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ABSTRACT 

The persistent challenges in Nigeria's air-quality monitoring network have limited large-scale spatial 

assessments of particulate matter. This study conducts a national-scale clustering analysis of PM2.5 using 

agglomerative hierarchical clustering which does not require a pre-specified number of clusters and shows 

hierarchical linkages across monitoring sites. Ward's method was applied to daily PM2.5 data from 15 

monitoring stations over the period from 2019 to 2023, using Euclidean distance to assess the similarity 

measure. Three distinct clusters were identified: High Pollution Regions (HPR) with an average PM2.5 

concentration of 61.7 µg m⁻³, Medium Pollution Regions (MPR) at 46.7 µg m⁻³, and Low Pollution Regions 

(LPR) at 36.0 µg m⁻³. The 2019 haze episode produced peak concentrations of 197.7 µg m⁻³ in HPR, leading 

to a hazardous Air Quality Index (AQI) of 273. Cluster distributions demonstrated a significant correlation with 

land-use characteristics. HPR stations were primarily situated in industrial zones, MPR in densely built urban 

corridors, and LPR in coastal peri-urban regions. The resulting novel spatial stratification offers substantial 

evidence for developing targeted and regionally adaptive air quality management strategies across Nigeria. 
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INTRODUCTION 

Air pollution is a significant environmental risk to global 

health, associated with approximately seven million 

premature deaths annually (Manisalidis et al., 2020; World 

Health Organization, 2021; Khomenko et al., 2021). Though, 

fine particulate matter (PM2.5) can penetrate deep into the 

lungs and enter the bloodstream, significantly contributing to 

the burden of cardiopulmonary morbidity and mortality 

(Benabed & Boulbair, 2022; Garcia et al., 2023). But, PM2.5 

pollutions is prevalent in sub-Saharan Africa; however, 

significant areas of the region are inadequately monitored, 

leading to considerable deficiencies in exposure assessment 

and risk estimation (Glenn et al., 2022; World Health 

Organization, 2022; Lawal & Muhammed, 2022). 

Nigeria exemplifies this challenge distinctly. The country, 

with a population surpassing 200 million, confronts 

increasing pollution challenges due to rapid urbanization, 

growing industrial activities, congested transportation 

systems, and frequent biomass burning (Busolo & Njabira, 

2022; Almsatar, 2020). National PM2.5 levels are 

approximately five times higher than the WHO guideline 

(Ezeh et al., 2019; Wambebe & Duan, 2020). However, major 

cities, including Lagos, Kano, Abuja, and Port Harcourt, 

frequently encounter unhealthy to hazardous concentrations, 

especially during the dry season (Sunday, 2022). Spatial 

heterogeneity is evident across the country's ecological zones, 

influenced by industrial distribution, vehicle density, 

meteorological variability, and transboundary haze transport 

(Ogwu et al., 2024; Abulude et al., 2024).  Despite the 

magnitude of these challenges, Nigeria's monitoring capacity 

is insufficient; a 2024 audit reveals that the majority of 

stations are either non-functional or exhibit limited reliability 

(Omokaro et al., 2025). 

The emission landscape highlights the intricacies of exposure. 

Vehicular emissions are prevalent in urban environments, 

exacerbated by the importation of outdated and inadequately 

regulated vehicles (Singh et al., 2023; Oluwakoya, 2024), 

while, industrial sources, especially within the oil-producing 

corridor of the Niger Delta, significantly contribute to 

elevated levels of PM2.5 and gas-phase pollutants (Meo et al., 

2024; World Health Organization, 2021). But, biomass 

combustion and the widespread utilization of diesel and petrol 

generators during power outages contribute to persistent 

emissions in rural and peri-urban communities. Seasonal 

dynamics, particularly during the Harmattan period, increase 

PM2.5 levels by 20–60% due to the advection of Saharan dust 

across the region (Léon et al., 2021). 

Also, under conditions characterized by spatial diversity and 

limited data, it is crucial to employ analytical methods that 

can effectively extract robust spatial structures from sparse 

monitoring networks. Agglomerative Hierarchical Clustering 

(AHC) presents several advantages in this context. It 

eliminates the need for pre-defining the number of clusters, 

elucidates hierarchical relationships, and demonstrates 

effectiveness in heterogeneous pollution environments 

(Paparrizos et al., 2024; Mitchell & Bala, 2024). Meanwhile, 

research conducted in Malaysia, India, and Europe indicates 

that Agglomerative Hierarchical Clustering (AHC) 

employing Ward’s method and Euclidean distance 

successfully categorizes regions into high, medium, and low 

pollution classifications, thereby enhancing the precision of 

regulatory and public health interventions (Rahman et al., 

2022; Azizan et al., 2023). The classification has been 

validated with high accuracy through discriminant analysis 

(Azizan et al., 2023). 

Despite the relevance of this approach, no nationwide AHC-

based assessment of PM2.5 spatial patterns has been conducted 

in Nigeria, leaving a critical evidence gap in the country’s air-

quality management framework. This study addresses that 

gap by applying hierarchical clustering to 5 years of PM2.5 

records from Nigeria’s available monitoring stations. This 

work is guided by three research questions: 

i. Can Ward’s agglomerative hierarchical clustering 

delineate coherent PM2.5 pollution regions across 

Nigeria? 

ii. How do PM2.5 levels vary temporally across these 

regions between 2019 and 2023? 

iii. What do associate AQI values reveal about potential 

health risks across the identified pollution zones? 
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By answering these questions, the study provides the first 

national-scale, cluster-based characterization of PM2.5 in 

Nigeria and delivers policy-relevant insights for 

strengthening air-quality governance in one of Africa’s most 

polluted and data-constrained environments. 

MATERIALS AND METHODS 

Study Area 

Figure 1 shows Nigeria map which spans 923,768 km² in 

West Africa, between latitudes 4°N and 14°N and longitudes 

3°E and 14°E (Adeleye et al., 2021), with a tropical climate 

with wet and dry seasons. The rainy season is April to 

October, while the dry season is November to March. Sufiyan 

et al. (2020) reported that the Harmattan wind blows dusty 

Sahara Desert air during the dry season, affecting air quality. 

Nigeria is divided into six geopolitical regions, South South, 

South West, South East, North Central, North West, and 

North East, each characterized by unique economic activities, 

varying population densities, and specific sources of pollution 

(Elechi et al., 2023). 

 

 
Figure 1: Map of Nigeria Showing the Locations. Britannica, Inc. (2025) 

 

Air Quality Monitoring Stations 

This study utilized data gathered from 15 air quality 

monitoring stations that are strategically located throughout 

Nigeria's six geopolitical zones, as shown in Table 1. The 

selection of stations was determined by factors such as 

geographical representation and classification into urban, 

industrial, and suburban categories. The stations include 

seven (7) urban stations positioned in central urban areas 

characterized by significant traffic volume, five (5) suburban 

stations located in residential neighborhoods characterized by 

moderate development, and three (3) industrial stations 

located in proximity to oil refineries, manufacturing plants, 

and industrial zones. The coordinates of the stations varied 

between 4.82°N and 12.00°N latitude, as well as 3.35°E and 

13.08°E longitude, providing extensive spatial coverage.  

 

Table 1: Air Quality Monitoring Stations in Nigeria 

Station Code Station Name State Zone Location Type Coordinates 

NIG01 Lagos-Ikeja Lagos Southwest Urban 6.5977°N, 

3.3464°E 

NIG02 Lagos-Lekki Lagos Southwest Suburban 6.4437°N, 

3.4700°E 

NIG03 Abuja-Municipal FCT Abuja North Central Urban 9.0574°N, 

7.4898°E 

NIG04 Abuja-Asokoro FCT Abuja North Central Suburban 9.0365°N, 

7.5339°E 

NIG05 Kano-City Kano Northwest Urban 12.0022°N, 

8.5920°E 

NIG06 Kano-Industrial Kano Northwest Industrial 11.9716°N, 

8.5378°E 

NIG07 Port Harcourt-

Trans Amadi 

Rivers South South Industrial 4.8156°N, 

7.0498°E 

NIG08 Port Harcourt-

Rumuola 

Rivers South South Urban 4.8891°N, 

7.0229°E 

NIG09 Benin City-

Central 

Edo South South Urban 6.3381°N, 

5.6157°E 

NIG10 Benin City-

Airport Road 

Edo South South Suburban 6.3176°N, 

5.6347°E 
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Station Code Station Name State Zone Location Type Coordinates 

NIG11 Enugu-Coal 

Camp 

Enugu Southeast Suburban 6.4398°N, 

7.4951°E 

NIG12 Ibadan-Bodija Oyo Southwest Urban 7.3876°N, 

3.9093°E 

NIG13 Warri-Effurun Delta South South Urban 5.5378°N, 

5.7821°E 

NIG14 Maiduguri-GRA Borno Northeast Urban 11.8469°N, 

13.0820°E 

NIG15 Calabar-Marian Cross River South South Suburban 4.9517°N, 

8.3417°E 

 

PM2.5 Measurement and Data Collection 

PM2.5 concentrations were measured through a network of 

stations equipped with Tapered Element Oscillating 

Microbalance (TEOM 1405/1400a) and Beta Attenuation 

Monitors (BAM-1020), both recognized as Federal 

Equivalent Methods by the U.S. EPA (Magi et al., 2020; Jin 

et al., 2019).  TEOM units were primarily utilized at southern 

and coastal locations, equipped with humidity control 

modules to reduce high-moisture interference. In contrast, 

BAM monitors were positioned at northern and inland 

stations to ensure stable performance in drier environments 

(Jin et al., 2019). 

Hourly measurements were compiled into 24-hour averages 

from 1 January 2019 to 31 December 2023, yielding 1,826 

daily observations per station (total n = 27,390). Outlier 

detection utilized the interquartile range (IQR) method for the 

daily series of each station.  Among the flagged values, 147 

observations (0.54% of the dataset) were initially identified as 

potential outliers; 112 were confirmed as instrument or 

power-related anomalies and subsequently removed, while 35 

were retained following cross-validation with calibration and 

meteorological logs. Data gaps, representing less than 5% of 

total observations, were addressed through linear 

interpolation. However, longer periods of missing data were 

omitted from further analyses. 

 

Agglomerative Hierarchical Cluster Analysis 

Agglomerative Hierarchical Clustering (AHC) was employed 

to identify spatial groupings of stations based on similarities 

in PM2.5 levels (Azizan et al., 2023; Rahman et al., 2022).  

This was conducted to ascertain the spatial distribution of the 

stations. Maldonado-Salguero et al. (2022) indicate that the 

method commenced with each station operating as an 

individual cluster.  Subsequently, an iterative process was 

employed to merge the clusters. Ward's linkage was selected 

due to its ability to minimize variation within clusters, 

resulting in compact groups that are distinctly separated from 

each other (El-Araby et al., 2023). Metrics, including median, 

percentiles, and variability measures, provide various insights 

into air quality. However, long-term mean PM₂.₅ is preferred 

for clustering due to its representation of chronic exposure, 

which is the main contributor to cardiovascular and 

respiratory risks, and its compliance with WHO and U.S. EPA 

standards (Zhou et al., 2025; Roy et al., 2025; Jalali et al., 

2021). The mean, unlike medians or short-term variability, 

mitigates the impact of episodic extremes and offers a stable, 

comparable metric across stations, thereby serving as an 

optimal tool for detecting enduring spatial patterns within 

Nigeria’s PM₂.₅ network as illustrated in Eq. 1. 

Δ𝑆 =
𝑝𝑖𝑞𝑗

𝑝𝑖+𝑞𝑗
‖𝑞𝑖 − 𝑞𝑗‖

2   1 

where pi and pj are the number of observations in clusters i 

and j, and qi and qj are the cluster centroids. 

 

Distance Metric 

Euclidean distance was employed as illustrated in Eq. 2 

(Balaji et al., 2022) as the dissimilarity measure, calculated 

as: 

𝐸𝑖𝑗
2 = ∑  𝑛

𝑘=1 (𝑑𝑖𝑘 − 𝑑𝑗𝑘)
2   2 

In this context, E²ij refers to the squared Euclidean distance 

between stations i and j, while dik denotes the mean PM2.5 

concentrations at station i. Additionally, n represents the 

number of variables, which in this instance is n = 1, indicating 

the mean PM2.5. (Fu et al., 2020). The linkage distance was 

standardized using the formula (Elink/Emax) × 100, with Elink 

representing the distance at which clusters converge and Emax 

indicating the maximum distance within the dataset. This 

normalization enhances the understanding of the y-axis in the 

dendrogram used in the results analysis. The AHC analysis 

utilized the SciPy library in Python. The process included 

determining the average PM2.5 concentrations for each station 

from 2019 to 2023. Calculating the Euclidean distances 

among all stations and utilizing Ward's linkage algorithm to 

create a dendrogram visualization and determine the optimal 

height for cutting the dendrogram to yield three distinct 

clusters. Assigning cluster labels of HPR, MPR, and LPR 

according to the average PM2.5 values was also implemented. 

 

Air Quality Index 

The Air Quality Index (AQI) was determined utilizing the 

updated breakpoints for PM2.5 as provided by US EPA PM2.5 

AQI (2024) and Horn & Dasgupta (2024), as seen in Table 2. 

AQI value formula is stated as stated in Eq. 3 (Pyae, 2021), 

𝐼𝑝 =
𝐼𝐻𝑖−𝐼𝐿𝑜

𝐵𝑃𝐻𝑖−𝐵𝑃𝐿𝑜
(𝐶𝑝 − 𝐵𝑃𝐿𝑜) + 𝐼𝐿𝑜  3 

where: 

𝐼𝑝 = AQI value for pollutant 𝑝 (PM2.5), 𝐶𝑝 = Truncated 

concentration of PM2.5 (to 1 decimal place), 𝐵𝑃𝐻𝑖 = 

Concentration breakpoint ≥ 𝐶𝑝, 𝐵𝑃𝐿𝑜 = Concentration 

breakpoint ≤ 𝐶𝑝, 𝐼𝐻𝑖 = AQI value corresponding to 𝐵𝑃𝐻𝑖, 𝐼𝐿𝑜 

= AQI value corresponding to 𝐵𝑃𝐿𝑜 

 

Table 2: US EPA PM2.5 AQI Range (2024) 

AQI Category AQI Range PM2.5 Range (μg/m³)  Health Implications 

Good 0-50 0.0-9.0 Air quality is satisfactory  

Moderate 51-100 9.1-35.4 Acceptable quality  

Unhealthy for Sensitive 

Groups  

101-150 35.5-55.4 Sensitive groups may 

experience effects  
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Unhealthy 151-200 55.5-125.4 Everyone may experience 

health effects  

Very Unhealthy  201-300 125.5-225.4 Health alert conditions  

Hazardous 301+ 225.5+ Emergency conditions  

 

Data visualization analyses and visualizations were conducted 

using Python (version 3.13.5). The workflow including data 

preprocessing, normalization, clustering and performance 

assessment and evaluation using libraries such as scikit-learn, 

pandas, NumPy, and matplotlib. Descriptive statistics such as 

mean, median, standard deviation, skewness, and kurtosis. 

Positive skewness values suggest right-tailed distributions 

typical of pollution events (Rahman et al., 2022). Temporal 

trends were examined through the aggregation of monthly and 

annual data. 

 

RESULTS AND DISCUSSION 

Spatial Distribution of PM2.5 Concentrations 

Over a five-year period, PM2.5 concentrations at 15 Nigerian 

monitoring stations ranged from 33.7 to 67.2 µg m⁻³, 

exceeding the WHO annual recommendation of 5 µg m⁻³ by 

factors of 6.7 to 13.4, as shown in table 3. Concentrations 

were highest in industrialized urban centers, including Kano-

Industrial (67.2 µg m⁻³), Port Harcourt-Trans Amadi (59.9 µg 

m⁻³), and Kano-City (57.8 µg m⁻³), which are emission 

hotspots in Nigeria's manufacturing and petroleum refining 

areas. Lower but significantly increased values were seen at 

semi-rural sites such as Calabar Marian (33.7 µg m⁻³), Enugu 

Coal Camp (35.9 µg m⁻³), and Abuja Asokoro (38.4 µg m⁻³). 

Positive skewness (1.07–1.91) and leptokurtic distributions 

(kurtosis: 2.42–8.99) indicated rare high-pollution episodes 

over baseline concentrations. Warri-Effurun had the highest 

skewness at 1.91, reflecting Nigeria's oil and gas sector's 

interrupted industrial emissions. Distributional features show 

that long-term averaging in air quality management is 

insufficient and suggest that policy frameworks should 

account for episodic pollution spikes. Nigeria's exceedance of 

WHO guidance, compared to sub-Saharan African baselines 

where many cities report similar or elevated PM2.5 levels, 

highlights regional air quality issues caused by rapid 

industrialization, insufficient emissions control, and biomass 

burning. 

 

Table 3: Descriptive Statistics of PM2.5 (µg/m³) by Station from 2019 to 2023 
Station 

Code 

Station  

Name 
State 

Region 

Type 
Min Q1 Median Q3 Max Mean SD Skewness Kurtosis 

             

NIG06 Kano-

Industrial 

Kano HPR 24.08 49.74 61.78 81.76 241.32 67.20 23.84 1.39 4.12 

NIG07 PortHarcourt-

TransAmadi 

Rivers HPR 20.41 45.08 55.47 73.35 197.61 59.97 20.08 1.18 3.25 

NIG05 Kano-City Kano HPR 18.64 43.02 53.70 69.90 228.97 57.81 19.79 1.42 5.57 

NIG09 BeninCity-

Central 

Edo MPR 19.89 39.76 48.88 64.17 180.72 52.58 16.98 1.17 3.93 

NIG01 Lagos-Ikeja Lagos MPR 14.94 37.82 46.58 60.89 181.85 50.57 17.86 1.58 5.56 

NIG13 Warri-

Effurun 

Delta MPR 16.64 37.21 45.98 59.46 189.00 49.60 17.61 1.91 8.99 

NIG08 PortHarcourt-

Rumuola 

Rivers MPR 16.89 36.39 44.82 58.43 158.67 48.22 15.75 1.07 2.42 

NIG03 Abuja-

Municipal 

FCT 

Abuja 

MPR 13.67 34.01 41.94 55.66 182.41 46.01 16.75 1.76 7.03 

NIG12 Ibadan-Bodija Oyo MPR 14.94 34.30 42.43 55.64 166.46 45.63 15.41 1.33 4.82 

NIG10 BeninCity-

AirportRoad 

Edo MPR 12.45 32.35 39.86 52.49 137.64 43.25 14.86 1.21 2.86 

NIG14 Maiduguri-

GRA 

Borno MPR 16.06 31.86 39.64 51.46 176.69 42.53 14.62 1.51 6.23 

NIG02 Lagos-Lekki Lagos MPR 14.18 31.46 38.41 51.00 142.06 41.85 14.26 1.34 4.34 

NIG04 Abuja-

Asokoro 

FCTA

buja 

LPR 13.62 29.12 35.37 46.70 122.27 38.40 12.85 1.18 2.67 

NIG11 Enugu-Coal 

Camp 

Enugu LPR 13.99 26.96 33.33 43.37 130.81 35.93 12.02 1.26 4.10 

NIG15 Calabar-

Marian 

Cross

River 

LPR 11.69 25.16 31.13 40.79 103.96 33.74 11.46 1.22 3.08 

 

Agglomerative Hierarchical Clustering 

Ward's hierarchical clustering categorized 15 Nigerian 

monitoring stations into three distinct clusters: High Pollution 

Region (HPR), Medium Pollution Region (MPR), and Low 

Pollution Region (LPR), according to patterns of PM2.5 

concentrations. This method aligns with hierarchical 

agglomerative clustering used in African air quality networks, 

successfully identifying geographically relevant pollution 

zones characterized by unique health exposure profiles (Izah 

et al., 2024). The dendrogram in figure 2 indicated optimal 

cluster separation at normalized linkage distances similar to 

established thresholds in comparable studies. The 

concentration of HPR clusters in industrialized centers such 

as Kano and Port Harcourt facilitates targeted public health 

interventions for populations facing increased PM2.5-related 

cardiorespiratory issues. Additionally, MPR and LPR 

classifications aid in the implementation of differentiated 

monitoring and policy protocols. The cluster-based 

framework converts spatially diverse pollution data into 

practical epidemiological insights that conform to risk-

stratified air quality management standards. 
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Figure 2: A dendrogram Illustrating the Hierarchical Clustering of 15 PM2.5 Monitoring 

Stations in Nigeria, Employing Ward's Method Alongside Euclidean Distance for the Years 

2019 to 2023. The Red Dashed Line Signifies the Ideal cut-off for Three Distinct Clusters. HPR 

(High Pollution Regions), MPR (Medium Pollution Regions), and LPR (Low Pollution Regions) 

 

High Pollution Regions (HPR) 

Ward's clustering analysis in table 4 revealed three distinct 

PM2.5 exposure zones, each carrying important implications 

for health policy. The High Pollution Region (HPR), which 

encompasses 20% of monitoring stations, includes Kano-

Industrial and Port Harcourt-Trans Amadi, both recognized as 

industrial hotspots. The mean PM2.5 concentrations in this 

area is 61.66 ± 21.69 µg m⁻³, exceeding Nigeria's national 

standard of 25 µg m⁻³ by a factor of 2.5 and surpassing WHO 

guidelines by a factor of 12.3 (World Health Organization, 

2021). The concentration range recorded in Port Harcourt 

(32.3–184.0 µg m⁻³) reflects the episodic gas flaring and 

refinery emissions characteristic of the Niger Delta region. 

The Medium Pollution Region (MPR), encompassing nine 

significant urban centers and representing 60% of monitoring 

stations, exhibited an average particulate matter concentration 

of 46.69 ± 16.45 µg m⁻³. The current level is 8 -10 times above 

the recommendations established by the World Health 

Organization, with vehicular emissions accounting for 

approximately 32% of the PM2.5 burden. The Low Pollution 

Region (LPR; 20% of stations) exhibited a mean 

concentration of 36.02 ± 12.27 µg m⁻³, exceeding the WHO 

annual guidelines by 7.2 times and surpassing WHO Interim 

Target-4 (35 µg m⁻³) (World Health Organization, 2021). This 

suggests that even the least polluted monitoring areas in 

Nigeria pose significant public health risks. This three-tier 

stratification identifies geographically distinct populations, 

necessitating proportionally scaled intervention strategies. 

Emission source controls are implemented in high pollution 

risk (HPR) industrial zones, while vehicle emission standards 

and traffic management are applied in moderate pollution risk 

(MPR) urban centers. Additionally, baseline monitoring 

continues in low pollution risk (LPR) areas. 

 

Table 4: Summary Statistics by Region Type (2019-2023) 

Region 

Type 

NStations Mean PM2.5 

(μg/m³) 

SD 

(μg/m³) 

Min 

(μg/m³) 

Max 

(μg/m³) 

Median 

(μg/m³) 

Q1 

(μg/m³) 

Q3 

(μg/m³) 

HPR 3 61.66 21.69 18.64 241.32 56.86 45.78 74.63 

MPR 9 46.69 16.45 12.45 189.00 43.21 34.76 56.39 

LPR 3 36.02 12.27 11.69 130.81 33.41 26.96 43.36 

 

Spatial Pattern Analysis 

The spatial distribution map in Figure 3 illustrates clear 

geographical clustering patterns. Northern Nigeria, 

particularly Kano State, has been recognized as a notable 

pollution hotspot, with urban and industrial stations classified 

as high pollution risk (HPR). The identified pattern reflects 

the characteristics of the area's semi-arid climate, which 

promotes dust resuspension, alongside vigorous commercial 

activities and a lack of vegetation to facilitate pollutant 

deposition. 
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Figure 3: Analysis of the Spatial Distribution of PM2.5 Monitoring Stations Throughout 

Nigeria Categorized by Pollution Levels. Red Circles Indicate Areas with High Levels of 

Pollution, Orange Circles Denote Regions with Medium Pollution Levels, and Green 

Circles Signify Areas with Low Pollution Levels. The Size of the Circle Indicates the Level 

of Pollution 

 

The Niger Delta region, encompassing Rivers, Delta, and Edo 

states, exhibits varied patterns, featuring industrial stations in 

HPR and urban stations in MPR. This distribution highlights 

the significant impact of oil and gas operations on pollution 

levels in this region (Ukpong et al., 2019). Port Harcourt has 

been noted for its exceptionally high PM2.5 concentrations in 

sub-Saharan Africa, with measurements sometimes 

surpassing 500 µg m⁻³ during severe pollution events. 

Although Lagos is recognized as the largest metropolis in 

West Africa, its coastal position and the influence of 

prevailing winds contribute to a degree of natural dispersion 

of pollutants. Traffic congestion contributes to significant 

PM2.5 emissions from vehicular exhaust. 

 

Temporal Annual Trends in PM2.5 Concentrations 

The five-year trend analysis in Figure 4 and Table 5 reveals 

distinct temporal patterns with important implications for 

public health concerning the three pollution clusters. The 

High Pollution Region (HPR) and Moderate Pollution Region 

(MPR) peaked in 2019, saw a notable decrease in 2020 owing 

to reduced industrial and vehicular activity during the 

COVID-19 lockdown, and reverted to near-baseline levels by 

2023, underscoring the transient character of emission 

reductions in the absence of structural policy reforms. The 

Low Pollution Region (LPR) displayed relative stability 

alongside increasing variability, suggesting localized 

emissions linked to urban expansion, traffic growth, and 

industrial activities. The results demonstrate that even areas 

in Nigeria with lower pollution levels are affected by human 

activities, highlighting the need for continuous emission 

control strategies. The implementation of stricter vehicular 

standards, industrial monitoring, and strategic land-use 

planning is essential to mitigate long-term health risks 

associated with chronic PM₂. ₅ exposure. 

 

 
Figure 4: Analysis of Temporal Annual Trends in PM2.5 Concentrations 

Throughout Nigeria from 2019 to 2023. The Upper Panel Illustrates Monthly 

Fluctuations Characterized by Seasonal Trends, Whereas the Lower Panel 

Presents Yearly Averages Categorized by Region Type. Dashed Lines 

Represent the Interim Targets Set by the WHO 
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Table 5: Annual PM2.5 and AQI Extremes by Region Type 

Region Type Year Mean PM2.5 (μg/m³) Max PM2.5 (μg/m³) Mean AQI Max AQI Max AQI Status 

       

HPR 2019 64.76 197.70 148.84 273 Very Unhealthy 

HPR 2020 58.47 241.32 141.92 312 Hazardous 

HPR 2021 60.09 197.61 144.33 272 Very Unhealthy 

HPR 2022 61.47 195.73 146.04 271 Very Unhealthy 

HPR 2023 63.51 211.13 148.76 286 Very Unhealthy 

LPR 2019 37.54 100.92 106.76 183 Unhealthy 

LPR 2020 33.88 106.60 99.24 187 Unhealthy 

LPR 2021 34.99 96.83 101.64 180 Unhealthy 

LPR 2022 36.11 113.90 103.73 192 Unhealthy 

LPR 2023 37.60 130.81 106.54 206 Very Unhealthy 

MPR 2019 48.90 186.90 127.21 262 Very Unhealthy 

MPR 2020 44.01 166.46 118.92 242 Very Unhealthy 

MPR 2021 45.56 165.75 121.54 241 Very Unhealthy 

MPR 2022 46.89 181.85 123.80 257 Very Unhealthy 

MPR 2023 48.12 189.00 125.95 264 Very Unhealthy 

 

Monthly and Seasonal Patterns 

Figure 5 presents the monthly and seasonal fluctuations of 

PM₂. ₅ concentrations across various regions. In the dry season 

(November–March), concentrations significantly increased, 

reaching their peak between December and February, 

coinciding with the Harmattan period. Dry-season levels 

were, on average, 35–58% higher than those observed during 

the rainy season (April–October). Mean monthly PM₂.₅ 

concentrations in the High Pollution Region (HPR) varied 

from 45 µg m⁻³ during July–August to 85 µg m⁻³ in January–

February. In contrast, the Moderate Pollution Region (MPR) 

and Low Pollution Region (LPR) exhibited ranges of 35–62 

µg m⁻³ and 28–48 µg m⁻³, respectively. The results align with 

findings from West African studies (e.g., Evans et al., 2022), 

which attribute 20–60% seasonal increases in PM₂. ₅ to dust 

intrusion and meteorological conditions during Harmattan, 

thereby reaffirming the significant seasonal impact on air 

quality dynamics in Nigeria. 

 

Peak Concentrations and Timing 

The Kano industrial station reported the highest PM2.5 

concentration of 197.70 µg m⁻³ on March 12, 2019. Figure 5 

and Table 6 show all locations experienced high amounts in 

September and October. September had an average daily HPR 

high of 142 µg m⁻³, with several days exceeding 150 µg. The 

MPR peaked at 186.90 µg m⁻³ in Warri-Effurun on October 

31, 2019, due to biomass burning. Additionally, the LPR 

peaked at 100.92 µg m⁻³ in Abuja-Asokoro on October 10, 

2019. 

 

 
Figure 5: Analysis of Monthly PM2.5 Concentrations Throughout the 2019 Haze Episode in 

Three Distinct Pollution Regions. The Shaded Area (September-October) Represents the Peak 

Haze Period, Pollution from Local Emissions, Resulted in the Highest Recorded Concentrations 

 

The observed values significantly surpassed the WHO's 24-

hour guideline of 15 µg m⁻³, as well as the Nigerian national 

standard of 50 µg m⁻³ (Air Quality Life Index, 2025; WHO, 

2021). 

 

Table 6: 2019 Haze Maximum Recorded Values by Region 

Region 

Type 
Date 

Station 

Code 

PM2.5 

Max(μg/m³) 

AQI 

Max 
Health Status N Stations 

Mean Annual 

PM2.5(μg/m³) 

HPR 2019-03-12 NIG06 197.70 273 Very Unhealthy 3 64.76 

MPR 2019-10-31 NIG13 186.90 262 Very Unhealthy 9 48.90 

LPR 2019-10-10 NIG04 100.92 183 Unhealthy 3 37.54 

 



ON THE MATHEMATICAL MODEL FOR…            Santali et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December, 2025, pp 429 – 439 436 

Air Quality Index During Haze Episode 

In Figure 6, the mean AQI for HPR was recorded at 148.84, 

with a peak maximum of 273, categorizing it as Very 

Unhealthy during the period. The distribution of AQI 

categories revealed that Good (0-50) is 0%, Moderate (51-

100) is 6.12%, Unhealthy for Sensitive Groups (101-150) is 

36.26%, Unhealthy (151-200) is 55.62%, Very Unhealthy 

(201-300) is 2.01%, and Hazardous (301+) is 0%. 

 

 
Figure 6: Analysis of the Distribution of Air Quality Index Categories Across Various Pollution Regions, 

Highlighting the Percentage of days within Each Health Category from 2019 to 2023. HPR Encountered Adverse 

Conditions on 52% of days, Whereas LPR also Faced Subpar Air Quality on more than Half of the Days. 

Throughout the Study Period, no Region Attained Good Air Quality at any Point 

 

MPR showed a mean AQI of 127.21, peaking at 262, which 

is Very Unhealthy. Moderate, 24.84%. Unhealthy for 

Sensitive Groups, 41.67%. Unhealthy, 33.27%. Very 

Unhealthy, 0.21%. LPR's mean AQI was 106.76, with a 

maximum of 183, which is unhealthy. Moderate, 51.69%. 

Unhealthy for Sensitive Groups, 38.36%. Unhealthy, 

9.95%. Every region shows Unhealthy levels during 

September and October, while HPR and MPR reached Very 

Unhealthy levels that required public health warnings. 

AQI Distribution 

Nigeria's five-year dataset showed sustained poor air quality 

in Figure 7. HPR's mean AQI was 146.4, indicating an 

unhealthy threshold for sensitive groups. The data shows that 

94.8% of days had an AQI over 100 and 52.3% over 150, 

making them unhealthy. 3.1% of days had an AQI over 200, 

which is Very Unhealthy. 

 

 
Figure 7: Comparative Boxplots Illustrating the Distributions of PM2.5 Concentrations (Left) and Air 

Quality Index Values (Right) Across the Three Pollution Regions from 2019 to 2023. Reference Lines 

Denote Established Guidelines and Air Quality Index Thresholds 

 

The MPR showed a mean AQI of 123.7, an unhealthy level 

for sensitive groups. The data showed that 76.2% of days had 

an AQI above 100, 28.4% above 150, and 0.8% above 200. 

The LPR had an unhealthy for sensitive groups mean AQI of 

103.6. The data shows that 54.6% of days had an AQI above 

100, 8.2% above 150, and 0.3% above 200.  In Nigeria's least 

polluted areas, air quality standards were surpassed on more 

than half of the observed days. These conditions pose ongoing 

health risks for children, the elderly, and individuals with 

respiratory or cardiovascular issues (US EPA, 2024). 
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Health Impact Assessment in Global Context 

Nigerian residents face an increasing health burden across 

pollution zones, as classified by the US EPA AQI.  Residents 

of HPR encounter "unhealthy" air quality conditions (AQI 

151–200), which are associated with increased risks of 

respiratory dysfunction and cardiovascular stress in the 

general population. In contrast, MPR residents experience 

"unhealthy for sensitive groups" conditions (AQI 101–150), 

impacting 30% of exposed children and adults who exhibit 

moderate or greater lung function impairment during 

moderate exertion.  LPR regions surpass an AQI of 100 in 

55% of measurements, resulting in all exposure zones 

exceeding internationally accepted safety thresholds.  

Examining these levels in relation to regional and global 

datasets highlights the seriousness of Nigeria's pollution 

issue.  Nigerian HPR concentrations (61.66 µg m⁻³) surpass 

those of significant West African counterparts Accra, Ghana 

(49.5 µg m⁻³) and Lomé, Togo (23.5 µg m⁻³)—and are 

comparable to Delhi, India (92.7 µg m⁻³). In contrast, 

Nigerian LPR (36.02 µg m⁻³) is similar to levels in Beijing, 

China (32.6 µg m⁻³) and Bangkok, Thailand (21.7 µg m⁻³), 

suggesting that even Nigeria's least-polluted stations exceed 

urban baselines in developed nations (US urban average: 7–

12 µg m⁻³).  This gradient illustrates that Nigeria's air quality 

crisis is pervasive throughout its monitored regions, 

indicating the need for immediate structural emission 

interventions instead of sporadic policy measures. 

 

CONCLUSION 

In this study, a comprehensive nationwide and regionally 

comparative classification of PM₂.₅ pollution in Nigeria was 

explored, utilizing agglomerative hierarchical clustering 

(AHC) with Ward’s linkage. This study examined five years 

of continuous observations (2019–2023) from 15 monitoring 

stations, categorizing the data into three distinct zones: High 

Pollution Region (HPR), Medium Pollution Region (MPR), 

and Low Pollution Region (LPR). These zones collectively 

illustrate the diverse industrial, urban, and climatic 

characteristics of Nigeria. The findings reveal a distinct 

pollution gradient, defined by HPR zones (e.g., Kano and Port 

Harcourt) predominantly impacted by industrial and 

combustion-related emissions, MPR zones influenced by 

considerable urbanization and vehicular activity, and LPR 

zones exhibiting comparatively lower, yet still notable, 

particulate concentrations pertinent to health. This 

hierarchical classification offers a comprehensive spatial 

overview of air quality in Nigeria, transcending analyses 

centered on individual monitoring stations and enhancing the 

understanding of spatial variations in pollutant exposure. 

The approach attempts to demonstrates robustness. However, 

limitations remain due to inconsistent station coverage and 

reliance on a single clustering algorithm. To overcome these 

limitations, integrating satellite-derived PM₂.₅ data is crucial 

for enhancing spatial completeness, alongside the adoption of 

hybrid machine learning or source apportionment models to 

improve clustering accuracy. Targeted mitigation strategies 

are essential from a policy standpoint, encompassing the 

regulation of industrial emissions and enforcement of fuel 

standards in HPR zones, improved urban transport 

management in MPR zones, and proactive land-use and 

agricultural controls in LPR zones. Future research should 

build upon this framework by incorporating meteorological 

and chemical composition data to strengthen the link between 

emission sources and observed pollution patterns, thus 

supporting evidence-based air quality management and public 

health protection in Nigeria. 
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