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ABSTRACT 

Chronic Hepatitis B Virus (HBV) infection remains a major cause of cirrhosis and hepatocellular carcinoma, 

with a particularly high burden in Nigeria. Identifying prognostic factors and selecting appropriate survival 

models are essential for improving patient outcomes. This study analyzed 150 patients with chronic HBV 

managed at the Federal Medical Centre, Nguru, between 2019 and 2024. Survival probabilities were estimated 

using the Kaplan–Meier method, while the Cox proportional hazards (CPH) model and four Accelerated Failure 

Time (AFT) models; Exponential, Weibull, Log-logistic, and Lognormal were compared using Akaike (AIC) 

and Bayesian (BIC) Information Criteria. Covariates included age, gender, METAVIR fibrosis stage, baseline 

AST and ALT levels, viral load, comorbidities, and antiviral therapy. The Kaplan–Meier curve showed a 

consistent decline in survival. Model comparison identified the Lognormal AFT model as the best fit (AIC = 

71.52; BIC = 101.63), outperforming the CPH and other parametric models. Significant predictors of reduced 

survival, each one-year increase in age was associated with a 1% reduction in survival time (TR = 0.99, p < 

0.01), advanced fibrosis (TR = 0.24, p < 0.001), elevated AST and ALT (p < 0.05), and comorbidities (TR = 

0.26, p < 0.001). Antiviral therapy was strongly protective, extending survival by more than fourfold (TR = 

4.01, p < 0.001). The Lognormal AFT model provides the most reliable characterization of survival in this 

cohort. Early diagnosis, fibrosis staging, and timely antiviral therapy are vital for reducing HBV-related 

mortality and strengthening long-term outcomes in Northern Nigeria. 

 

Keywords: Chronic Hepatitis B, Survival Analysis, Cox Regression, Accelerated Failure Time Models, 

Lognormal Model 

 

INTRODUCTION 

Chronic Hepatitis B (CHB) infection is a persistent global 

health challenge, accounting for approximately 296 million 

chronic cases and nearly 820,000 deaths annually, primarily 

from cirrhosis and hepatocellular carcinoma (HCC) (World 

Health Organization, 2021). The disease burden is 

particularly severe in sub-Saharan Africa, where early 

childhood transmission and weak screening systems 

contribute to high endemicity. In Nigeria, pooled prevalence 

estimates suggest that about 9–10% of the population lives 

with CHB, ranking the country among the highest-burden 

nations globally (Adesina et al., 2021). Several recent studies 

in Nigeria have highlighted the continuing burden of Hepatitis 

B infection and its clinical variations. For example, Oladele et 

al. (2020) examined the distribution of ABO/Rhesus blood 

groups among HBV-positive patients in Lagos, while Pindar, 

Manu, and Chessed (2023) reported the prevalence of 

Hepatitis B infection among pregnant women in Gombe State. 

These findings reinforce the importance of further modelling 

survival outcomes among HBV patients in different Nigerian 

populations. Survival analysis provides essential tools for 

quantifying disease progression and identifying prognostic 

factors among CHB patients. The Kaplan–Meier estimator 

offers a simple non-parametric approach to describe survival 

distributions, while the Cox proportional hazards (PH) model 

allows for assessing the effect of multiple covariates without 

specifying a baseline hazard function (Therneau & Grambsch, 

2000). These approaches, however, may be limited when the 

hazard function exhibits specific shapes or when proportional 

hazards assumptions are not met. Parametric alternatives, 

particularly those framed under the Accelerated Failure Time 

(AFT) model, assume explicit probability distributions for 

survival times and directly model the effect of covariates on 

survival duration. Commonly applied AFT models include the 

Exponential, Weibull, Log-normal, and Log-logistic 

distributions (Lawless, 2003). The Exponential model 

assumes a constant hazard over time, making it appropriate 

for diseases with stable risk patterns. The Weibull model 

generalizes this by allowing for increasing or decreasing 

hazards, and has been extensively used in liver disease and 

oncology research (Collett, 2015). The Log-normal model 

assumes survival times follow a log-normal distribution, 

which can capture non-monotonic hazard patterns, while the 

Log-logistic model allows for hazards that initially rise and 

later decline, making it suitable for diseases with early high-

risk phases (Klein & Moeschberger, 2003). Empirical 

comparisons between Cox and AFT models indicate that 

parametric approaches may provide better fit and more 

precise estimates in certain datasets. For instance, Hosseini et 

al. (2008) demonstrated that Weibull and Log-logistic models 

yielded superior performance to Cox regression when 

analyzing stomach cancer data. Similarly, research in HIV 

and TB cohorts has shown that AFT models often provide 

more interpretable survival times and improved predictive 

accuracy (Guo & Carlin, 2004). These models often provide 

more efficient estimates and better predictive capabilities 

when the chosen distribution fits the data well. Comparative 

applications of Cox PH and AFT models have been reported 

in studies of cancers, cardiovascular diseases, and infectious 

diseases, showing that parametric AFT models can sometimes 

outperform semi-parametric Cox models in terms of 

goodness-of-fit, interpretability of survival times, and 

prediction accuracy (Collett, 2015; Hosmer, Lemeshow & 

May, 2008). Despite this, there is a paucity of research 
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directly comparing these approaches in the context of chronic 

hepatitis B in Nigeria. This study compares the Cox PH model 

with four parametric AFT models (Exponential, Weibull, 

Log-normal, and Log-logistic) to determine the best-fitting 

survival approach for CHB patients at FMC Nguru. By 

assessing both model performance and clinical risk factors, 

the study aims to provide evidence that can improve statistical 

modeling practice and clinical decision-making for HBV 

management in Northern Nigeria. 

 

MATERIALS AND METHODS 

Research Design 

This study compares the performance of non-parametric, 

semi-parametric and parametric survival models in analyzing 

risk factors influencing the survival of patients with chronic 

Hepatitis B (CHB). The data were obtained from medical 

records of CHB patients who received treatment and follow-

up care at the Federal Medical Centre (FMC) Nguru, Yobe 

State, between 2019 and 2024. The dataset consisted of 150 

patient records, including both demographic and clinical 

variables. Key covariates extracted from the records included: 

age, sex, viral load, liver biopsy results, alanine 

aminotransferase (ALT) and aspartate aminotransferase 

(AST) levels, antiviral therapy status (e.g., Tenofovir use), 

presence of comorbidities (such as HIV, hypertension, or 

diabetes), and disease stage (fibrosis or cirrhosis). The 

primary outcome variable was survival time, defined as the 

duration (in months) from diagnosis to death or censoring at 

the end of the study period. 

 

Method of Data Collection 

This study utilized data extracted from the medical records of 

patients with chronic hepatitis B who received care at the 

Federal Medical Centre, Nguru. The review spanned a six-

year period, from January 2019 to December 2024, to ensure 

a sufficient number of survival events and an adequate follow-

up duration for robust analysis. Secondary data were obtained 

through a structured extraction tool developed to 

systematically capture demographic, clinical, and survival-

related information from patient files. The dataset included 

patient demographics, clinical characteristics, treatment 

regimens, and follow-up survival outcomes. Eligibility was 

restricted to records that met predefined criteria, including a 

confirmed diagnosis of chronic hepatitis B, initiation of 

treatment during the study period, and availability of follow-

up information. A convenience sampling approach was used 

to select 150 eligible cases. Each patient was observed from 

the date of diagnosis or treatment initiation until the 

occurrence of the outcome of interest (death), loss to follow-

up, or the study’s end date (December 31, 2024), whichever 

occurred first. A minimum follow-up period of two years was 

maintained. 

 

 

Data Extraction Form 

Table 1: Description of Chronic Hepatitis B Data 

Section A: Patient Identification (De-identified)  

Variable Data Entry Format 

Patient ID e.g., P001, P002 

Sex Male / Female 

Age at Diagnosis (years) Numeric 

Marital Status Single / Married / Divorced / Widowed 

Occupation  

Section B: Clinical Information  

Variable Data Entry Format 

Date of HBV Diagnosis DD-MM-YYYY 

Date of Treatment Initiation DD-MM-YYYY 

Type of Antiviral Treatment e.g., Tenofovir, Entecavir 

Comorbidities (e.g., HIV, Diabetes) Yes / No; specify type 

Family History of Hepatitis Yes / No 

Baseline ALT Level (U/L) Numeric 

Baseline Viral Load (copies/mL) Numeric or range 

Liver Biopsy or Imaging Result e.g., Cirrhosis, Fibrosis stage 

Adherence Status (if recorded) Good / Poor / Unknown 

Section C: Survival Data  

Variable Data Entry Format 

Last Follow-Up Date DD-MM-YYYY 

Status at Last Follow-Up Alive / Dead / Lost to Follow-Up 

Date of Death (if applicable) DD-MM-YYYY 

Time to Event (in months) Numeric 

Censoring Status 0 = Censored, 1 = Event (death) 

 

Method of Data Analysis 

Survival analysis shall be used in analyzing the demographic 

and clinical dataset, the non-parametric, parametric and semi-

parametric will be considered in this research. 

 

 

 

 

Non-Parametric Model: Kaplan–Meier Estimator 

Kaplan–Meier (KM) Estimator  

Provides a simple way of estimating survival probabilities 

over time without assuming a specific distribution. A 

downward step in the curve corresponds to the occurrence of 

an event (death), while horizontal segments indicate periods 

with no observed events. To compare survival distributions 

between groups, the log-rank test was employed. This non-
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parametric test determines whether the observed differences 

in survival curves across subgroups are statistically 

significant or could have occurred by chance, thereby 

providing evidence of true variation in survival outcomes. 

ŝ(t) = ∏ (1− ⅆi

ni
)

ti≤t
   (1) 

Where: 

 ti = observed event times 

ⅆi = number of events at time tini= number at risk just before 

ti 

 

Interpretation 

The KM curve shows the probability of surviving beyond a 

given time. 

Steeper drops indicate higher risk of death. 

The log-rank test can compare survival between groups. 

 

Semi-Parametric Model: Cox Proportional Hazards (PH) 

Model 

The Cox model evaluates the relationship between covariates 

and the hazard of an event. 

The hazard function is defined as: 

h(t|x) = h0(t)exp (β1x1 + β2x2 + β3x3 + ⋯ + β8x8) (2) 

Where: 

ℎ(𝑡|𝑥) = hazard function at time t, given covariates 𝑥 

ℎ0(𝑡) = baseline hazard function. 

𝛽1, 𝛽2, … , 𝛽8 = regression coefficients reflecting the effect of 

each covariate on the hazard of death 

 

Variables and their Descriptions 

The study incorporated both dependent and independent 

variables: 

 

Dependent Variable 

t = Survival time (in months or years) from diagnosis or 

treatment initiation until death or censoring (alive). 

δ = Censoring indicator (1 if the patient died, 0 if censored or 

alive). 

 

Independent (Covariate) Variables 

The independent variables included in the Cox model are as 

follows: 

𝑥1=Age at diagnosis (years) 

𝑥2=Gender (1 = male, 2 = female) 

𝑥3=ALT levels (alanine aminotransferase, IU/L) 

𝑥4=AST levels (Aspartate Aminotransferase, IU/L) 

𝑥5=HBV DNA viral load (copies/mL) 

𝑥6=METAVIR Fibrosis Stage (1 = advanced fibrosis, 2 = 

cirrhosis) 

𝑥7=Comorbidities (1 = Yes, 0 = No) 
𝑥8=Antiviral treatment received (1 = tenofovir, 2 = entecavir) 

Thus, the model can be expressed as: 
h(t|x) = h0(t)exp (β1Age + β2Genⅆer + β3ALT + β4AST +
β5ViralLoaⅆ + β6METAVIR + β7Comorbiⅆities + β8Antiviral) 
     (3) 

 

Interpretation 

Hazard Ratios (HRs) express covariate effects: 

HR > 1: higher risk (shorter survival) 

HR < 1: lower risk (longer survival) 

HR = 1: no effect 

The Cox model assumes: 

i. The HRs remain constant over time. 

ii. The effect of covariates on the log-hazard is linear. 

 

 

 

Parametric Models: Accelerated Failure Time (AFT) 

Parametric survival models are often expressed through the 

Accelerated Failure Time (AFT) framework. Unlike the 

Proportional Hazards (PH) models that emphasize hazard 

functions, the AFT models focus directly on survival time. In 

essence, the AFT model assumes that the effect of covariates 

is to accelerate or decelerate the time to event by a constant 

factor. This means that the survival function of an individual 

with covariates X is equivalent to the baseline survival 

function evaluated at a rescaled time. The AFT models focus 

on survival time rather than hazard. 

In(T) = µ + β1x1 + β2x2 + β3x3 + ⋯ + βpxp + 𝜎𝜖 (4) 

Where; 

T = survival time 

𝑋𝑖
′𝑠 = independent variable’s (covariates) 

β′ = are constants to be determined 

𝜖 = error term whose distribution defines the specific AFT 

model 

𝜎 = is the scale parameter. 

𝜇 = is the intercept parameter 

 

Interpretation 

coefficients act multiplicatively on survival time. If θj =
 exp(βj) (the time ratio, TR): 

TR > 1: covariate lengthens expected survival time (slower 

failure) 

TR < 1: covariate shortens expected survival time (faster 

failure) 

The AFT survival models considered in this study are: 

Exponential, Weibull, Log-Normal and Log-logistic survival 

distributions. 

 

The Exponential AFT Model 

The exponential model assumes ε follows an extreme-value 

distribution or equivalently hazard λ is constant. 

Survival function: 

S(t)  =  exp(−λt)    (5) 

Hazard function: 

ℎ(𝑡)  =  𝜆 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛 𝑡)   (6) 

under exponential AFT the scale parameter links to λ, the log-

time model still holds but implies a constant baseline hazard. 

 

The Weibull AFT Model 

The Weibull is the most flexible simple parametric AFT, it 

nests the exponential and can model monotonic hazard 

shapes. It’s the first parametric choice for many biomedical 

time-to-event data because of its flexibility and closed-form 

likelihood. 

AFT specification: ln(T)  =  μ +  Xβ +  σε with ε extreme-

value. 

Survival function: 

S(t)  =  exp(−λ𝑡𝑝)    (7) 

Hazard function: 

h(t)  =  λp𝑡𝑝−1    (8) 

If p >  1: hazard increases over time 

If p <  1: hazard decreases over time 

If p =  1: reduces to Exponential 

 

The Log-Normal AFT Model 

The Log-Normal AFT assumes ε ~ N(0,1) so that ln(T) is 

normal. It’s useful when log-times appear roughly normal or 

when hazard is non-monotonic (rises then falls); often fits 

data with a “peak” risk period. 

Survival function: 

S(t)  =  1 −  Φ(
ln(t) − μ

σ
)   (9) 

where Φ (⋅) is the standard normal CDF. 
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Hazard function: non-monotonic, usually rises then falls. 

 

The Log-Logistic AFT Model 

The Log-logistic AFT ε follows logistic distribution on the 

log scale. Hazard can increase then decrease (non-

monotonic), similar to log-normal but with a closed-form 

survival function. 

Survival function: 

𝑆(𝑡) =  
1

1 + (λt)γ    (10) 

where λ > 0 (scale) and γ > 0 (shape). 

Hazard function: 

h(t)  =  
γλγ𝑡γ−1

1 + (λt)γ
     (11) 

 

Model Selection Criteria 

In survival analysis, selecting the most appropriate model is 

essential for ensuring valid inferences. Several criteria have 

been developed for this purpose, including those that 

minimize information loss (Akaike, 1974), maximize 

posterior probability (Schwarz, 1978), or apply Bayesian 

approaches such as the Deviance Information Criterion 

(Spiegelhalter et al., 2002). Among these, the most widely 

applied are the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC). 

The AIC is defined as: 

AIC = −2ln(L̂) + k × p   (12) 

Where: 

L̂ = maximum likelihood of the fitted model 

𝑝 = number of estimated parameters 

𝑘= penalty constant (usually set to 2) 

Similarly, BIC introduces a stronger penalty for model 

complexity, making it more conservative in selecting models 

with additional parameters. For this study, both AIC and BIC 

will be employed to compare competing survival models and 

identify the best-fitting one. 

 

Justification of the Methods of Analysis 

The Cox Proportional Hazards (CPH) model is widely used in 

survival analysis to assess the influence of covariates on the 

time to an event, such as death or disease progression. It 

estimates the relative hazard associated with predictors, 

making it useful f or identifying risk factors while leaving 

the baseline hazard function unspecified. However, the CPH 

model relies on the proportional hazards assumption, meaning 

that hazard ratios between groups remain constant over time. 

When this assumption is not valid, the Accelerated Failure 

Time (AFT) models provide a valuable alternative. Unlike the 

PH approach, AFT models directly model survival time, 

interpreting covariate effects as accelerating or decelerating 

the expected time to event. AFT models are often easier to 

interpret since regression coefficients represent time ratios, 

and they tend to be more robust when certain covariates are 

omitted. Moreover, they are less sensitive to the assumed 

probability distribution, making them a flexible choice when 

hazards are not proportional. 

 

 

RESULTS AN DISCUSSION 

Application to Chronic Hepatitis B Data 

Table 2: Summary Statistics of Categorical Data for Chronic Hepatitis B 

Covariates Categories Status Total 

  Censored (%) Event (%)  

Gender Male 59(59.0) 41(41.0) 100 

 Female 32(64.0) 18(36.0) 50 

     

Marital Single 44(88.0) 6(12.0) 50 

Status Married 44(45.36) 53(54.64) 97 

 Divorced 3(100.0) 0(0.0) 3 

     

Occupation Student 43(87.76) 6(12.24) 49 

 Farmer 14(34.15) 27(65.85) 41 

 Civil Servant 17(70.83) 7(29.17) 24 

 Housewife 14(48.28) 15(51.72) 29 

 Teacher 0(0.0) 1(100.0) 1 

 Fisherman 2(66.67) 1(33.33) 3 

 Businessman 1(33.33) 2(66.67) 3 

     

METAVIR Fibrosis 

Stage 

 

 

Advanced 

Fibrosis 

91(64.08) 51(35.92) 142 

 Cirrhosis 0(0.0) 8(100.0) 8 

     

Antiviral Tenofovir 2(4.65) 41(95.35) 43 

 Entecavir 89(83.18) 18(16.82) 107 

     

Comorbidities Yes 78(92.86) 6(7.14) 84 

 No 13(19.70) 53(80.30) 66 

     

     

Source: Computed using STATA 
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Table 3: Summary Statistics of Quantitative Data for CHB 

Covariates N Minimum Maximum Sum Mean Std. Deviation 

Age at diagnosis 150 17 81 5836 38.91 15.384 

Baseline AST (U/L) 150 137 365 35565 237.10 44.186 

Baseline ALT level (U/L) 150 134 375 36378 242.52 45.458 

Baseline viral load (IU/mL) 150 13107 41897 3740375 24935.83 4810.236 

Source: Computed using STATA 

 

Model Selection Criterion 

Table 4: Results of Model Selection Criterion 

Model AIC BIC 

CPHM 409.73 433.82 

Exponential AFT 183.57 210.67 

Weibull AFT 84.05 114.15 

Log logistic AFT 74.33 104.43 

Lognormal AFT 71.52 101.63 

Source: Extracted from STATA output 

 

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) was used for model selection. 

Rule of thumb: The model with the lowest AIC and/or BIC is considered the best fit to the data. 

 

Cox Proportional Hazard Model Results 

Table 5: Cox Proportional Hazard Model for Chronic Hepatitis B Data 

Covariates B HR S. E P-value 

     

Gender .601 1.824 .353 0.089 

Age at Diagnosis .025 1.025 .012 0.043** 

METAVIR Fibrosis 

Stage 

1.146 3.145 .507 0.024** 

Baseline AST (U/L) .014 1.014 .008 0.097 

Baseline ALT (U/L) .011 1.989 .008 0.159 

Baseline Viral Load .000 1.000 .000 0.359 

Comorbidities 1.414 4.114 .475 0.003*** 

Antiviral -1.47 0.229 .364 0.000*** 

  Likelihood ratio ( 𝜃): 𝜒2 = 76.29; prob. =0.000***   

Source: Computed using STATA 

 

Model Diagnostics and Assumptions 

Test for Proportionality Assumption 

Table 6: Proportional Hazard Assumption for Chronic Hepatitis B Data 

 Chi-square P-value 

Global test for CPH model 10.56 0.2278 

Source: Computed using STATA 

 

The global Schoenfeld residual test (p = 0.2278) indicated that the PH assumption was not violated for the Cox model. 

 

Test for Harrell’s C Concordance Statistic 

Table 7: Harrell’s C Concordance Statistic for Chronic Hepatitis B Data 

Harrell's  C = (E + T/2) / P = 0.8450 

Somers'  D =   0.6899 

Source: Computed using STATA 

 

Table 8: Weibull AFT Model for Chronic Hepatitis B Data 

Covariates B TR S. E P-value 

     

Gender -0.157 0.854 .078 0.039** 

Age at Diagnosis -0.007 0.993 .013 0.017** 

METAVIR Fibrosis Stage -1.315 0.268 .173 0.012** 

Baseline AST (U/L) -0.002 0.998 .001 0.045** 

Baseline ALT (U/L) -0.002 0.998 .001 0.284 

Baseline Viral Load 0.000 1.001 .000 0.409 

Comorbidities -1.356 0.257 .092 0.007*** 
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Covariates B TR S. E P-value 

Antiviral 1.36 3.896 .134 0.000*** 

  Likelihood 

ratio ( 𝜃): 

𝜒2 = 76.94; 

prob. 

=0.000*** 

  

Source: Computed using STATA 

 

Table 9: Log logistic AFT Model for Chronic Hepatitis B Data 

Covariates B TR S. E P-value 

     

Gender -0.091 0.913 .076 0.027** 

Age at Diagnosis -0.008 0.992 .033 0.013** 

METAVIR Fibrosis Stage -1.462 0.231 .221 0.001*** 

Baseline AST (U/L) -0.004 0.996 .002 0.049** 

Baseline ALT (U/L) -0.004 0.996 .002 0.038** 

Baseline Viral Load 0.000 1.001 .000 0.769 

Comorbidities -1.334 0.263 .073 0.001*** 

Antiviral 1.39 4.014 .125 0.000*** 

  Lratio ( 𝜃): 𝜒2 = 87.14; prob. =0.000***   

Source: Computed using STATA 

 

Table 10: Lognormal AFT Model for Chronic Hepatitis B Data 

Covariates B TR S. E P-value 

     

Gender -0.119 0.887 .071 0.013** 

Age at Diagnosis -0.008 0.992 .031 0.005*** 

METAVIR Fibrosis 

Stage 

-1.444 0.235 .217 0.001*** 

Baseline AST (U/L) -0.003 0.997 .002 0.041** 

Baseline ALT (U/L) -0.004 0.996 .002 0.035** 

Baseline Viral Load 0.000 1.001 .000 0.871 

Comorbidities -1.336 0.262 .069 0.001*** 

Antiviral 1.39 4.014 .119 0.000*** 

  Likelihood ratio ( 𝜃): 𝜒2 = 87.64; prob. =0.000***   

Source: Computed using STATA 

 

Kaplan-Meier Survival Curve Analysis for Chronic 

Hepatitis B Data 

The Kaplan-Meier survival analysis was conducted to 

estimate and visualize the survival experiences of chronic 

Hepatitis B patients over the follow-up period. The resulting 

survival curves represent the probability of survival over time 

and provide a graphical summary of patient outcomes across 

different subgroups. 

 

 
Figure 1: The Kaplan-Meier Survival Curve 
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The Kaplan–Meier survival estimate presented in Fig. 1 

demonstrates a gradual but consistent decline in the survival 

probability of patients with chronic hepatitis B over time, 

most notably between 20 and 60 months. Survival decreases 

from nearly 100% to 0%, with the sharpest reduction 

occurring between 30 and 60 months. The smaller number of 

patients remaining at risk toward the end of the follow-up 

period indicates that most individuals had either experienced 

the event or were censored. Overall, the curve shows that 

long-term survival in this study is limited, highlighting the 

importance of early intervention, particularly within the first 

two to three years of follow-up. 

 

 
Figure 2: The Kaplan-Meier Hazard Curve 

 

 
Figure 3: The Kaplan-Meier Survival Curve for Subgroups 
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Table 4 presents the results of model selection based on the 

Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) for the Cox Proportional Hazards 

Model (CPHM) and several Accelerated Failure Time (AFT) 

models. The results show that the Cox model had the highest 

AIC (409.73) and BIC (433.82), suggesting a poor fit to the 

data compared to the parametric alternatives. The exponential 

AFT model showed some improvement (AIC = 183.57; BIC 

= 210.67), but its fit was still weaker than the other parametric 

models. The Weibull AFT model produced a much better fit 

(AIC = 84.05; BIC = 114.15), indicating that allowing the 

hazard to vary over time captures the survival experience of 

patients more accurately. Further improvement was observed 

with the log-logistic AFT model (AIC = 74.33; BIC = 

104.43). However, the log-normal AFT model had the lowest 

AIC (71.52) and BIC (101.63), making it the best-fitting 

model among all those considered. Overall, both AIC and BIC 

consistently identified the log-normal AFT model as the most 

appropriate model for the survival analysis of chronic 

Hepatitis B patients at Federal Medical Centre, Nguru. The 

log-normal model provides the best statistical fit and was 

therefore selected for further interpretation. The lognormal 

accelerated failure time (AFT) model revealed that several 

clinical and demographic factors significantly influenced the 

survival of chronic hepatitis B patients at FMC Nguru. Male 

gender was associated with shorter survival (TR = 0.887, p = 

0.013), which aligns with previous findings suggesting that 

men often experience more aggressive progression of HBV-

related liver disease compared to women (Yang et al., 2019). 

Age at diagnosis also negatively impacted survival, with each 

additional year reducing survival time by about 0.8% (TR = 

0.992, p = 0.005). This finding is consistent with prior studies 

reporting that older patients present with more advanced 

disease and poorer prognosis (Chen et al., 2016). The severity 

of liver disease was one of the strongest predictors of 

mortality. Patients with advanced METAVIR fibrosis or 

cirrhosis survived only 23.5% as long as those with less 

severe disease (TR = 0.235, p < 0.001). This corroborates 

earlier evidence that fibrosis stage is a critical determinant of 

survival in chronic HBV infection (Liaw & Chu, 2009; 

Papatheodoridis et al., 2015). Elevated liver enzymes (AST 

and ALT) were also significant predictors, were 1-unit 

increase in AST and ALT reduced survival time by 0.3% and 

0.4% respectively, reflecting active liver inflammation and 

ongoing hepatocellular damage, findings consistent with 

those of Musa et al. (2015). Comorbidities such as HIV, 

diabetes, or hypertension reduced survival time to 26.2% 

compared with patients without additional conditions (TR = 

0.262, p < 0.001). Similar results have been reported by 

Matthews et al. (2014), who emphasized the adverse impact 

of co-infections and metabolic disorders on HBV prognosis. 

In contrast, antiviral therapy demonstrated a profound 

protective effect. Patients on treatment had survival times 

approximately four times longer than untreated patients (TR 

= 4.014, p < 0.001). This finding is strongly supported by 

previous studies, which have consistently shown that antiviral 

therapy, particularly Tenofovir and Entecavir, reduces the risk 

of cirrhosis, hepatocellular carcinoma, and HBV-related 

mortality (Lok et al., 2016; Revill et al., 2023). The model 

was statistically significant overall (likelihood ratio χ² = 

87.64, p < 0.001), indicating that the covariates collectively 

explained substantial variation in patient survival. Taken 

together, these findings confirm the importance of early 

diagnosis, fibrosis staging, and timely initiation of antiviral 

therapy, in agreement with established evidence across sub-

Saharan Africa. 

 

CONCLUSION 

This study compared non-parametric, semi-parametric, and 

parametric survival models to evaluate prognostic factors 

among chronic hepatitis B patients at Federal Medical Centre, 

Nguru. The Kaplan–Meier analysis revealed limited long-

term survival, particularly within the first 30 to 60 months 

after diagnosis. Model selection based on AIC and BIC 

identified the lognormal AFT model as the best-fitting 

approach, outperforming the Cox proportional hazards and 

other parametric models. The lognormal AFT model 

highlighted age at diagnosis, fibrosis stage, liver enzyme 

levels, and comorbidities as significant predictors of reduced 

survival, while antiviral therapy markedly prolonged survival. 

These findings emphasize the importance of early screening, 

timely staging of liver disease, and initiation of antiviral 

treatment to improve patient outcomes. From a policy 

perspective, strengthening access to affordable diagnostics 

and expanding treatment coverage could reduce hepatitis B–

related mortality in Northern Nigeria. Despite the valuable 

insights provided, this study is constrained by its relatively 

small sample size and single-centre data, which may limit the 

generalizability of the findings to broader populations. Future 

studies with larger and multi-centre cohorts are recommended 

to validate the model performance and enhance the robustness 

of the conclusions. 
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