. 

 

Gradient and Hessian Calculation 

The gradient of the log-likelihood with respect to 𝜽 is: 
𝜕ℒ

𝜕𝜽
= ∑  𝑛

𝑡=1   (
𝜕 ln𝑝𝑡

𝜕𝜽
+

𝜕 ln𝑝𝑡

𝜕𝜇𝑡

𝜕𝜇𝑡

𝜕𝜽
+

𝜕 ln 𝑝𝑡

𝜕𝜎𝑡
2

𝜕𝜎𝑡
2

𝜕𝜽
), (13) 

where 𝑝𝑡 = 𝑝(𝑦𝑡 ∣ 𝜇𝑡 , 𝜎𝑡
2, ℱ𝑡; 𝜽). 

The Hessian is calculated as: 

𝐇 =
𝜕2ℒ

𝜕𝜽𝜕𝜽′
,    (14) 

and is used to compute standard errors for parameter 

estimates. 

The GAS score 𝑠𝑡is defined as: 
𝑠𝑡 = 𝐒𝑡 ⋅ ∇𝑡 ,    (15) 

∇𝑡=
𝜕ln⁡𝑝(𝑦𝑡∣𝜇𝑡,ℱ𝑡;𝜽)

𝜕𝜇𝑡
    (16) 

tS is a scaling matrix often the inverse of Fisher Information 

matrix.  

So, the ARMA-GAS likelihood function depends on the time 

varying parameters, t which are updated by the GAS 

mechanism. The predictive likelihood is used to update 
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parameters while ARMA-GAS likelihood function is used for 

estimating the model. It is worth noting that t is the 

connection between the GAS component and the ARMA 

component.  

 

Performance Metrics 

Three performance metrics were used in gauging out-of-

sample forecasting performance. They are mean absolute 

error (MAE), mean absolute percentage error (MAPE) and 

root mean square error (RMSE) defined: 


=

−=
n

i

ii yy
n

MAE
1

ˆ
1    (17) 

% 100
ˆ1

= ∑
1=

X
y

yy

n
MAPE

n

i i

ii    (18) 


=

−=
n

i

ii yy
n

RMSE
1

2)ˆ(
1       (19) 

where 

n = number of observations. 

yi= the true value of ith observation. 

iŷ = the forecast for ith observation. 

 

RESULTS AND DISCUSSION 

Results for Scenario 1 are hereby, presented: 

 

Table 2: Estimation Accuracy — Scenario 1 (Baseline, Gaussian Innovations) 

Parameter True Value MAE MSE Bias Abs. % Error 

𝜙1 0.60000 0.01243 0.00024 -0.00178 0.2966700 

𝜃1 0.30000 0.01062 0.00019 0.00089 0.2966670 

𝐴1 0.20000 0.00988 0.00017 -0.00041 0.2050000 

𝐵1 0.60000 0.01105 0.00021 0.00112 0.1866667 

The reported biases, maintaining a balance between positive 

and negative biases are small relative to the true values as 

portrayed by Table 2. The maximum absolute percentage 

error is 0.29667 %. This is certainly a bias that should not be 

of serious concern. 

 

Table 3: Unified Forecasting Performance — Scenario 1 (One-Step-Ahead; Mean Across Replications) 

Model RMSE MAE 

Classical ARIMA 0.900; (0.045) 0.630; (0.032) 

ARIMA–GAS 0.905; (0.043) 0.636; (0.031) 

Pure GAS 0.928; (0.047) 0.655; (0.034) 

GARCH (1, 1) 0.946; (0.049) 0.669; (0.036) 

LSTM 0.958; (0.055) 0.680; (0.039) 

Notes: Parentheses report simulation standard deviations across replications. All models trained on the same 80% window; 

evaluation on the last 20% with rolling updates 

 

 
Figure 1: Unified Forecasting Performance — Scenario 1 (One-Step-Ahead; Mean Across Replications) 
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Table 3 and Figure 1 display the unified forecasting 

performance of the ARIMA–GAS and the benchmarks. 

Classical ARIMA attains the lowest mean RMSE/MAE in this 

benign linear–Gaussian setting, with ARIMA–GAS a close 

second. The small gap reflects ARIMA’s parsimony when the 

DGP is close to linear-Gaussian and volatility dynamics are 

mild. Both GAS and GARCH models are outperformed by 

ARIMA/ARIMA–GAS on mean-squared metrics. GARCH’s 

focus on volatility adds little when conditional mean 

dynamics dominate and innovations are Gaussian. LSTM 

model is competitive but exhibits mild over-parameterization 

costs (higher dispersion across replications), which is typical 

when the true process is simple and the signal-to-noise ratio 

is modest. 

 

Table 4: Residual Diagnostics — Scenario 1 (Means of 𝒑-Values Across Replications) 

Model Ljung–Box Q(20) Jarque–Bera ARCH–LM(10) 

Classical ARIMA 0.53 0.47 0.41 

ARIMA–GAS 0.58 0.45 0.44 

Pure GAS 0.49 0.39 0.38 

GARCH (1, 1) 0.51 0.40 0.62 

LSTM 0.46 0.36 0.35 

Notes: Values are average 𝑝-values for tests on standardized residuals over the evaluation window. Higher values indicate 

fewer rejections; all models clear basic whiteness at 5% on average 

 

Both ARIMA and ARIMA–GAS produce white standardized 

residuals on average and do not exhibit significant non-

normality or remaining ARCH effects in this baseline setting. 

GARCH shows (as expected) elevated ARCH–LM 𝑝-values, 

but this does not translate into lower mean-squared loss 

because volatility clustering is weak by design here. 

 

Table 5: Multi-horizon forecasting — Scenario 1 (Mean RMSE Across Replications) 

Model 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟏𝟎 

Classical ARIMA 0.900 0.947 0.989 

ARIMA–GAS 0.905 0.950 0.992 

Pure GAS 0.928 0.969 1.006 

GARCH (1, 1) 0.946 0.978 1.014 

LSTM 0.958 0.961 0.995 

Notes: Horizon-wise RMSE computed from direct multi-step forecasts. LSTM narrows the gap as ℎ increases, consistent with 

flexible non-linear mappings benefiting longer-horizon aggregation 

 

 
Figure 2: Multi-horizon forecasting — Scenario 1 (Mean RMSE Across Replications) 

 

At ℎ = 1, Classical ARIMA retains a small edge. Differences 

between ARIMA and ARIMA–GAS remain negligible out to 

ℎ = 10. The LSTM narrows the gap at longer horizons 

(aggregation smooths noise and benefits flexible function 

classes), but does not dominate in this simple DGP. 
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Unified Forecasting Performance 

Table 6: Unified forecasting performance — Scenario 2 (𝒕𝟓; One-Step-Ahead; Mean Across Replications) 

Model RMSE MAE MAPE (%) 

ARIMA–GAS 1.24317 0.98543 6.42718 

Pure GAS 1.31225 1.02678 7.00213 

Classical ARIMA 1.45864 1.11352 7.93204 

GARCH (1, 1) 1.31786 1.04591 7.40125 

LSTM 1.29521 1.00847 7.11378 

 

 
Figure 3: Unified Forecasting Performance — Scenario 2 (t_5; One-Step-Ahead; Mean Across Replications) 

 

ARIMA–GAS achieves the lowest RMSE/MAE/MAPE, 

substantially improving on Classical ARIMA, which suffers 

from sensitivity to outliers and misspecified (Gaussian) tails 

See Table 6 and Figure 3). The score-driven updates adapt the 

conditional mean/scale in response to large shocks, mitigating 

the influence of extremes. GARCH (1, 1) improves over 

ARIMA by modeling conditional variance, but without score-

driven mean adaptation its forecast loss remains higher than 

ARIMA–GAS (and Pure GAS) under 𝑡5 shocks. Pure GAS 

performs competitively (second among econometric models) 

by dynamically updating parameters, yet combining GAS 

with the ARIMA backbone yields a further reduction in 

forecast error. LSTM model forecasts are competitive and 

outperform ARIMA and GARCH; however, ARIMA–GAS 

retains a measurable edge in all three metrics, reflecting the 

benefit of combining statistical structure with adaptive 

updating when tails are heavy. 

 

Table 7: Residual Diagnostics — Scenario 2 (Means of 𝒑-Values Across Replications) 

Model Ljung–Box Q(20) Jarque–Bera ARCH–LM(10) 

ARIMA–GAS 0.51 0.12 0.29 

Pure GAS 0.48 0.10 0.27 

Classical ARIMA 0.46 0.05 0.18 

GARCH (1, 1) 0.49 0.09 0.41 

LSTM 0.44 0.07 0.22 

 

Under heavy tails, Jarque–Bera 𝑝-values are small for all 

models, indicating residual non-normality; whiteness (Q-

statistics) is broadly acceptable. GARCH reduces ARCH–LM 

rejections but does not minimize mean-squared loss. 
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Table 8: Unified Forecasting Performance — Scenario 3 (Skew-Normal 𝝃 = 𝟒; one-Step-Ahead; Mean Across 

Replications) 

Model RMSE MAE MAPE (%) 

ARIMA–GAS 1.1266 0.8921 6.78 

LSTM 1.1344 0.8998 6.88 

Pure GAS 1.1439 0.9041 6.94 

GARCH (1, 1) 1.1568 0.9162 7.05 

Classical ARIMA 1.1823 0.9345 7.28 

 

 
Figure 4: Unified Forecasting Performance — Scenario 3 (Skew-Normal ξ=4; One-Step-Ahead; 

Mean Across Replications) 

 

ARIMA–GAS attains the lowest average 

RMSE/MAE/MAPE, improving materially over Classical 

ARIMA, whose Gaussian/symmetry assumptions leave it 

vulnerable to skewed shocks (See Table 8 and Figure 4). Pure 

GAS is competitive, but the ARIMA backbone adds structure 

that reduces forecast loss further; GARCH’s volatility focus 

helps little with asymmetric innovations affecting the 

conditional mean. LSTM model forecasts are very close to 

ARIMA–GAS (slightly higher mean loss), reflecting the 

flexibility of non-linear mappings under asymmetry; 

however, ARIMA–GAS preserves interpretability and 

achieves marginally better average accuracy.  

Adaptive forecasting models can learn from data, adjust to 

changes and produce improved forecasts, having significant 

implications for industries as finance, supply chain 

management, and weather forecasting. By continuously 

learning from new data and adapting to changes, forecast 

errors are minimized, patterns and trends are better identified 

and shifts in data dynamics are quickly adjusted to, ensuring 

that forecasts remain relevant. Such can inform significant 

benefits in inventory management (by leveraging on accuracy 

of forecasts to help optimize inventory levels); financial 

planning (by utilizing forecasts accuracy to achieve better 

budgeting and resource allocation); and supply chain 

optimization through better management of demand and 

supply fluctuations. 

 

 

 

CONCLUSION 

This article studies the robustness of ARIMA-GAS model to 

misspecified innovations. For Gaussian baseline, Classical 

ARIMA attains the lowest RMSE and MAE; under heavy tails 

and skewness, ARIMA-GAS delivers the best average 

RMSE/MAE. ARIMA-GAS attains the lowest RMSE in 2 of 

3 regimes (Scenarios 2 & 3), while Classical ARIMA leads in 

1 (Scenario 1). The hybrid ARIMA-GAS model provides a 

statistically principled, interpretable and robust alternative 

across diverse data-generating conditions, matching 

parsimonious ARIMA under linear-Gaussian stability and 

outperforming linear baselines under heavy tails, and 

asymmetry. These properties make ARIMA-GAS particularly 

attractive for intradaily asset pricing and other applications 

where distributional departures are endemic. The robustness 

broadens its applicability across different domains and 

datasets, enhancing its utility in practical applications in areas 

as finance, economics, or environmental studies. 
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