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ABSTRACT

Chronic Hepatitis B Virus (HBV) infection remains a major cause of cirrhosis and hepatocellular carcinoma,
with a particularly high burden in Nigeria. Identifying prognostic factors and selecting appropriate survival
models are essential for improving patient outcomes. This study analyzed 150 patients with chronic HBV
managed at the Federal Medical Centre, Nguru, between 2019 and 2024. Survival probabilities were estimated
using the Kaplan—Meier method, while the Cox proportional hazards (CPH) model and four Accelerated Failure
Time (AFT) models; Exponential, Weibull, Log-logistic, and Lognormal were compared using Akaike (AIC)
and Bayesian (BIC) Information Criteria. Covariates included age, gender, METAVIR fibrosis stage, baseline
AST and ALT levels, viral load, comorbidities, and antiviral therapy. The Kaplan—Meier curve showed a
consistent decline in survival. Model comparison identified the Lognormal AFT model as the best fit (AIC =
71.52; BIC = 101.63), outperforming the CPH and other parametric models. Significant predictors of reduced
survival, each one-year increase in age was associated with a 1% reduction in survival time (TR = 0.99, p <
0.01), advanced fibrosis (TR = 0.24, p < 0.001), elevated AST and ALT (p < 0.05), and comorbidities (TR =
0.26, p < 0.001). Antiviral therapy was strongly protective, extending survival by more than fourfold (TR =
4.01, p < 0.001). The Lognormal AFT model provides the most reliable characterization of survival in this
cohort. Early diagnosis, fibrosis staging, and timely antiviral therapy are vital for reducing HBV-related
mortality and strengthening long-term outcomes in Northern Nigeria.

Keywords: Chronic Hepatitis B, Survival Analysis, Cox Regression, Accelerated Failure Time Models,

Lognormal Model

INTRODUCTION

Chronic Hepatitis B (CHB) infection is a persistent global
health challenge, accounting for approximately 296 million
chronic cases and nearly 820,000 deaths annually, primarily
from cirrhosis and hepatocellular carcinoma (HCC) (World
Health Organization, 2021). The disease burden is
particularly severe in sub-Saharan Africa, where early
childhood transmission and weak screening systems
contribute to high endemicity. In Nigeria, pooled prevalence
estimates suggest that about 9-10% of the population lives
with CHB, ranking the country among the highest-burden
nations globally (Adesina et al., 2021). Several recent studies
in Nigeria have highlighted the continuing burden of Hepatitis
B infection and its clinical variations. For example, Oladele et
al. (2020) examined the distribution of ABO/Rhesus blood
groups among HBV-positive patients in Lagos, while Pindar,
Manu, and Chessed (2023) reported the prevalence of
Hepatitis B infection among pregnant women in Gombe State.
These findings reinforce the importance of further modelling
survival outcomes among HBV patients in different Nigerian
populations. Survival analysis provides essential tools for
quantifying disease progression and identifying prognostic
factors among CHB patients. The Kaplan—Meier estimator
offers a simple non-parametric approach to describe survival
distributions, while the Cox proportional hazards (PH) model
allows for assessing the effect of multiple covariates without
specifying a baseline hazard function (Therneau & Grambsch,
2000). These approaches, however, may be limited when the
hazard function exhibits specific shapes or when proportional
hazards assumptions are not met. Parametric alternatives,
particularly those framed under the Accelerated Failure Time
(AFT) model, assume explicit probability distributions for

survival times and directly model the effect of covariates on
survival duration. Commonly applied AFT models include the
Exponential, Weibull, Log-normal, and Log-logistic
distributions (Lawless, 2003). The Exponential model
assumes a constant hazard over time, making it appropriate
for diseases with stable risk patterns. The Weibull model
generalizes this by allowing for increasing or decreasing
hazards, and has been extensively used in liver disease and
oncology research (Collett, 2015). The Log-normal model
assumes survival times follow a log-normal distribution,
which can capture non-monotonic hazard patterns, while the
Log-logistic model allows for hazards that initially rise and
later decline, making it suitable for diseases with early high-
risk phases (Klein & Moeschberger, 2003). Empirical
comparisons between Cox and AFT models indicate that
parametric approaches may provide better fit and more
precise estimates in certain datasets. For instance, Hosseini et
al. (2008) demonstrated that Weibull and Log-logistic models
yielded superior performance to Cox regression when
analyzing stomach cancer data. Similarly, research in HIV
and TB cohorts has shown that AFT models often provide
more interpretable survival times and improved predictive
accuracy (Guo & Carlin, 2004). These models often provide
more efficient estimates and better predictive capabilities
when the chosen distribution fits the data well. Comparative
applications of Cox PH and AFT models have been reported
in studies of cancers, cardiovascular diseases, and infectious
diseases, showing that parametric AFT models can sometimes
outperform semi-parametric Cox models in terms of
goodness-of-fit, interpretability of survival times, and
prediction accuracy (Collett, 2015; Hosmer, Lemeshow &
May, 2008). Despite this, there is a paucity of research
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directly comparing these approaches in the context of chronic
hepatitis B in Nigeria. This study compares the Cox PH model
with four parametric AFT models (Exponential, Weibull,
Log-normal, and Log-logistic) to determine the best-fitting
survival approach for CHB patients at FMC Nguru. By
assessing both model performance and clinical risk factors,
the study aims to provide evidence that can improve statistical
modeling practice and clinical decision-making for HBV
management in Northern Nigeria.

MATERIALS AND METHODS

Research Design

This study compares the performance of non-parametric,
semi-parametric and parametric survival models in analyzing
risk factors influencing the survival of patients with chronic
Hepatitis B (CHB). The data were obtained from medical
records of CHB patients who received treatment and follow-
up care at the Federal Medical Centre (FMC) Nguru, Yobe
State, between 2019 and 2024. The dataset consisted of 150
patient records, including both demographic and clinical
variables. Key covariates extracted from the records included:
age, sex, viral load, liver biopsy results, alanine
aminotransferase (ALT) and aspartate aminotransferase
(AST) levels, antiviral therapy status (e.g., Tenofovir use),
presence of comorbidities (such as HIV, hypertension, or
diabetes), and disease stage (fibrosis or cirrhosis). The
primary outcome variable was survival time, defined as the

Data Extraction Form
Table 1: Description of Chronic Hepatitis B Data
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duration (in months) from diagnosis to death or censoring at
the end of the study period.

Method of Data Collection

This study utilized data extracted from the medical records of
patients with chronic hepatitis B who received care at the
Federal Medical Centre, Nguru. The review spanned a six-
year period, from January 2019 to December 2024, to ensure
a sufficient number of survival events and an adequate follow-
up duration for robust analysis. Secondary data were obtained
through a structured extraction tool developed to
systematically capture demographic, clinical, and survival-
related information from patient files. The dataset included
patient demographics, clinical characteristics, treatment
regimens, and follow-up survival outcomes. Eligibility was
restricted to records that met predefined criteria, including a
confirmed diagnosis of chronic hepatitis B, initiation of
treatment during the study period, and availability of follow-
up information. A convenience sampling approach was used
to select 150 eligible cases. Each patient was observed from
the date of diagnosis or treatment initiation until the
occurrence of the outcome of interest (death), loss to follow-
up, or the study’s end date (December 31, 2024), whichever
occurred first. A minimum follow-up period of two years was
maintained.

Section A: Patient Identification (De-identified)

Variable

Patient ID

Sex

Age at Diagnosis (years)

Marital Status

Occupation

Section B: Clinical Information
Variable

Date of HBV Diagnosis

Date of Treatment Initiation
Type of Antiviral Treatment
Comorbidities (e.g., HIV, Diabetes)
Family History of Hepatitis
Baseline ALT Level (U/L)
Baseline Viral Load (copies/mL)
Liver Biopsy or Imaging Result
Adherence Status (if recorded)
Section C: Survival Data
Variable

Last Follow-Up Date

Status at Last Follow-Up

Date of Death (if applicable)
Time to Event (in months)
Censoring Status

Data Entry Format

e.g., P001, PO02

Male / Female

Numeric

Single / Married / Divorced / Widowed

Data Entry Format
DD-MM-YYYY
DD-MM-YYYY

e.g., Tenofovir, Entecavir
Yes / No; specify type

Yes/ No

Numeric

Numeric or range

e.g., Cirrhosis, Fibrosis stage
Good / Poor / Unknown

Data Entry Format
DD-MM-YYYY

Alive / Dead / Lost to Follow-Up
DD-MM-YYYY

Numeric

0 = Censored, 1 = Event (death)

Method of Data Analysis

Survival analysis shall be used in analyzing the demographic
and clinical dataset, the non-parametric, parametric and semi-
parametric will be considered in this research.

Non-Parametric Model: Kaplan—-Meier Estimator
Kaplan—-Meier (KM) Estimator

Provides a simple way of estimating survival probabilities
over time without assuming a specific distribution. A
downward step in the curve corresponds to the occurrence of
an event (death), while horizontal segments indicate periods
with no observed events. To compare survival distributions
between groups, the log-rank test was employed. This non-
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parametric test determines whether the observed differences
in survival curves across subgroups are statistically
significant or could have occurred by chance, thereby
providing evidence of true variation in survival outcomes.

s = ]_[ (%) &)

Where:

t; = observed event times

d; = number of events at time t;n;= number at risk just before
t

Interpretation

The KM curve shows the probability of surviving beyond a
given time.

Steeper drops indicate higher risk of death.

The log-rank test can compare survival between groups.

Semi-Parametric Model: Cox Proportional Hazards (PH)
Model

The Cox model evaluates the relationship between covariates
and the hazard of an event.

The hazard function is defined as:

h(t/x) = ho(t)exp(Byx; + B2, + BaXs + - + g¥g) (2

Where:

h(t|x) = hazard function at time t, given covariates x

ho(t) = baseline hazard function.

B1, B2, -, Bg = regression coefficients reflecting the effect of
each covariate on the hazard of death

Variables and their Descriptions
The study incorporated both dependent and independent
variables:

Dependent Variable

t = Survival time (in months or years) from diagnosis or
treatment initiation until death or censoring (alive).

6 = Censoring indicator (1 if the patient died, 0 if censored or
alive).

Independent (Covariate) Variables

The independent variables included in the Cox model are as
follows:

x1=Age at diagnosis (years)

x,=Gender (1 = male, 2 = female)

x3=ALT levels (alanine aminotransferase, 1U/L)

x,=AST levels (Aspartate Aminotransferase, 1U/L)

x5=HBV DNA viral load (copies/mL)

x¢=METAVIR Fibrosis Stage (1 =advanced fibrosis, 2 =
cirrhosis)

x,=Comorbidities (1 = Yes, 0 = No)

xg=Antiviral treatment received (1 = tenofovir, 2 = entecavir)
Thus, the model can be expressed as:

h(t|x) = hy(t)exp(B,Age + B,Gender + B;ALT + B,AST +
BsViralLoad + BgMETAVIR + (3;Comorbidities + BgAntiviral)

©)

Interpretation

Hazard Ratios (HRs) express covariate effects:

HR > 1: higher risk (shorter survival)

HR < 1: lower risk (longer survival)

HR = 1: no effect

The Cox model assumes:

i. The HRs remain constant over time.

ii. The effect of covariates on the log-hazard is linear.
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Parametric Models: Accelerated Failure Time (AFT)
Parametric survival models are often expressed through the
Accelerated Failure Time (AFT) framework. Unlike the
Proportional Hazards (PH) models that emphasize hazard
functions, the AFT models focus directly on survival time. In
essence, the AFT model assumes that the effect of covariates
is to accelerate or decelerate the time to event by a constant
factor. This means that the survival function of an individual
with covariates X is equivalent to the baseline survival
function evaluated at a rescaled time. The AFT models focus
on survival time rather than hazard.

In(T) = p+ ByXg + BaXp + BaXz + -+ + BpXp + g€ 4)

Where;

T = survival time

X{s = independent variable’s (covariates)

B’ = are constants to be determined

€ = error term whose distribution defines the specific AFT
model

o = is the scale parameter.

u = is the intercept parameter

Interpretation

coefficients act multiplicatively on survival time. If 6] =
exp(Bj) (the time ratio, TR):

TR > 1: covariate lengthens expected survival time (slower
failure)

TR < 1: covariate shortens expected survival time (faster
failure)

The AFT survival models considered in this study are:
Exponential, Weibull, Log-Normal and Log-logistic survival
distributions.

The Exponential AFT Model
The exponential model assumes ¢ follows an extreme-value

distribution or equivalently hazard A is constant.
Survival function:

S(t) = exp(—At) %)
Hazard function:

h(t) = A(constantint) (6)

under exponential AFT the scale parameter links to A, the log-
time model still holds but implies a constant baseline hazard.

The Weibull AFT Model

The Weibull is the most flexible simple parametric AFT, it
nests the exponential and can model monotonic hazard
shapes. It’s the first parametric choice for many biomedical
time-to-event data because of its flexibility and closed-form
likelihood.

AFT specification: In(T) = p + XB + oewith & extreme-
value.

Survival function:

S() = exp(—AtP) (7
Hazard function:
h(t) = Apt?~! 8)

If p > 1: hazard increases over time
If p < 1: hazard decreases over time
If p = 1: reduces to Exponential

The Log-Normal AFT Model

The Log-Normal AFT assumes € ~ N(0,1) so that In(T) is
normal. It’s useful when log-times appear roughly normal or
when hazard is non-monotonic (rises then falls); often fits
data with a “peak” risk period.

Survival function:

S() = 1 - o2 ©

where O (-) is the standard normal CDF.
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Hazard function: non-monotonic, usually rises then falls.

The Log-Logistic AFT Model

The Log-logistic AFT ¢ follows logistic distribution on the
log scale. Hazard can increase then decrease (non-
monotonic), similar to log-normal but with a closed-form
survival function.

Survival function:
1

5@ =13 oY (10)
where A > 0 (scale) and y > 0 (shape).
Hazard function:
_yAYEYTL
h(t) = 1+ AY aDn

Model Selection Criteria

In survival analysis, selecting the most appropriate model is
essential for ensuring valid inferences. Several criteria have
been developed for this purpose, including those that
minimize information loss (Akaike, 1974), maximize
posterior probability (Schwarz, 1978), or apply Bayesian
approaches such as the Deviance Information Criterion
(Spiegelhalter et al., 2002). Among these, the most widely
applied are the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC).

The AIC is defined as:

AIC = —2In(L) +kxp

Where:

L = maximum likelihood of the fitted model

(12)

RESULTS AN DISCUSSION
Application to Chronic Hepatitis B Data
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p = number of estimated parameters

k= penalty constant (usually set to 2)

Similarly, BIC introduces a stronger penalty for model
complexity, making it more conservative in selecting models
with additional parameters. For this study, both AIC and BIC
will be employed to compare competing survival models and
identify the best-fitting one.

Justification of the Methods of Analysis

The Cox Proportional Hazards (CPH) model is widely used in
survival analysis to assess the influence of covariates on the
time to an event, such as death or disease progression. It
estimates the relative hazard associated with predictors,
making it useful f or identifying risk factors while leaving
the baseline hazard function unspecified. However, the CPH
model relies on the proportional hazards assumption, meaning
that hazard ratios between groups remain constant over time.
When this assumption is not valid, the Accelerated Failure
Time (AFT) models provide a valuable alternative. Unlike the
PH approach, AFT models directly model survival time,
interpreting covariate effects as accelerating or decelerating
the expected time to event. AFT models are often easier to
interpret since regression coefficients represent time ratios,
and they tend to be more robust when certain covariates are
omitted. Moreover, they are less sensitive to the assumed
probability distribution, making them a flexible choice when
hazards are not proportional.

Table 2: Summary Statistics of Categorical Data for Chronic Hepatitis B

Covariates Categories Status Total
Censored (%) Event (%)
Gender Male 59(59.0) 41(41.0) 100
Female 32(64.0) 18(36.0) 50
Marital Single 44(88.0) 6(12.0) 50
Status Married 44(45.36) 53(54.64) 97
Divorced 3(100.0) 0(0.0) 3
Occupation Student 43(87.76) 6(12.24) 49
Farmer 14(34.15) 27(65.85) 41
Civil Servant 17(70.83) 7(29.17) 24
Housewife 14(48.28) 15(51.72) 29
Teacher 0(0.0) 1(100.0) 1
Fisherman 2(66.67) 1(33.33) 3
Businessman 1(33.33) 2(66.67) 3
METAVIR Fibrosis Advanced 91(64.08) 51(35.92) 142
Stage Fibrosis
Cirrhosis 0(0.0) 8(100.0) 8
Antiviral Tenofovir 2(4.65) 41(95.35) 43
Entecavir 89(83.18) 18(16.82) 107
Comorbidities Yes 78(92.86) 6(7.14) 84
No 13(19.70) 53(80.30) 66

Source: Computed using STATA
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Table 3: Summary Statistics of Quantitative Data for CHB

Covariates N Minimum  Maximum  Sum Mean Std. Deviation
Age at diagnosis 150 17 81 5836 38.91 15.384
Baseline AST (U/L) 150 137 365 35565 237.10 44.186
Baseline ALT level (U/L) 150 134 375 36378 242.52 45.458
Baseline viral load (1U/mL) 150 13107 41897 3740375 24935.83 4810.236

Source: Computed using STATA

Model Selection Criterion
Table 4: Results of Model Selection Criterion

Model AlC BIC

CPHM 409.73 433.82
Exponential AFT 183.57 210.67
Weibull AFT 84.05 114.15
Log logistic AFT 74.33 104.43
Lognormal AFT 71.52 101.63

Source: Extracted from STATA output

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) was used for model selection.
Rule of thumb: The model with the lowest AIC and/or BIC is considered the best fit to the data.

Cox Proportional Hazard Model Results
Table 5: Cox Proportional Hazard Model for Chronic Hepatitis B Data

Covariates B HR S.E P-value
Gender .601 1.824 .353 0.089
Age at Diagnosis .025 1.025 .012 0.043**
METAVIR  Fibrosis 1.146 3.145 .507 0.024**
Stage

Baseline AST (U/L) .014 1.014 .008 0.097
Baseline ALT (U/L) 011 1.989 .008 0.159
Baseline Viral Load .000 1.000 .000 0.359
Comorbidities 1414 4.114 475 0.003***
Antiviral -1.47 0.229 364 0.000***

Likelihood ratio ( 8): 2 = 76.29; prob. =0.000***

Source: Computed using STATA

Model Diagnostics and Assumptions
Test for Proportionality Assumption
Table 6: Proportional Hazard Assumption for Chronic Hepatitis B Data

Chi-square P-value
Global test for CPH model 10.56 0.2278

Source: Computed using STATA
The global Schoenfeld residual test (p = 0.2278) indicated that the PH assumption was not violated for the Cox model.

Test for Harrell’s C Concordance Statistic

Table 7: Harrell’s C Concordance Statistic for Chronic Hepatitis B Data
Harrell's C=(E+T/2)/P=0.8450
Somers' D= 0.6899

Source: Computed using STATA

Table 8: Weibull AFT Model for Chronic Hepatitis B Data

Covariates B TR S.E P-value
Gender -0.157 0.854 .078 0.039**
Age at Diagnosis -0.007 0.993 .013 0.017**
METAVIR Fibrosis Stage -1.315 0.268 173 0.012**
Baseline AST (U/L) -0.002 0.998 .001 0.045**
Baseline ALT (U/L) -0.002 0.998 .001 0.284
Baseline Viral Load 0.000 1.001 .000 0.409
Comorbidities -1.356 0.257 .092 0.007***

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December, 2025, pp 99 — 107

103



COMPARATIVE SURVIVAL MODELS OF PAT... Ahmad et al FJS
Covariates B TR S.E P-value
Antiviral 1.36 3.896 134 0.000%***

Likelihood
ratio ( 6):
x:= 76.94
prob.
=0.000***

Source: Computed using STATA

Table 9: Log logistic AFT Model for Chronic Hepatitis B Data
Covariates B TR S.E P-value
Gender -0.091 0.913 .076 0.027**
Age at Diagnosis -0.008 0.992 .033 0.013**
METAVIR Fibrosis Stage -1.462 0.231 221 0.001***
Baseline AST (U/L) -0.004 0.996 .002 0.049**
Baseline ALT (U/L) -0.004 0.996 .002 0.038**
Baseline Viral Load 0.000 1.001 .000 0.769
Comorbidities -1.334 0.263 .073 0.001***
Antiviral 1.39 4.014 125 0.000%***

Lratio ( 8): y? = 87.14; prob. =0.000***

Source: Computed using STATA

Table 10: Lognormal AFT Model for Chronic Hepatitis B Data
Covariates B TR S.E P-value
Gender -0.119 0.887 071 0.013**
Age at Diagnosis -0.008 0.992 .031 0.005***
METAVIR  Fibrosis -1.444 0.235 217 0.001***
Stage
Baseline AST (U/L) -0.003 0.997 .002 0.041**
Baseline ALT (U/L) -0.004 0.996 .002 0.035**
Baseline Viral Load 0.000 1.001 .000 0.871
Comorbidities -1.336 0.262 .069 0.001***
Antiviral 1.39 4.014 119 0.000%***

Likelihood ratio ( 8): xy? = 87.64; prob. =0.000***

Source: Computed using STATA

Kaplan-Meier Survival Curve Analysis for Chronic Hepatitis B patients over the follow-up period.

Hepatitis B Data

The Kaplan-Meier survival analysis was conducted to

The resulting

survival curves represent the probability of survival over time

estimate and visualize the survival experiences of chronic different subgroups.

0.50 0.75 1.00
| | |

0.25
|

0.00
|

Kaplan-Meier Survival Curve

and provide a graphical summary of patient outcomes across

Number at risk
150

T T T T
20 40 60 80
Time to Event (Months)

147 48 4 o)

Figure 1: The Kaplan-Meier Survival Curve
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The Kaplan—Meier survival estimate presented in Fig. 1
demonstrates a gradual but consistent decline in the survival
probability of patients with chronic hepatitis B over time,
most notably between 20 and 60 months. Survival decreases
from nearly 100% to 0%, with the sharpest reduction
occurring between 30 and 60 months. The smaller number of
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patients remaining at risk toward the end of the follow-up
period indicates that most individuals had either experienced
the event or were censored. Overall, the curve shows that
long-term survival in this study is limited, highlighting the
importance of early intervention, particularly within the first
two to three years of follow-up.

Kaplan-Meier Survival Curve

Advanced Fibrosis, Yes, TenofoAdvanced Fibrosis, Yes, Entecafidvanced Fibrosis, No, Tenofovir

0.00 0.25 0.50 0.75 1.00
1

Advanced Fibrosis, No, Entecavir

0.00 0.25 0.50 0.75 1.00
1

Cirrhosis, No, Tenofovir

Cirrhosis, No, Entecavir

0 20 40 60 0 20

40 60 0 20 40 60

Time to Event (Months)
Graphs by LiverBiopsy, Co-morbidities, and Type of Antiviral Treatment

Figure 2: The Kaplan-Meier Hazard Curve

Kaplan-Meier Hazard Function

0.25
|

0.00
|

20

(@

T
40 60 80

Time to Event (Months)

Number at risk

150 147

48 4 0

Figure 3: The Kaplan-Meier Survival Curve for Subgroups
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Table 4 presents the results of model selection based on the
Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) for the Cox Proportional Hazards
Model (CPHM) and several Accelerated Failure Time (AFT)
models. The results show that the Cox model had the highest
AIC (409.73) and BIC (433.82), suggesting a poor fit to the
data compared to the parametric alternatives. The exponential
AFT model showed some improvement (AIC = 183.57; BIC
=210.67), but its fit was still weaker than the other parametric
models. The Weibull AFT model produced a much better fit
(AIC = 84.05; BIC = 114.15), indicating that allowing the
hazard to vary over time captures the survival experience of
patients more accurately. Further improvement was observed
with the log-logistic AFT model (AIC = 74.33; BIC =
104.43). However, the log-normal AFT model had the lowest
AIC (71.52) and BIC (101.63), making it the best-fitting
model among all those considered. Overall, both AIC and BIC
consistently identified the log-normal AFT model as the most
appropriate model for the survival analysis of chronic
Hepatitis B patients at Federal Medical Centre, Nguru. The
log-normal model provides the best statistical fit and was
therefore selected for further interpretation. The lognormal
accelerated failure time (AFT) model revealed that several
clinical and demographic factors significantly influenced the
survival of chronic hepatitis B patients at FMC Nguru. Male
gender was associated with shorter survival (TR =0.887, p =
0.013), which aligns with previous findings suggesting that
men often experience more aggressive progression of HBV-
related liver disease compared to women (Yang et al., 2019).
Age at diagnosis also negatively impacted survival, with each
additional year reducing survival time by about 0.8% (TR =
0.992, p = 0.005). This finding is consistent with prior studies
reporting that older patients present with more advanced
disease and poorer prognosis (Chen et al., 2016). The severity
of liver disease was one of the strongest predictors of
mortality. Patients with advanced METAVIR fibrosis or
cirrhosis survived only 23.5% as long as those with less
severe disease (TR = 0.235, p < 0.001). This corroborates
earlier evidence that fibrosis stage is a critical determinant of
survival in chronic HBV infection (Liaw & Chu, 2009;
Papatheodoridis et al., 2015). Elevated liver enzymes (AST
and ALT) were also significant predictors, were 1-unit
increase in AST and ALT reduced survival time by 0.3% and
0.4% respectively, reflecting active liver inflammation and
ongoing hepatocellular damage, findings consistent with
those of Musa et al. (2015). Comorbidities such as HIV,
diabetes, or hypertension reduced survival time to 26.2%
compared with patients without additional conditions (TR =
0.262, p < 0.001). Similar results have been reported by
Matthews et al. (2014), who emphasized the adverse impact
of co-infections and metabolic disorders on HBV prognosis.
In contrast, antiviral therapy demonstrated a profound
protective effect. Patients on treatment had survival times
approximately four times longer than untreated patients (TR
= 4.014, p < 0.001). This finding is strongly supported by
previous studies, which have consistently shown that antiviral
therapy, particularly Tenofovir and Entecavir, reduces the risk
of cirrhosis, hepatocellular carcinoma, and HBV-related
mortality (Lok et al., 2016; Revill et al., 2023). The model
was statistically significant overall (likelihood ratio y* =
87.64, p < 0.001), indicating that the covariates collectively
explained substantial variation in patient survival. Taken
together, these findings confirm the importance of early
diagnosis, fibrosis staging, and timely initiation of antiviral
therapy, in agreement with established evidence across sub-
Saharan Africa.
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CONCLUSION

This study compared non-parametric, semi-parametric, and
parametric survival models to evaluate prognostic factors
among chronic hepatitis B patients at Federal Medical Centre,
Nguru. The Kaplan—-Meier analysis revealed limited long-
term survival, particularly within the first 30 to 60 months
after diagnosis. Model selection based on AIC and BIC
identified the lognormal AFT model as the best-fitting
approach, outperforming the Cox proportional hazards and
other parametric models. The lognormal AFT model
highlighted age at diagnosis, fibrosis stage, liver enzyme
levels, and comorbidities as significant predictors of reduced
survival, while antiviral therapy markedly prolonged survival.
These findings emphasize the importance of early screening,
timely staging of liver disease, and initiation of antiviral
treatment to improve patient outcomes. From a policy
perspective, strengthening access to affordable diagnostics
and expanding treatment coverage could reduce hepatitis B—
related mortality in Northern Nigeria. Despite the valuable
insights provided, this study is constrained by its relatively
small sample size and single-centre data, which may limit the
generalizability of the findings to broader populations. Future
studies with larger and multi-centre cohorts are recommended
to validate the model performance and enhance the robustness
of the conclusions.
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