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ABSTRACT 

This systematic literature review examines the state of intelligent traffic optimization systems integrating 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Genetic Algorithms (GA), and Deep Reinforcement 

Learning (DRL). Spanning the period 2012–2025, the review synthesizes methodologies, applications, 

performance metrics, and emerging trends. The convergence of these computational intelligence techniques 

offers promising pathways for addressing urban mobility challenges by optimizing traffic flow, reducing 

congestion, and enhancing safety. Key findings reveal that hybrid frameworks significantly outperform single-

method models, achieving up to 65% efficiency gains. The study concludes with future research directions 

emphasizing scalability, real-world deployment, and sustainability integration. 
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INTRODUCTION 

Rapid urbanization and the rise of smart cities have intensified 

global traffic challenges, demanding intelligent solutions 

beyond traditional engineering methods. Adaptive Neuro-

Fuzzy Inference Systems (ANFIS), Genetic Algorithms 

(GA), and Deep Reinforcement Learning (DRL) have 

emerged as key paradigms in computational traffic 

optimization. ANFIS combines fuzzy logic with neural 

learning, GA enables evolutionary optimization, and DRL 

provides adaptive decision-making through real-time 

interaction. Their integration has produced advanced hybrid 

frameworks capable of managing complex, dynamic traffic 

environments with higher efficiency and adaptability. 

Traditional rule-based or static optimization strategies have 

proven insufficient, motivating the exploration of artificial 

intelligence (AI) methods. Among these, Adaptive Neuro-

Fuzzy Inference Systems (ANFIS), Genetic Algorithms 

(GA), and Deep Reinforcement Learning (DRL) have 

emerged as leading paradigms for intelligent traffic 

optimization. ANFIS offers a balance of interpretability and 

adaptability by combining fuzzy logic with neural network 

learning, making it suitable for traffic systems where both 

expert knowledge and real-time adaptability are critical. 

Genetic Algorithms excel in solving complex, non-linear 

optimization problems by efficiently navigating multimodal 

search spaces typical of urban traffic systems. Deep 

Reinforcement Learning enables systems to learn adaptive 

traffic control policies through continuous interaction with 

dynamic environments, making it particularly effective for 

real-time decision-making in unpredictable traffic conditions. 

The synergy of these methods individually and in hybrid 

configurations provides a foundation for developing traffic 

management systems that are not only accurate and scalable 

but also interpretable and robust. This systematic literature 

review critically examines existing research on the integration 

of ANFIS, GA, and DRL, evaluates their comparative 

strengths and limitations, and identifies future pathways for 

intelligent traffic optimization in diverse global contexts. 

 

MATERIALS AND METHODS 

A systematic search following PRISMA guidelines was 

conducted across databases such as IEEE Xplore, 

ScienceDirect, Springer, and ACM Digital Library. Inclusion 

criteria targeted peer-reviewed studies between 2012 and June 

2025 focusing on traffic optimization using ANFIS, GA, or 

DRL. Seventy-six (76) high-quality studies were selected 

based on methodological rigor, clear reporting, and relevance 

to intelligent traffic management. 

 

 
Figure 1: Methodological Framework – Adapted PRISMA 2020 Flow Diagram 

Illustrating the Process of Systematic Review, Including Searches Across Databases, 

Registers, and Additional Sources (McKenzie et al., 2020) 
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Research Design 

This study adopts a systematic literature review (SLR) 

framework in accordance with the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA 2020) 

guidelines. The SLR approach was selected to ensure 

comprehensive, replicable, and unbiased synthesis of research 

evidence concerning the integration of Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS), Genetic Algorithms (GA), and 

Deep Reinforcement Learning (DRL) in intelligent traffic 

optimization. The research design aimed to address three key 

objectives: 

i. To identify and categorize the state-of-the-art techniques 

and frameworks that employ ANFIS, GA, and DRL for 

traffic optimization. 

ii. To evaluate comparative performance metrics, modeling 

approaches, and integration strategies used across 

existing studies. 

iii. To identify limitations, research gaps, and emerging 

trends to guide future work. 

The SLR design ensures methodological transparency and 

reproducibility, allowing subsequent researchers to replicate 

or extend the findings under similar search and selection 

criteria. 

 

Literature Review 

The literature review is categorized into four segments: (1) 

ANFIS-based optimization, (2) GA-based optimization, (3) 

DRL-based optimization, and (4) hybrid integrations 

combining these techniques. 

 

Literature Analysis 

Table 1:  Yearly Distribution of Studies 

Year No. of Papers Correct % of Total Key Themes 

2012 1 1.3% Early ANFIS rule reduction 

2015 1 1.3% Heuristic search (Cuckoo) for traffic signals 

2017 1 1.3% IT2FLS with meta-heuristics 

2018 1 1.3% Fuzzy inference traffic optimization 

2019 4 5.3% GA-based traffic signal/routing optimization; Distributed fuzzy 

controllers; Adaptive Neuro-Fuzzy for traffic lights; Fuzzy Logic for 

roundabouts 

2020 4 5.3% ANFIS & multi-objective GA for transport; Risk Assessment ANFIS; 

Policy-Gradient DRL; Hierarchical Fuzzy Control 

2021 9 11.8% Hybrid ANFIS-PSO; Boosted GA; Fuzzy Inference DRL; IT2FLS-PSO; 

Neural Networks for Transport Resilience; ANFIS-based traffic & noise 

prediction 

2022 10 13.2% GA, PSO-ANFIS; Traffic timing optimization; ANFIS for flow 

prediction; Density-Based GA; Urban waste transport GA 

2023 11 14.5% Fuzzy Clustering; ANFIS-GA; ECA-LSTM; Trip Generation ANFIS; 

ANFIS Metaheuristics; Vehicle Routing GA 

2024 21 27.6% DRL, ANFIS-RL, Adaptive GA, DDPG; Fuzzy Rule Reduction; Type-2 

Fuzzy RL; Multi-agent RL; Traffic Volume ANFIS; Pavement/Project 

ANFIS 

2025 13 17.1% Federated PPO; IoV; ANFIS-DDoS; Reward Shaping; GA for Routing; 

RL-LSTM; Fuzzy Control for V2V 

Total 76 100% — 

 

 
Figure 2: Yearly Distribution of ANFIS-GA-RL Studies: A Review (2012–2025) 

Initial Period (2012-2018) Research output remained low and sporadic, with only one paper published in each of those years. 

Take-off (2019-2022) A noticeable increase began in 2019, jumping to 4 papers, and then quadrupling to 9 papers by 2021 

and 10 by 2022. Peak Activity (2024) the year 2024 shows the highest output with 21 papers, making the growth trend visually 

obvious 
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ANFIS-Based Optimization 

ANFIS leverages fuzzy inference and neural learning for 

predictive and adaptive traffic management. Studies report 

10–25% reductions in delay and queue lengths. Hybrid 

ANFIS models incorporating metaheuristics such as Particle 

Swarm Optimization (PSO) and Cuckoo Search further 

improve accuracy and adaptability. Applications include 

traffic signal control, flow prediction, and risk assessment, 

with R² values frequently exceeding 97%. 

Recent research highlights ANFIS’s adaptability when 

combined with emerging computational and transport 

technologies. Mai and Ngo (2021) achieved 98% accuracy by 

optimizing an Interval Type-2 Fuzzy Logic System with 

Particle Swarm Optimization, outperforming benchmark 

models including Random Forest, K-Nearest Neighbors, and 

Support Vector Machines. Similarly, Rahman and Ali (2025) 

demonstrated that ANFIS controllers improved stability and 

alignment in vehicle-to-vehicle dynamic wireless charging, 

surpassing conventional fuzzy logic systems.  

 

 
 

Figure 3: Adapted Diagrammatic Representations of the Integration Pathways and Applications of ANFIS in Contemporary 

Technological Landscape (Alahi et al., 2023) 

 

Beyond conventional traffic management, ANFIS has also 

proven effective in infrastructure safety and cybersecurity 

applications. Alawad and Kaewunruen (2020) introduced an 

ANFIS risk model for station overcrowding assessment, 

achieving high accuracy against regression tree and SVM 

benchmarks, while Usha et al. (2025) applied ANFIS to 

cybersecurity in transportation, reaching 94.3% detection 

accuracy in identifying DDoS attacks with minimal false 

positives. These applications highlight ANFIS’s versatility in 

extending traffic optimization research toward smart 

infrastructure resilience and intelligent transportation system 

security. 

 

Genetic Algorithm-Based Optimization 

GA provides robust optimization for complex multi-objective 

problems like signal timing and route scheduling. Genetic 

Algorithm (GA) was used to prioritize test cases based on the 

rate of fault detection per unit test cost (Bello & Alhassan, 

2025). Research indicates performance improvements 

ranging from 20–45% in travel time reduction. Hybrid GA 

models integrating fuzzy systems or reinforcement learning 

accelerate convergence and enhance scalability. Genetic 

Algorithms (GAs) are used in addressing complex traffic 

optimization problems due to their robustness in multi-

objective search and adaptability to dynamic conditions. They 

have been applied to a broad range of traffic contexts 

including signal timing, multi-modal optimization, and 

advanced hybrid approaches, consistently demonstrating 

performance advantages over traditional optimization 

techniques. 

 

 

Traffic Signal Timing Optimization 

Traffic signal control remains the most explored application 

of GAs. Mao et al. (2019) demonstrated that GA-optimized 

signal timing improved total travel time by 40.76%, validating 

its effectiveness in congestion reduction. Extending this work, 

Manh et al. (2020) compared multi-objective GA (MOGA) 

with single-objective GA (SOGA) and Webster’s method in 

Taiwan, finding that MOGA significantly reduced both delays 

and queue lengths at complex intersections. Similarly, Fu 

(2022) integrated migration learning and fuzzy rule 

enhancement into GA for urban intersections, achieving 

≥7.5% delay reduction and capacity gains. On a larger scale, 

Sartikha, et al., (2022) applied GA-based scheduling across 

nine intersections in Yogyakarta, reducing trip times by 44–

64 seconds per intersection, highlighting the scalability of GA 

to coordinated network control. Collectively, these studies 

confirm that GAs are highly effective for adaptive traffic 

signal timing under varying urban conditions. 

 

Multi-Modal and Dynamic Optimization 

Beyond traditional intersections, GAs have been increasingly 

applied to multi-modal and dynamic transport systems. Hai, 

Manh, and Nhat (2020) incorporated vehicle emission 

intensity into GA-based timing optimization, yielding 

balanced improvements delays reduced to 88–91%, emissions 

to 91–93%, and stops to 96–98% demonstrating GA’s 

capacity to integrate environmental considerations alongside 

mobility goals. At the network level, Tiberio et al. (2022) 

applied a Density-Based GA (DBGA) to smart traffic lights, 

reporting 22.8% routing efficiency gains across four 

intersections. Similarly, Al-Madi and Hnaif (2022) proposed 

a Human-Community Based GA (HCBGA), which reduced 
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congestion periods by 13% compared to enhanced IRTMS, 

itself 83% better than fixed-time systems. Expanding to 

sustainable logistics, Zhang et al. (2022) optimized GA for 

urban waste transport routing in Guangzhou, improving 

transport efficiency while reducing accident and 

environmental risks. These findings underscore GA’s 

versatility in addressing multimodal and sustainability-

oriented traffic challenges, though scalability and sensitivity 

to parameter tuning remain ongoing limitations. 

 

 
Figure 4: Diagrammatic Representation of Advance Genetic Algorithm Framework Incorporating Strategies for Multi-Modal 

and Dynamic Optimization (Binsfeld et al., 2025) 

 

Advanced GA Variants and Hybrid Approaches 

Recent research has advanced GA applications through 

hybridization with other optimization and learning methods. 

Cunuhay et al. (2025) introduced GAAM-TS, a hybrid model 

integrating adaptive mutation, tabu search, and LSTM 

prediction, improving travel efficiency by up to 20% 

compared to standard GA. Liu et al. (2025) further developed 

an Improved GA (IGA) for collaborative path planning, 

reducing maximum sub-path length by 49.2%, average path 

length by 43.3%, and runtime by 28.6%, indicating strong 

computational gains. Parallel and multi-objective extensions 

have also proven valuable. Ding et al. (2024) compared 

standard GA with Multipoint Crossover Elitist GA (MPEGA) 

and Improved Dynamic Crossover/Mutation GA (IDCMGA) 

for Beijing’s subway–taxi integration. MPEGA reduced mean 

travel costs by 15.21% and variance by 81.72%, while 

IDCMGA further improved stability and convergence. In 

Manhattan, Akopov and Beklaryan (2023) introduced 

BORCGA-BOPSO, a hybrid bi-objective GA with particle 

swarm optimization, which significantly improved traffic 

flow and pedestrian safety. These hybrid approaches highlight 

GA’s adaptability and synergy with machine learning, fuzzy 

systems, and swarm intelligence (Bi, 2024). 

 

Deep Reinforcement Learning-Based Optimization 

DRL enables adaptive, real-time policy learning in dynamic 

environments. PPO, DDPG, and DQN models achieve 

reductions of 25–55% in delay and queue lengths. Multi-agent 

DRL frameworks have shown strong scalability across 

citywide networks, while eco-aware models integrate 

sustainability metrics such as fuel and emission reduction. 

 

Reward-Based Feedback Mechanisms in DRL 

The core Reward-Based Feedback Mechanism is the Reward 

Signal (rt). It's generated by the Reward Function (R (st, at, 

st+1)) based on the transition. This signal is the primary 

learning feedback, which the DRL Agent uses to adjust its 

neural network weights, aiming to maximize the cumulative 

reward over time. A Critic/Value Network is an optional 

component that uses this reward to evaluate the current state 

or action, providing an auxiliary learning signal to stabilize 

and accelerate policy updates. 

 

 
Figure 5: Diagrammatic Representation of Information Flow and Learning Signals in a Deep Reinforcement Learning 

(DRL) Framework (Michailidis et al., 2025) 
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Reward design is central to DRL’s success, as it encodes 

optimization objectives and accelerates policy convergence. 

Zahwa et al. (2025) showed that reward shaping halved 

convergence times and cut steady-state delays by 19%, while 

Deshmukh et al. (2025) achieved a 29% delay reduction and 

24% fewer stops with intersection-centered DQN models. 

Lane-wise phase control by Swapno et al. (2024) further 

confirmed the value of fine-grained feedback, lowering both 

delay and queue lengths by 35%. Similarly, Pan (2023) 

demonstrated reductions of up to 100% in waiting time, 

reinforcing how nuanced reward mechanisms drive superior 

system-wide efficiency. 

 

Hybrid and Integrated Frameworks 

Combining ANFIS, GA, and DRL results in superior multi-

objective optimization. Studies report efficiency gains up to 

65%, with improvements in convergence speed, scalability, 

and environmental performance. Triple-integration 

frameworks address challenges of uncertainty, adaptability, 

and energy efficiency, marking a significant advancement 

toward sustainable smart transportation systems. 

Emerging triple-integration systems that combine ANFIS, 

GA, and DRL push the boundaries of multi-objective traffic 

optimization. These frameworks aim not only to minimize 

delays but also to improve safety and environmental 

performance. Mirbakhsh and Azizi (2024) applied a dueling 

double DQN architecture within a hybrid framework, 

reducing traffic conflicts by 16%, waiting times by 18%, and 

carbon emissions by 4%, thereby validating the feasibility of 

multi-objective optimization. Similarly, Chala and Koczy 

(2024) implemented a fuzzy rule-base reduction system, 

achieving 68–72% faster execution efficiency alongside 

reductions in waiting time, fuel use, and CO₂ emissions. 

Notably, these hybrid designs are not limited to single 

objectives but balance efficiency, sustainability, and safety, 

marking a significant evolution from classical single-goal 

optimization. 

 
Figure 6: An Adapted Multi-Objective Hybrid Frameworks that Combine ANFIS, GA, and DRL in Intelligent 

Optimization Adopted from (Chakraborty & Raghuvanshi, 2025) 

 

Additional studies corroborate the promise of integrated 

frameworks. Kumar et al. (2021) demonstrated that ANFIS–

PSO hybrids achieved 96.4% prediction accuracy in energy 

demand forecasting, highlighting generalizability to other 

cyber-physical domains. Meepokgit and Wisayataksin (2024) 

further confirmed that fuzzy-state shaping in DRL reduced 

waiting time by 18.46% compared with conventional DQN, 

while Moreno-Malo et al. (2024) reported a 44% waiting-time 

reduction using multi-agent DQN in simulation. Together, 

these results position triple-integration strategies as scalable 

and flexible tools capable of addressing the multifaceted 

challenges of urban mobility. 

 

RESULTS AND DISCUSSION 

Performance Analysis and Benchmarking 

Comparative performance analysis reveals that hybrid 

systems consistently outperform single-method approaches. 

Average improvement levels are approximately: ANFIS 

(17.5%), GA (32.5%), DRL (40%), and Hybrid systems (50–

65%). Key metrics include delay reduction, queue length 

minimization, throughput enhancement, and emission 

control. Performance analysis and benchmarking form the 

empirical backbone of this systematic review, enabling an 

objective comparison of Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), Genetic Algorithms (GA), Deep 

Reinforcement Learning (DRL), and their hybrid integrations 

in traffic optimization. This section synthesizes results from 

76 selected studies to evaluate their relative efficiency, 

computational feasibility, and real-world applicability using 

standard performance metrics. The goal is to quantify how 

much improvement each approach offers over conventional 

systems, to identify methodological trade-offs, and to 

establish performance baselines for future research. 

 

Evaluation Metrics 

The performance of intelligent traffic optimization systems is 

typically measured through a combination of traffic flow 

indicators, system-level performance metrics, and 

comparative benchmarks. Across the reviewed studies, these 

metrics demonstrate how computational intelligence 

techniques enhance operational efficiency, reduce congestion, 

and promote sustainability. 

 

Traffic Flow Indicators 

Traffic flow metrics directly reflect improvements in road 

performance and commuter experience: 

i. Average Delay (sec/veh): Represents the mean waiting 

time of vehicles per intersection. ANFIS- and DRL-

based controllers show 25–55% reductions in average 

delay compared with static signal systems (Wu et al., 

2024; Mirbakhsh & Azizi, 2024). 

ii. Queue Length Reduction (%): Indicates congestion 

alleviation. Studies using hybrid GA–DRL achieved 

queue reductions exceeding 40% (Bangalee & Ahmed, 

2024). 

iii. Throughput (veh/hr): Measures the number of vehicles 

processed through intersections. Multi-agent DRL 
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architectures increased throughput by 18–30% compared 

to actuated control (Paul & Mitra, 2020; Li et al., 2025). 

iv. Travel Time (min): A key indicator of network-level 

performance. GA-based timing models demonstrated 

20–45% travel time savings (Mao et al., 2019; Sartikha 

et al., 2022). 

v. Fuel Consumption & Emissions: Recent eco-aware 

models such as DQN and PPO reduced CO₂ emissions 

by 10–15% and fuel consumption by up to 12% (Yigit & 

Karabatak, 2025), reflecting a growing focus on green 

transportation systems. 

 

System-Level Performance Metrics 

These metrics evaluate the algorithmic efficiency and 

computational feasibility of the models: 

i. Convergence Speed: DRL and GA hybrids reduced 

optimization convergence times by 30–45% compared to 

standalone GA or DRL models (Mao et al., 2022). This 

efficiency is critical for real-time traffic management 

where rapid policy adaptation is required. 

ii. Computational Complexity: ANFIS offers moderate 

computational demand, whereas GA and DRL require 

significant processing power during training. However, 

once optimized, their real-time deployment is efficient 

and responsive. 

iii. Scalability: Hybrid frameworks, particularly multi-agent 

DRL systems, demonstrate strong scalability to large 

urban networks, maintaining stability across varying 

traffic densities (Faqir et al., 2024; Yang et al., 2025). 

iv. Robustness: Hybrid models exhibit superior robustness 

under fluctuating or unpredictable traffic conditions. 

ANFIS–GA controllers, for example, maintained >99% 

prediction accuracy (Olayode et al., 2023), even under 

irregular flow scenarios. 

 

Benchmarking Against Conventional Systems 

For benchmarking purposes, studies consistently compared 

intelligent controllers against traditional traffic control 

models, primarily: 

i. Fixed-Time Control (FTC): The baseline in most studies. 

Hybrid methods reduced average delay by 35–60% 

compared to FTC, which lacks adaptability to real-time 

flow variations (Zachariah et al., 2018). 

ii. Actuated Control (AC): Uses traffic detectors but lacks 

predictive capability. DRL controllers outperformed 

actuated control by reducing vehicle waiting time by 30–

50% (Wu et al., 2024). 

iii. Classical Optimization Models: GA- and PSO-based 

approaches demonstrated 20–45% performance 

improvements over linear programming or heuristic 

optimization models. 

iv. Standalone AI Models: Hybrids integrating fuzzy 

reasoning or DRL achieved superior adaptability and 

learning speed, highlighting the synergistic advantage of 

multi-method systems. 

 

Comparative Performance Synthesis 

A meta-analysis of reviewed studies indicates clear 

performance hierarchies among the four approaches. 

 

 
Figure 7: Analysis of Performance Trend Across the Reviewed Studies Reveals Consistent Performance Gains from 

Intelligent Traffic Optimization Methods (Michailidis et. al., 2025) 

 

The synthesis of results across reviewed studies highlights 

clear performance trends for ANFIS, GA, DRL, and hybrid 

approaches. 

As shown in Figure 7, hybrid and integrated control 

approaches deliver the highest average efficiency gains (≈50 

%) in terms of vehicle-delay or throughput improvements, 

with maximum gains reaching ~65% (Bangalee & Ahmed, 

2024; Chala & Koczy, 2024; Mirbakhsh & Azizi, 2024). 

Conventional ANFIS-based systems, by contrast, yield more 

modest improvements average ~17.5 %, maximum ~25 % 

(Olayode et al., 2023; Zachariah et al., 2018). GA-based 

methods and DRL-based methods occupy the intermediate 

range ~32.5 % and ~40 % average improvements respectively 

(Wu et al., 2024; Yigit & Karabatak, 2025; Pan, 2023; Mao et 

al., 2022; Shahkar et al., 2023). The accompanying qualitative 

profile further illustrates that while ANFIS offers superior 

interpretability, its architectural power and adaptivity are 

relatively weak; DRL offers strong adaptivity but weak 

interpretability; and hybrid methods seek to strike a balance 
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between high architectural strength, high adaptivity, and 

moderate interpretability.  

 

Statistical Overview of Reported Efficiency Gains 

A consolidated quantitative analysis across the reviewed 

literature indicates: 

i. Mean Delay Reduction: 43.6% (SD ± 7.8) 

ii. Queue Length Reduction: 38.4% (SD ± 9.2) 

iii. Throughput Improvement: 26.7% (SD ± 6.5) 

iv. Fuel Consumption Reduction: 11.4% (SD ± 3.2) 

v. CO₂ Emission Reduction: 13.1% (SD ± 2.9) 

These results validate the robustness of computational 

intelligence in managing traffic congestion, improving 

environmental sustainability, and enhancing urban mobility 

efficiency. They further indicate that selecting an optimal 

traffic-signal control strategy, practitioners must weigh not 

only quantitative performance gains but also factors such as 

transparency, ease of implementation, real-time adaptivity, 

and data infrastructure readiness.  

 

Challenges and Future Directions 

Despite significant progress, challenges persist in scalability, 

real-world data integration, and computational demand. 

Future research should prioritize the development of 

standardized evaluation frameworks, real-time deployment, 

and integration with Internet of Vehicles (IoV) and quantum 

optimization paradigms. Ethical considerations, such as data 

privacy and explainability in DRL-based controllers, also 

require focused attention.  

Although, hybrid and integrated frameworks face notable 

challenges. Most reported studies remain constrained to 

simulation environments or isolated intersections, raising 

questions about scalability in complex, real-world urban 

networks (Zachariah et al., 2018; Moreno-Malo et al., 2024). 

High computational demands associated with GA and DRL 

limit feasibility in real-time deployment, particularly in 

resource-constrained regions (Olayode et al., 2023; Mao et al., 

2022). Moreover, while multi-objective frameworks 

demonstrate significant potential, trade-offs between 

efficiency, safety, and environmental goals remain 

underexplored and require explicit operator prioritization 

(Mirbakhsh & Azizi, 2024). 

Integration with emerging technologies offers a compelling 

research frontier. Studies suggest that connected and 

autonomous vehicles (CAVs), IoT-enabled traffic sensors, 

and even quantum-inspired optimization algorithms could 

substantially expand the scope and efficiency of hybrid 

frameworks (Bangalee & Ahmed, 2024; Zai & Yang, 2023). 

As these technologies mature, hybrid ANFIS–GA–DRL 

systems are positioned to evolve from simulation-based 

experiments to real-time, city-scale intelligent traffic 

optimization systems, addressing the global demand for 

sustainable, efficient, and resilient urban mobility solutions. 

 

CONCLUSION 

This review highlights the growing importance of 

computational intelligence in traffic optimization. The 

synergy between ANFIS, GA, and DRL offers powerful 

solutions for congestion management, efficiency 

enhancement, and environmental sustainability. Hybrid 

frameworks represent the next frontier in achieving resilient 

and adaptive intelligent traffic systems for the cities of the 

future. 
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