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ABSTRACT

This systematic literature review examines the state of intelligent traffic optimization systems integrating
Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Genetic Algorithms (GA), and Deep Reinforcement
Learning (DRL). Spanning the period 2012-2025, the review synthesizes methodologies, applications,
performance metrics, and emerging trends. The convergence of these computational intelligence techniques
offers promising pathways for addressing urban mobility challenges by optimizing traffic flow, reducing
congestion, and enhancing safety. Key findings reveal that hybrid frameworks significantly outperform single-
method models, achieving up to 65% efficiency gains. The study concludes with future research directions
emphasizing scalability, real-world deployment, and sustainability integration.
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INTRODUCTION

Rapid urbanization and the rise of smart cities have intensified
global traffic challenges, demanding intelligent solutions
beyond traditional engineering methods. Adaptive Neuro-
Fuzzy Inference Systems (ANFIS), Genetic Algorithms
(GA), and Deep Reinforcement Learning (DRL) have
emerged as key paradigms in computational traffic
optimization. ANFIS combines fuzzy logic with neural
learning, GA enables evolutionary optimization, and DRL
provides adaptive decision-making through real-time
interaction. Their integration has produced advanced hybrid
frameworks capable of managing complex, dynamic traffic
environments with higher efficiency and adaptability.
Traditional rule-based or static optimization strategies have
proven insufficient, motivating the exploration of artificial
intelligence (Al) methods. Among these, Adaptive Neuro-
Fuzzy Inference Systems (ANFIS), Genetic Algorithms
(GA), and Deep Reinforcement Learning (DRL) have
emerged as leading paradigms for intelligent traffic
optimization. ANFIS offers a balance of interpretability and
adaptability by combining fuzzy logic with neural network
learning, making it suitable for traffic systems where both
expert knowledge and real-time adaptability are critical.
Genetic Algorithms excel in solving complex, non-linear
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optimization problems by efficiently navigating multimodal
search spaces typical of urban traffic systems. Deep
Reinforcement Learning enables systems to learn adaptive
traffic control policies through continuous interaction with
dynamic environments, making it particularly effective for
real-time decision-making in unpredictable traffic conditions.
The synergy of these methods individually and in hybrid
configurations provides a foundation for developing traffic
management systems that are not only accurate and scalable
but also interpretable and robust. This systematic literature
review critically examines existing research on the integration
of ANFIS, GA, and DRL, evaluates their comparative
strengths and limitations, and identifies future pathways for
intelligent traffic optimization in diverse global contexts.

MATERIALS AND METHODS

A systematic search following PRISMA guidelines was
conducted across databases such as IEEE Xplore,
ScienceDirect, Springer, and ACM Digital Library. Inclusion
criteria targeted peer-reviewed studies between 2012 and June
2025 focusing on traffic optimization using ANFIS, GA, or
DRL. Seventy-six (76) high-quality studies were selected
based on methodological rigor, clear reporting, and relevance
to intelligent traffic management.

= Initial Search Results (n = 1200) ’

2. Screening

Screening of Titles and
Abstracts (n = 1200)

3. Eligibility
Full-Text Articles Assesed for
Eligibilty (n = 500)

4. Included

| Excluded durim Screening (n = 700) ‘

Full-Text Articles for
Retreval (n = 500)

-

- Not Peer-Reveived
| - oOutside Date Range (2012-2025)
- Not Focused on ANFIS, GA, DRL in Traffic ‘

| Excluded with Reasons ‘

Studies Included in Review (n =75)

-

Based on Methobiogal Rigror, Clear Reporting. and Relevance to

Intelligent Traffic Management

Figure 1: Methodological Framework — Adapted PRISMA 2020 Flow Diagram
Ilustrating the Process of Systematic Review, Including Searches Across Databases,
Registers, and Additional Sources (McKenzie et al., 2020)
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Research Design
This study adopts a systematic literature review (SLR)
framework in accordance with the Preferred Reporting ltems
for Systematic Reviews and Meta-Analyses (PRISMA 2020)
guidelines. The SLR approach was selected to ensure
comprehensive, replicable, and unbiased synthesis of research
evidence concerning the integration of Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), Genetic Algorithms (GA), and
Deep Reinforcement Learning (DRL) in intelligent traffic
optimization. The research design aimed to address three key
objectives:
i. Toidentify and categorize the state-of-the-art techniques
and frameworks that employ ANFIS, GA, and DRL for
traffic optimization.

Literature Analysis
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ii. To evaluate comparative performance metrics, modeling
approaches, and integration strategies used across
existing studies.

ili. To identify limitations, research gaps, and emerging
trends to guide future work.

The SLR design ensures methodological transparency and

reproducibility, allowing subsequent researchers to replicate

or extend the findings under similar search and selection
criteria.

Literature Review

The literature review is categorized into four segments: (1)
ANFIS-based optimization, (2) GA-based optimization, (3)
DRL-based optimization, and (4) hybrid integrations
combining these techniques.

Early ANFIS rule reduction

Heuristic search (Cuckoo) for traffic signals
IT2FLS with meta-heuristics

Fuzzy inference traffic optimization

traffic signal/routing optimization; Distributed fuzzy

controllers; Adaptive Neuro-Fuzzy for traffic lights; Fuzzy Logic for

ANFIS & multi-objective GA for transport; Risk Assessment ANFIS;
Policy-Gradient DRL; Hierarchical Fuzzy Control

Hybrid ANFIS-PSO; Boosted GA,; Fuzzy Inference DRL; IT2FLS-PSO;
Neural Networks for Transport Resilience; ANFIS-based traffic & noise

GA, PSO-ANFIS; Traffic timing optimization; ANFIS for flow
prediction; Density-Based GA; Urban waste transport GA

Fuzzy Clustering; ANFIS-GA; ECA-LSTM; Trip Generation ANFIS;
ANFIS Metaheuristics; Vehicle Routing GA

DRL, ANFIS-RL, Adaptive GA, DDPG; Fuzzy Rule Reduction; Type-2
Fuzzy RL; Multi-agent RL; Traffic Volume ANFIS; Pavement/Project

Federated PPO; loV; ANFIS-DDoS; Reward Shaping; GA for Routing;
RL-LSTM; Fuzzy Control for V2V

Table 1: Yearly Distribution of Studies
Year No. of Papers  Correct % of Total Key Themes
2012 1 1.3%
2015 1 1.3%
2017 1 1.3%
2018 1 1.3%
2019 4 5.3% GA-based
roundabouts
2020 4 5.3%
2021 9 11.8%
prediction
2022 10 13.2%
2023 11 14.5%
2024 21 27.6%
ANFIS
2025 13 17.1%
Total 76 100%
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Figure 2: Yearly Distribution of ANFIS-GA-RL Studies: A Review (2012—-2025)
Initial Period (2012-2018) Research output remained low and sporadic, with only one paper published in each of those years.

Take-off (2019-2022) A noticeable increase began in 2019, jumping to 4 papers, and then quadrupling to 9 papers by 2021
and 10 by 2022. Peak Activity (2024) the year 2024 shows the highest output with 21 papers, making the growth trend visually

obvious
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ANFIS-Based Optimization

ANFIS leverages fuzzy inference and neural learning for
predictive and adaptive traffic management. Studies report
10-25% reductions in delay and queue lengths. Hybrid
ANFIS models incorporating metaheuristics such as Particle
Swarm Optimization (PSO) and Cuckoo Search further
improve accuracy and adaptability. Applications include
traffic signal control, flow prediction, and risk assessment,
with R? values frequently exceeding 97%.
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Recent research highlights ANFIS’s adaptability when
combined with emerging computational and transport
technologies. Mai and Ngo (2021) achieved 98% accuracy by
optimizing an Interval Type-2 Fuzzy Logic System with
Particle Swarm Optimization, outperforming benchmark
models including Random Forest, K-Nearest Neighbors, and
Support Vector Machines. Similarly, Rahman and Ali (2025)
demonstrated that ANFIS controllers improved stability and
alignment in vehicle-to-vehicle dynamic wireless charging,
surpassing conventional fuzzy logic systems.

MACHINE LEARNING
/ DEEP LEARNING
(CNINs, LSTms)

PRE-PROCESSING /
l PATTERN RECOGNTION
g I SMART CITIES D@
2

HEALTHACRE

a8

PREDICTIVE ANALYTICS /
DECISION SUPPORT

V3

ROBOTICS & (e

AUTOMATION

REAL-TIME CONTROL /
OPTIMIZATION

Figure 3: Adapted Diagrammatic Representations of the Integration Pathways and Applications of ANFIS in Contemporary

Technological Landscape (Alahi et al., 2023)

Beyond conventional traffic management, ANFIS has also
proven effective in infrastructure safety and cybersecurity
applications. Alawad and Kaewunruen (2020) introduced an
ANFIS risk model for station overcrowding assessment,
achieving high accuracy against regression tree and SVM
benchmarks, while Usha et al. (2025) applied ANFIS to
cybersecurity in transportation, reaching 94.3% detection
accuracy in identifying DDoS attacks with minimal false
positives. These applications highlight ANFIS’s versatility in
extending traffic optimization research toward smart
infrastructure resilience and intelligent transportation system
security.

Genetic Algorithm-Based Optimization

GA provides robust optimization for complex multi-objective
problems like signal timing and route scheduling. Genetic
Algorithm (GA) was used to prioritize test cases based on the
rate of fault detection per unit test cost (Bello & Alhassan,
2025). Research indicates performance improvements
ranging from 20-45% in travel time reduction. Hybrid GA
models integrating fuzzy systems or reinforcement learning
accelerate convergence and enhance scalability. Genetic
Algorithms (GAs) are used in addressing complex traffic
optimization problems due to their robustness in multi-
objective search and adaptability to dynamic conditions. They
have been applied to a broad range of traffic contexts
including signal timing, multi-modal optimization, and
advanced hybrid approaches, consistently demonstrating
performance advantages over traditional optimization
techniques.

Traffic Signal Timing Optimization

Traffic signal control remains the most explored application
of GAs. Mao et al. (2019) demonstrated that GA-optimized
signal timing improved total travel time by 40.76%, validating
its effectiveness in congestion reduction. Extending this work,
Manh et al. (2020) compared multi-objective GA (MOGA)
with single-objective GA (SOGA) and Webster’s method in
Taiwan, finding that MOGA significantly reduced both delays
and queue lengths at complex intersections. Similarly, Fu
(2022) integrated migration learning and fuzzy rule
enhancement into GA for urban intersections, achieving
>7.5% delay reduction and capacity gains. On a larger scale,
Sartikha, et al., (2022) applied GA-based scheduling across
nine intersections in Yogyakarta, reducing trip times by 44—
64 seconds per intersection, highlighting the scalability of GA
to coordinated network control. Collectively, these studies
confirm that GAs are highly effective for adaptive traffic
signal timing under varying urban conditions.

Multi-Modal and Dynamic Optimization

Beyond traditional intersections, GAs have been increasingly
applied to multi-modal and dynamic transport systems. Hai,
Manh, and Nhat (2020) incorporated vehicle emission
intensity into GA-based timing optimization, yielding
balanced improvements delays reduced to 88-91%, emissions
to 91-93%, and stops to 96-98% demonstrating GA’s
capacity to integrate environmental considerations alongside
mobility goals. At the network level, Tiberio et al. (2022)
applied a Density-Based GA (DBGA) to smart traffic lights,
reporting 22.8% routing efficiency gains across four
intersections. Similarly, Al-Madi and Hnaif (2022) proposed
a Human-Community Based GA (HCBGA), which reduced
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congestion periods by 13% compared to enhanced IRTMS,
itself 83% better than fixed-time systems. Expanding to
sustainable logistics, Zhang et al. (2022) optimized GA for
urban waste transport routing in Guangzhou, improving
transport  efficiency while reducing accident and
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environmental risks. These findings underscore GA’s
versatility in addressing multimodal and sustainability-
oriented traffic challenges, though scalability and sensitivity
to parameter tuning remain ongoing limitations.
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Figure 4: Diagrammatic Representation of Advance Genetic Algorithm Framework Incorporating Strategies for Multi-Modal

and Dynamic Optimization (Binsfeld et al., 2025)

Advanced GA Variants and Hybrid Approaches

Recent research has advanced GA applications through
hybridization with other optimization and learning methods.
Cunuhay et al. (2025) introduced GAAM-TS, a hybrid model
integrating adaptive mutation, tabu search, and LSTM
prediction, improving travel efficiency by up to 20%
compared to standard GA. Liu et al. (2025) further developed
an Improved GA (IGA) for collaborative path planning,
reducing maximum sub-path length by 49.2%, average path
length by 43.3%, and runtime by 28.6%, indicating strong
computational gains. Parallel and multi-objective extensions
have also proven valuable. Ding et al. (2024) compared
standard GA with Multipoint Crossover Elitist GA (MPEGA)
and Improved Dynamic Crossover/Mutation GA (IDCMGA)
for Beijing’s subway—taxi integration. MPEGA reduced mean
travel costs by 15.21% and variance by 81.72%, while
IDCMGA further improved stability and convergence. In
Manhattan, Akopov and Beklaryan (2023) introduced
BORCGA-BOPSO, a hybrid bi-objective GA with particle
swarm optimization, which significantly improved traffic
flow and pedestrian safety. These hybrid approaches highlight
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GA’s adaptability and synergy with machine learning, fuzzy
systems, and swarm intelligence (Bi, 2024).

Deep Reinforcement Learning-Based Optimization

DRL enables adaptive, real-time policy learning in dynamic
environments. PPO, DDPG, and DQN models achieve
reductions of 25-55% in delay and queue lengths. Multi-agent
DRL frameworks have shown strong scalability across
citywide networks, while eco-aware models integrate
sustainability metrics such as fuel and emission reduction.

Reward-Based Feedback Mechanisms in DRL

The core Reward-Based Feedback Mechanism is the Reward
Signal (rt). It's generated by the Reward Function (R (st, at,
st+1)) based on the transition. This signal is the primary
learning feedback, which the DRL Agent uses to adjust its
neural network weights, aiming to maximize the cumulative
reward over time. A Critic/Value Network is an optional
component that uses this reward to evaluate the current state
or action, providing an auxiliary learning signal to stabilize
and accelerate policy updates.
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Figure 5: Diagrammatic Representation of Information Flow and Learning Signals in a Deep Reinforcement Learning

(DRL) Framework (Michailidis et al., 2025)
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Reward design is central to DRL’s success, as it encodes
optimization objectives and accelerates policy convergence.
Zahwa et al. (2025) showed that reward shaping halved
convergence times and cut steady-state delays by 19%, while
Deshmukh et al. (2025) achieved a 29% delay reduction and
24% fewer stops with intersection-centered DQN models.
Lane-wise phase control by Swapno et al. (2024) further
confirmed the value of fine-grained feedback, lowering both
delay and queue lengths by 35%. Similarly, Pan (2023)
demonstrated reductions of up to 100% in waiting time,
reinforcing how nuanced reward mechanisms drive superior
system-wide efficiency.

Hybrid and Integrated Frameworks

Combining ANFIS, GA, and DRL results in superior multi-
objective optimization. Studies report efficiency gains up to
65%, with improvements in convergence speed, scalability,
and  environmental  performance.  Triple-integration
frameworks address challenges of uncertainty, adaptability,

Dodo et al.,
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and energy efficiency, marking a significant advancement
toward sustainable smart transportation systems.

Emerging triple-integration systems that combine ANFIS,
GA, and DRL push the boundaries of multi-objective traffic
optimization. These frameworks aim not only to minimize
delays but also to improve safety and environmental
performance. Mirbakhsh and Azizi (2024) applied a dueling
double DQN architecture within a hybrid framework,
reducing traffic conflicts by 16%, waiting times by 18%, and
carbon emissions by 4%, thereby validating the feasibility of
multi-objective optimization. Similarly, Chala and Koczy
(2024) implemented a fuzzy rule-base reduction system,
achieving 68-72% faster execution efficiency alongside
reductions in waiting time, fuel use, and CO. emissions.
Notably, these hybrid designs are not limited to single
objectives but balance efficiency, sustainability, and safety,
marking a significant evolution from classical single-goal
optimization.
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Figure 6: An Adapted Multi-Objective Hybrid Frameworks that Combine ANFIS, GA, and DRL in Intelligent
Optimization Adopted from (Chakraborty & Raghuvanshi, 2025)

Additional studies corroborate the promise of integrated
frameworks. Kumar et al. (2021) demonstrated that ANFIS—
PSO hybrids achieved 96.4% prediction accuracy in energy
demand forecasting, highlighting generalizability to other
cyber-physical domains. Meepokgit and Wisayataksin (2024)
further confirmed that fuzzy-state shaping in DRL reduced
waiting time by 18.46% compared with conventional DQN,
while Moreno-Malo et al. (2024) reported a 44% waiting-time
reduction using multi-agent DQN in simulation. Together,
these results position triple-integration strategies as scalable
and flexible tools capable of addressing the multifaceted
challenges of urban mobility.

RESULTS AND DISCUSSION

Performance Analysis and Benchmarking

Comparative performance analysis reveals that hybrid
systems consistently outperform single-method approaches.
Average improvement levels are approximately: ANFIS
(17.5%), GA (32.5%), DRL (40%), and Hybrid systems (50—
65%). Key metrics include delay reduction, queue length
minimization, throughput enhancement, and emission
control. Performance analysis and benchmarking form the
empirical backbone of this systematic review, enabling an
objective comparison of Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), Genetic Algorithms (GA), Deep
Reinforcement Learning (DRL), and their hybrid integrations
in traffic optimization. This section synthesizes results from
76 selected studies to evaluate their relative efficiency,
computational feasibility, and real-world applicability using

standard performance metrics. The goal is to quantify how
much improvement each approach offers over conventional
systems, to identify methodological trade-offs, and to
establish performance baselines for future research.

Evaluation Metrics

The performance of intelligent traffic optimization systems is
typically measured through a combination of traffic flow
indicators,  system-level  performance metrics, and
comparative benchmarks. Across the reviewed studies, these
metrics demonstrate how computational intelligence
techniques enhance operational efficiency, reduce congestion,
and promote sustainability.

Traffic Flow Indicators

Traffic flow metrics directly reflect improvements in road

performance and commuter experience:

i. Average Delay (sec/veh): Represents the mean waiting
time of vehicles per intersection. ANFIS- and DRL-
based controllers show 25-55% reductions in average
delay compared with static signal systems (Wu et al.,
2024; Mirbakhsh & Azizi, 2024).

ii. Queue Length Reduction (%): Indicates congestion
alleviation. Studies using hybrid GA-DRL achieved
queue reductions exceeding 40% (Bangalee & Ahmed,
2024).

iili. Throughput (veh/hr): Measures the number of vehicles
processed through intersections. Multi-agent DRL
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architectures increased throughput by 18-30% compared
to actuated control (Paul & Mitra, 2020; Li et al., 2025).

iv. Travel Time (min): A key indicator of network-level
performance. GA-based timing models demonstrated
20-45% travel time savings (Mao et al., 2019; Sartikha
etal., 2022).

v. Fuel Consumption & Emissions: Recent eco-aware
models such as DQN and PPO reduced CO-. emissions
by 10-15% and fuel consumption by up to 12% (Yigit &
Karabatak, 2025), reflecting a growing focus on green
transportation systems.

System-Level Performance Metrics

These metrics evaluate the algorithmic efficiency and

computational feasibility of the models:

i. Convergence Speed: DRL and GA hybrids reduced
optimization convergence times by 30—45% compared to
standalone GA or DRL models (Mao et al., 2022). This
efficiency is critical for real-time traffic management
where rapid policy adaptation is required.

ii. Computational Complexity: ANFIS offers moderate
computational demand, whereas GA and DRL require
significant processing power during training. However,
once optimized, their real-time deployment is efficient
and responsive.

iii. Scalability: Hybrid frameworks, particularly multi-agent
DRL systems, demonstrate strong scalability to large
urban networks, maintaining stability across varying
traffic densities (Faqir et al., 2024; Yang et al., 2025).

Dodo et al.,
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iv. Robustness: Hybrid models exhibit superior robustness
under fluctuating or unpredictable traffic conditions.
ANFIS-GA controllers, for example, maintained >99%
prediction accuracy (Olayode et al., 2023), even under
irregular flow scenarios.

Benchmarking Against Conventional Systems

For benchmarking purposes, studies consistently compared

intelligent controllers against traditional traffic control

models, primarily:

i. Fixed-Time Control (FTC): The baseline in most studies.
Hybrid methods reduced average delay by 35-60%
compared to FTC, which lacks adaptability to real-time
flow variations (Zachariah et al., 2018).

ii. Actuated Control (AC): Uses traffic detectors but lacks
predictive capability. DRL controllers outperformed
actuated control by reducing vehicle waiting time by 30—
50% (Wu et al., 2024).

iii. Classical Optimization Models: GA- and PSO-based
approaches  demonstrated  20-45%  performance
improvements over linear programming or heuristic
optimization models.

iv. Standalone Al Models: Hybrids integrating fuzzy
reasoning or DRL achieved superior adaptability and
learning speed, highlighting the synergistic advantage of
multi-method systems.

Comparative Performance Synthesis
A meta-analysis of reviewed studies indicates clear
performance hierarchies among the four approaches.
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Figure 7: Analysis of Performance Trend Across the Reviewed Studies Reveals Consistent Performance Gains from
Intelligent Traffic Optimization Methods (Michailidis et. al., 2025)

The synthesis of results across reviewed studies highlights
clear performance trends for ANFIS, GA, DRL, and hybrid
approaches.

As shown in Figure 7, hybrid and integrated control
approaches deliver the highest average efficiency gains (=50
%) in terms of vehicle-delay or throughput improvements,
with maximum gains reaching ~65% (Bangalee & Ahmed,
2024; Chala & Koczy, 2024; Mirbakhsh & Azizi, 2024).
Conventional ANFIS-based systems, by contrast, yield more
modest improvements average ~17.5 %, maximum ~25 %

(Olayode et al., 2023; Zachariah et al., 2018). GA-based
methods and DRL-based methods occupy the intermediate
range ~32.5 % and ~40 % average improvements respectively
(Wu etal., 2024; Yigit & Karabatak, 2025; Pan, 2023; Mao et
al., 2022; Shahkar et al., 2023). The accompanying qualitative
profile further illustrates that while ANFIS offers superior
interpretability, its architectural power and adaptivity are
relatively weak; DRL offers strong adaptivity but weak
interpretability; and hybrid methods seek to strike a balance
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between high architectural strength, high adaptivity, and
moderate interpretability.

Statistical Overview of Reported Efficiency Gains
A consolidated quantitative analysis across the reviewed
literature indicates:

i. Mean Delay Reduction: 43.6% (SD * 7.8)

ii. Queue Length Reduction: 38.4% (SD + 9.2)
iii. Throughput Improvement: 26.7% (SD * 6.5)
iv. Fuel Consumption Reduction: 11.4% (SD % 3.2)

V. CO: Emission Reduction: 13.1% (SD + 2.9)
These results validate the robustness of computational
intelligence in managing traffic congestion, improving
environmental sustainability, and enhancing urban mobility
efficiency. They further indicate that selecting an optimal
traffic-signal control strategy, practitioners must weigh not
only quantitative performance gains but also factors such as
transparency, ease of implementation, real-time adaptivity,
and data infrastructure readiness.

Challenges and Future Directions

Despite significant progress, challenges persist in scalability,
real-world data integration, and computational demand.
Future research should prioritize the development of
standardized evaluation frameworks, real-time deployment,
and integration with Internet of Vehicles (IoV) and quantum
optimization paradigms. Ethical considerations, such as data
privacy and explainability in DRL-based controllers, also
require focused attention.

Although, hybrid and integrated frameworks face notable
challenges. Most reported studies remain constrained to
simulation environments or isolated intersections, raising
questions about scalability in complex, real-world urban
networks (Zachariah et al., 2018; Moreno-Malo et al., 2024).
High computational demands associated with GA and DRL
limit feasibility in real-time deployment, particularly in
resource-constrained regions (Olayode et al., 2023; Mao et al.,

2022). Moreover, while multi-objective frameworks
demonstrate significant potential, trade-offs between
efficiency, safety, and environmental goals remain

underexplored and require explicit operator prioritization
(Mirbakhsh & Azizi, 2024).

Integration with emerging technologies offers a compelling
research frontier. Studies suggest that connected and
autonomous vehicles (CAVs), loT-enabled traffic sensors,
and even quantum-inspired optimization algorithms could
substantially expand the scope and efficiency of hybrid
frameworks (Bangalee & Ahmed, 2024; Zai & Yang, 2023).
As these technologies mature, hybrid ANFIS-GA-DRL
systems are positioned to evolve from simulation-based
experiments to real-time, city-scale intelligent traffic
optimization systems, addressing the global demand for
sustainable, efficient, and resilient urban mobility solutions.

CONCLUSION

This review highlights the growing importance of
computational intelligence in traffic optimization. The
synergy between ANFIS, GA, and DRL offers powerful
solutions  for  congestion  management, efficiency
enhancement, and environmental sustainability. Hybrid
frameworks represent the next frontier in achieving resilient
and adaptive intelligent traffic systems for the cities of the
future.
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