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ABSTRACT

This study employed spatial panel econometric techniques to analyze macroeconomic interdependencies across
49 African countries from 2010 to 2023, focusing on the role of trade balance (TB), foreign direct investment
(FDI), interest rates (IR), exchange rates (EXR), and consumer price index (CPI) in influencing GDP.
Traditional panel models often neglect spatial spillovers, leading to biased estimates; thus, we estimate spatial
lag (SAR), spatial error (SEM), and combined SARAR models using Maximum Likelihood Estimation (MLE)
and Generalized Method of Moments (GMM). The results of the analysis reveal that TB is the only consistently
significant economic driver of GDP (coefficients ranging from 0.0571 to 7.0794, p < 0.01), while foreign direct
investment, interest rate, exchange rate, and consumer price index show no significant effects. Spatial
diagnostics confirm strong cross-country dependencies, with spatial autoregressive coefficients (0.58—1.29, p
< 0.01) indicating positive spillovers and spatial error coefficients (ranging from -0.999 to 0.2569) capturing
unobserved shock transmissions. Hausman tests (¥ = 3.53, p = 0.74) validate random effects specifications,
suggesting unobserved regional heterogeneity is best modeled as uncorrelated with regressors. The findings
underscore the necessity of spatial econometric approaches in macroeconomic analysis, particularly for policy
formulations targeting trade-driven growth and regional economic integration in Africa. Policymakers should
prioritize trade-enhancing strategies while accounting for spatial spillovers to maximize cross-border economic
synergies.
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by evaluating FE and RE specifications in African

Spatial panel econometric analysis has emerged as a vital tool
in economic research due to its ability to account for spatial
dependence and heterogeneity, which traditional panel data
models often overlook. Conventional approaches fail to
capture the spillover effects and locational interdependencies
inherent in many economic processes, particularly at
microeconomic levels, such as firm productivity or regional
labor markets (Anselin, 2013). Spatial panel models address
this gap by integrating spatial lags or error structures,
allowing researchers to assess how economic activities in one
region or firm influence neighboring areas (Lesage & Pace,
2009). For instance, knowledge diffusion among firms or
agglomeration effects in labor markets exhibit strong spatial
patterns, making spatial econometrics indispensable for
accurate empirical analysis (Rosenthal & Strange, 2004).
Ignoring these spatial dependencies can lead to biased
estimates, reinforcing the need for specialized techniques that
explicitly model geographic and economic interconnections.

A key challenge in spatial panel modeling is selecting
between fixed effects (FE) and random effects (RE)
specifications, each with distinct implications for bias and
efficiency. FE models are robust against omitted variable bias
by controlling for unobserved, time-invariant heterogeneity
correlated with regressors, whereas RE models assume such
heterogeneity is uncorrelated, yielding more efficient
estimates when valid (Elhorst, 2014). However, spatial
autocorrelation complicates this choice, as standard Hausman
tests may be unreliable in spatial contexts (Mutl &
Pfaffermayr, 2011). To address this, advanced estimation
methods such as maximum likelihood (ML) and generalized
method of moments (GMM) are employed; ML being
efficient under normality but computationally intensive, while
GMM remains robust under heteroskedasticity (Lee & Yu,
2010; Kapoor et al., 2007). This study extends this discourse

macroeconomic spatial models using a spatial Hausman test.
Supporting insights come from Arbia et al. (2021), who
demonstrated the effectiveness of spatial FE models in
capturing localized R&D spillovers, further validating the
significance of spatial econometric approaches in empirical
economic research.

On empirical basis, Arbia et al. (2021) employed spatial fixed
effects (FE) and random effects (RE) models with maximum
likelihood estimation to examine geographic spillovers in
firm-level innovation, using detailed R&D investment data.
Their analysis reveals significant spatial dependencies in
innovation activities, demonstrating that firms' R&D
investments are positively influenced by geographically
proximate peers, with effects strongest within a 50-100 km
radius. The spatial FE model proves particularly effective at
capturing these localized knowledge spillovers while
controlling for unobserved regional heterogeneity. These
findings provide robust empirical evidence that innovation
diffusion is spatially bounded, highlighting how regional
clustering enhances knowledge transfer between firms.
Youssef et al. (2022) employed an innovative Bayesian
spatial true random-effects model to analyze production
inefficiency patterns across Wisconsin dairy farms (2009-
2017), revealing significant spatial dependencies in farm
performance. By integrating stochastic frontier analysis with
spatial econometrics, the study demonstrates that neighboring
farms exhibit correlated efficiency levels (Moran's I = 0.32, p
< 0.01), with proximity to high-performing operations
reducing inefficiency by approximately 15%- suggesting
important knowledge or technology spillovers. The research
highlights how shared local conditions like climate,
infrastructure, and management practices create geographic
clusters of efficiency, challenging traditional models that treat
farm performance as independent.
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Skevas & Skevas (2021) employed an innovative Bayesian
spatial true random-effects model to analyze inefficiency
patterns in Wisconsin dairy farms (2009-2017), revealing that
while average inefficiency is modest (~12%), it exhibits
significant spatial dependence - particularly for persistent
components (p = 0.42) like management practices and
infrastructure, which show stronger geographic clustering
than transient inefficiency factors. This pioneering spatial
analysis demonstrates how neighboring farms share similar
long-term efficiency challenges, suggesting knowledge
spillovers and location-specific constraints play key roles in
agricultural productivity.

Bell (2019) compared three multilevel modeling approaches:
fixed effects (FE), random effects (RE), and within-between
RE models; using simulated data to assess their performance
in handling hierarchical data structures. The study finds that
the within-between RE model is the most flexible and robust,
as it effectively separates within-cluster (individual-level) and
between-cluster (group-level) effects, mitigates bias from
omitted variables, and provides more accurate estimates than
traditional FE or RE models. Unlike FE, which discards
between-cluster variation, and RE, which risks bias if
covariates correlate with random effects, the within-between
RE model combines their strengths by decomposing
predictors into within- and between-cluster components.
Ortiz (2022) analyzed the environmental consequences of the
shadow economy and globalization across 101 countries
(1995-2018) using spatial econometric models (SAR, SDM,
SLX), revealing significant transboundary pollution
spillovers where emissions in one country substantially affect
neighboring nations. The study finds that while globalization
and human capital development help reduce emissions
through technology transfer and sustainable practices, the
shadow economy - accounting for about 23% of global GDP
- significantly worsens environmental degradation by
circumventing regulations, particularly in regions with weak
governance. These findings emphasize the critical need for
internationally coordinated environmental policies that
specifically address cross-border pollution externalities and
implement targeted strategies to formalize informal economic
activities, alongside leveraging globalization's positive
aspects for sustainable development.

Baltagi & Baltagi (2021) present a thorough methodological
review of spatial panel data models in their seminal textbook's
6th edition, systematically integrating spatial econometric
techniques with traditional panel data approaches. The work
introduces key innovations including spatial error component
models that combine random region effects with spatial
autocorrelation,  Hausman-Taylor  specifications  for
endogeneity correction, and robust testing procedures for
cross-sectional dependence, while providing practical
implementation guidance through Stata examples featuring
EU regional employment data. The authors demonstrate
significant advantages of panel data over cross-sectional
approaches in spatial analysis, particularly through enhanced
ability to control for unobserved heterogeneity while
modeling spatial interdependence, with comprehensive
coverage ranging from basic spatial autoregressive (SAR)
panels to advanced dynamic models with spatial moving
average (SMA) errors. This authoritative resource, complete
with companion datasets and code, serves as both a theoretical
reference and practical handbook for spatial panel
econometrics, bridging methodological rigor with empirical
application.

Bu et al. (2024) investigated firm-level productivity spillovers
across Chinese provinces by comparing fixed effects (FE) and
random effects (RE) specifications using firm-level panel data
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and spatial panel models with maximum likelihood
estimation. The study finds that FE models are more
appropriate when unobserved heterogeneity correlates with
regressors, while RE models provide efficiency gains under
strict exogeneity, emphasizing the significance of selecting
the right model based on the underlying data structure.
Despite the growing body of research on spatial panel
econometrics, a notable gap exists in the application of these
methods to analyze selected macroeconomic variables,
particularly in integrating both spatial and temporal
dimensions while addressing model selection challenges.
While studies like Arbia et al. (2021) and Bu et al. (2024)
highlight the effectiveness of spatial fixed and random effects
models in capturing spatial dependencies, and Baltagi &
Baltagi (2021) provide comprehensive methodological
frameworks, there remains limited empirical work that
systematically compares these approaches for
macroeconomic variables such as GDP growth, inflation, or
trade flows. Additionally, although Ortiz (2022) and Youssef
et al. (2022) demonstrate the importance of spatial spillovers
in environmental and agricultural contexts, respectively, few
studies extend these insights to macroeconomic phenomena,
leaving unanswered questions about the spatial transmission
of macroeconomic shocks, the role of unobserved
heterogeneity, and the optimal model specification for such
analyses. This gap underscores the need for research that not
only applies spatial panel econometrics to macroeconomic
variables but also rigorously evaluates the suitability of
different spatial panel models (e.g., FE, RE, or within-
between RE) in this context, while accounting for cross-
border interdependencies and temporal dynamics.

MATERIALS AND METHODS

The study utilized panel data comprising key macroeconomic
variables—Gross Domestic Product (GDP) as the dependent
variable, and Consumer Price Index (CPI), Foreign Direct
Investment (FDI), Interest Rate (IR), Trade Balance (TB), and
Exchange Rate (EXR) as independent variables—across 49
African countries. The dataset incorporated spatial and
temporal dimensions from 2010-2023. The analysis employed
spatial econometric techniques to account for cross-country
dependencies, estimating spatial lag (SAR), spatial error
(SEM), and combined SARAR models through Maximum
Likelihood Estimation (MLE) and Generalized Method of
Moments (GMM) approaches. A spatial weight matrix, likely
based on geographical contiguity or inverse distance, was
used to quantify neighboring effects between countries. The
modeling framework tested both fixed and random effects
specifications, with diagnostic tests including the Hausman
test. All computations were performed using R statistical
software, ensuring robust estimation of the spatial panel
models and their associated parameters. The following
methods are used:

Spatial Panel Data Models

Spatial panel data models are designed to analyze
interdependencies among geographical units over time,
accounting for both cross-sectional and temporal effects. The
existing literature extensively covers both static and dynamic
specifications of these models. In this study, we adopt a
generalized static panel framework that incorporates a
spatially lagged dependent variable as well as autoregressive
spatial disturbances to capture these dependencies.
y=AIrQ@ Wn)y+ X +u )]

The model specification includes y as an NTx1 vector
representing the dependent variable observations, while X
denotes an NT xk matrix containing exogenous explanatory
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variables. The spatial structure incorporates an N xN weights
matrix WN (with zero diagonal elements) and its associated
spatial coefficient A, combined with an identity matrix IT of
size T. The error term consists of two distinct components:
u=r@Ivute 2

The term 1T represents a T x 1 vector of ones, while IN
denotes an N x N identity matrix. The vector p captures
time-invariant individual-specific effects, which are assumed
to lack spatial autocorrelation. Meanwhile, the vector &
consists of spatially autocorrelated innovations following a
spatial autoregressive process.

e=p(IrQ Wn)ev 3)

with p (Jp| < 1) as the spatial autoregressive parameter, W the
spatial weights matrix, vic ~ IID (0, 6>v) and &ix ~ IID (0, o).
Following standard panel data methodology, researchers have
the option to model individual effects either as fixed
parameters or as random variables. When employing a
random effects specification, the approach makes the key
assumption that these wunobserved individual-specific
components exhibit no systematic correlation with any of the
observed explanatory variables included in the model. Under
this framework, the individual effects u; are independently
and identically distributed with zero mean and constant
variance (ui ~ IID (0, 6%u)), allowing the composite error term
to be reformulated accordingly

e=UIr@ By v @)
where;

Bn= (In— pWn). As a consequence, the error term becomes
u=wr@ Iy u+Ur@® Bv)v %)

and the variance-covariance matrix for ¢ is

Qu =op(tred @ In) + o[l @ (B4 BN) '] (6)

The development of Lagrange multiplier (LM) tests by
Baltagi et al. (2003) builds upon a restricted version of the
general spatial panel model that excludes the spatial lag of the
dependent variable. Building on this foundation, Elhorst
(2003, 2009) established a comprehensive classification
system for spatial panel models, differentiating between fixed
and random effects specifications. Mirroring conventional
approaches in cross-sectional analysis, Elhorst’s framework
encompasses both spatial error and spatial lag formulations
within panel data settings. However, his taxonomy does not
incorporate models that simultaneously account for spatial
dependence in both the dependent variable and error terms,
making his specifications particular cases of the more general
model presented here. Kapoor et al. (2007) introduced an
alternative disturbance specification that incorporates spatial
dependence in both the individual-specific effects and the
idiosyncratic error components. While superficially similar to
other specifications, this approach generates distinct spatial
spillover patterns due to its unique variance-covariance
structure. Their model characterizes the disturbance term
using a first-order spatial autoregressive process, which
differs fundamentally in its implications for spatial
transmission mechanisms.

u=pIr@ Wn)u+e @)

The spatial weights matrix Wy captures the neighborhood
structure between observational units, while p represents the
spatial dependence coefficient. To account for temporal
dependence in addition to spatial autocorrelation, the
disturbance terms in Equation (7) incorporate an error

component specification that permits intertemporal
correlation.
e=(r@Inu+v ®)

The model specification includes u as the vector of unit-
specific effects and v as the disturbance term that varies across
both spatial units and time periods. The notation uses 7 to
denote a vector of ones and Iy to represent the N-dimensional
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identity matrix. Mutl and Pfaffermayr (2011) developed a
Hausman test for spatial panel models following Cliff and
Ord’s framework, examining instrumental variables
estimation approaches for both fixed and random effects
specifications. Their work builds upon but extends Kapoor et
al.’s (2007) earlier formulation by incorporating a spatial lag
of the dependent variable, which was absent in the previous
specification. When adopting the random effects framework,
which assumes independence between individual effects and
explanatory variables, Equation (7) can be reformulated as:
u=[Ir@® (In—pWn) ] e )
It follows that the variance-covariance matrix of u is
Qu=[ITQ (IN—pWN) Qe [ITQ (IN—pWNT) ]

(10)
where:
Q- = 0.Q0 + 07 Q1, with
ot =02+ To2, Qo= Ir — )@ 1IN, Q1 = @Iy
and Jr=1nTr
is the typical variance-covariance matrix of a one-way error
component model adapted to the different ordering of the
data. These two panel models exhibit distinct variance-
covariance structures. Specifically, the matrix in Equation (6)
is more complex than that in Equation (10), making its
inversion computationally more demanding. In this study, we
examine both error specifications empirically. For the first
(more intricate) specification, we estimate both random and
fixed effects models using maximum likelihood (ML)
methods. For the second (simplified) specification, we
employ both ML and instrumental variables (IV) estimation
under random and fixed effects assumptions. The following
section details the ML estimation approach for both models,
while Section 6 focuses on the generalized method of
moments (GMM) implementation for the second error
specification.

Maximum Likelihood Estimation

The primary estimation function, pml, serves as a versatile
wrapper where model selection is determined by the model
parameter. Following plm package conventions, this
parameter accepts three values:” within” specifies fixed
effects estimation,” random” selects random effects, and”
pooling” indicates no individual effects. Spatial dependencies
are configured through two logical parameters: lag enables
inclusion of a spatial lag term for the dependent variable when
set to TRUE, while spatial. Error offers three alternatives:
(1)” b” implements Baltagi’s specification (Equation 3), (2)”
kkp” applies the Kapoor-Kelejian-Prucha approach (Equation
7), and (3)” none” excludes spatial error correlation entirely.

Random Effects Model
When analyzing models containing spatially dependent error
structures, standard OLS estimation proves inefficient

regardless of Whethergtzf equals zero. This inefficiency
similarly applies to random effects models even in the
absence of spatial components. To achieve more efficient
parameter estimates, maximum likelihood estimation serves
as a preferred alternative. This section focuses on
implementing ML estimation for the complete model
specification, which incorporates three key features: (1) a
spatially lagged dependent variable, (2) random effects, and
(3) spatial autocorrelation following the structure defined in
Equation 3.

Scaling the error covariance matrix by the idiosyncratic error

. . 2 .
variance o:> and denoting 7 v, and denoting
L 2 )2 — —
@ = U”/UU, JT -_ J-j‘/T, ET = IT - .)Tf[

and Ay= (Iv—iW), (11)
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the expressions for the scaled error covariance

matrix I, its inverse X!, and its determinant [Z| can be
written respectively as

S=¢(UrQ In)+IrQ (BTB)! (12)
S1=JTQ (T$IN+ (BTB)—-1)-1)+ ET Q BTB

[X| = [T¢Iv+ (BTB) '|[(BTB) '[!

Substituting into the general formula given in Anselin (1988,
Ch. 6), one can derive the expression of the likelihood:
L(B, a2, ¢,A, p) = — : ‘

T .
5 lufrﬁ + T In|A|

2
Ino; —

1 .
L |TopIn + (B"B)7Y

1
u's

+ (T —1)In|B| — 357

(13)
We implement an iterative procedure to obtain the maximum
likelihood estimates. Starting from initial values for 4, p and
#, we obtain estimates for # and ¢,? from the first order
conditions:

A= (X" 'X)'XxTu Ay
s (Ay — X)) T YAy — X3)

v NT

(14)

RESULTS AND DISCUSSION
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Fixed Effects Model

In large samples (as N grows), consistent estimation of
individual fixed effects becomes unattainable due to the
incidental parameter problem. However, Elhorst (2003)
argues that a fixed effects approach can still be viable in
spatial econometrics when the primary focus lies in estimating
the regression coefficients f. While Elhorst (2003) examines
spatial lag and spatial error models independently, his analysis
does not extend to specifications combining both a spatially
autocorrelated error term and a spatial lag of the dependent
variable. The fixed effects spatial lag model, expressed in
stacked form, takes the following specification:

y=AUr@ W)y +(ur@ Iy u+Xp+¢ (15)

The model specification includes A as the spatial
autoregressive coefficient, Wn as a non-stochastic spatial
weight’s matrix, it as a T-dimensional column vector of ones,
IN as an NxN identity matrix, and error terms ¢&; following a
normal distribution N (0, 6_¢?).

Table 1: Maximum Likelihood Panel with Spatial Lag, Random Effects, Spatial Error Correlation

Variables Estimate Standard Error t-values p-values

Intercept 484.8992 326.7169 1.4842 0.1378

CPI 0.0147073 0.0135 1.0900 0.2757

FDI 1.0536 4.8489 0.2173 0.8280

IR 0.5839 3.0543 0.1912 0.8484

TB 7.0794 1.6476 4.2967 0.00002

EXR -0.0041 0.0245 -0.1665 0.8678

Phi 7.7924 1.6853 4.6237 0.00003 ***

Rho -0.4711 0.1160 -4.0602 0.00004 ***

Spatial autoregressive coef. 0.5829 0.0727 8.0147 0.00001
Computed using R

The table presents the results of a Maximum Likelihood panel
estimation with spatial lag, random effects, and spatial error
correlation. The intercept is statistically insignificant (p =
0.1378), suggesting no strong baseline effect. Among the
explanatory variables, only the trade balance (TB) shows a
highly significant positive impact (estimate = 7.0794, p =
0.00002), indicating that a unit increase in TB raises the
dependent variable by approximately 7.08 units. Other
variables consumer price index, foreign direct in investment,
interest rate and exchange rate are statistically insignificant (p

> 0.05), implying they do not significantly influence the
dependent variable.

The spatial components reveal strong spatial dependence. The
spatial autoregressive coefficient (0.5829, p = 0.00001)
suggests a significant positive spillover effect, meaning
neighboring regions influence each other. Rho (-0.4711, p =
0.00004) indicates negative spatial error correlation, implying
unobserved shocks in nearby regions have an inverse effect.
Phi (7.7924, p = 0.00003) confirms significant random
effects, highlighting unobserved heterogeneity across regions.

Table 2: Maximum Likelihood Panel with Spatial Random Effects (KKP), Spatial Error Correlation

Variables Estimate Standard Error t-values p-values
Intercept 0.0018 0.0457 4.1390 0.0003488***
CPI 0.0106 0.0158 0.6731 0.500905
FDI 0.0363 0.0588 0.6175 0.536905
IR -0.9677 0.0341 -0.2841 0.776313
TB 0.0571 0.0179 3.1870 0.001437
EXR -0.0097 0.0271 -0.3596 0.719147
Phi 7.4965 1.5943 4.7020 0.0002577***
Rho 0.2569 0.0511 5.0245 0.0005047***
Computed using R

The table presents the results of a Maximum Likelihood panel
estimation with spatial random effects (KKP) and spatial error
correlation. The intercept is highly significant (estimate =
0.0018, p = 0.0003488), indicating a strong baseline effect.
Among the explanatory variables, only the trade balance (TB)
shows a statistically significant positive impact (estimate =
0.0571, p = 0.001437), suggesting that a one-unit increase in
TB leads to a 0.0571-unit rise in the dependent variable. In
contrast, consumer price index, foreign direct in investment,

interest rate and exchange rate are statistically insignificant (p
> 0.05), implying they do not significantly affect the
dependent variable. The spatial components reveal important
dynamics. The spatial error correlation coefficient (Rho =
0.2569, p = 0.0005047) is positive and significant, indicating
that unobserved shocks in neighboring regions have a
spillover effect. The random effects parameter (Phi = 7.4965,
p = 0.0002577) is also highly significant, confirming
substantial unobserved heterogeneity across regions.
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Table 3: Spatial Panel Fixed Effects Sarar Model
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Variables Estimate Standard Error t-values p-values
Intercept 409.47 101.01 4.0538 0.000504 ***
CPI 0.0148 0.0128 1.1596 0.2462

FDI 1.4340 4.5717 0.3137 0.7538

IR 0.6860 2.8923 0.2372 0.8128

TB 6.7139 1.5987 4.1997 0.00002673***
EXR -0.0011 0.0245 -0.0456 0.9636

Rho -0.52162 0.10327 -5.051 0.0004394***
Spatial autoregressive coef. 0.620843 0.06245 9.9403 0.00022%***

Computed using R

The results from the Spatial Panel Fixed Effects Sarar Model
reveal several that there are relationships between the
variables. The intercept is statistically significant (p =
0.000504), indicating a baseline effect of 409.47 when all
other variables are zero. Among the explanatory variables,
Trade Balance (TB) has a strong positive and statistically
significant impact (coefficient = 6.7139, p = 0.00002673),
suggesting that an increase in trade balance significantly
influences the dependent variable. In addition, Consumer
Price Index (CPI), Foreign Direct Investment (FDI), Interest
Rate (IR), and Exchange Rate (EXR) are statistically

Table 4: Spatial Panel Fixed Effects Error Model

insignificant (p > 0.05), implying they do not have a
meaningful effect in this model.

The spatial components are highly significant, with a negative
and significant Rho (-0.52162, p = 0.0004394), indicating
strong negative spatial dependence nearby locations tend to
exhibit opposite trends. Additionally, the spatial
autoregressive coefficient (0.620843, p = 0.00022) is positive
and significant, confirming that spatial spillover effects are
present, meaning that changes in the dependent variable in
one location influence neighboring locations.

Variables Estimate Standard Error t-values p-values
Intercept 1933.25 110.19 17.544 0.0000***
CPI 0.0115 0.0152 0.7561 0.4496
FDI 4.1468 5.6918 0.7286 0.4663
IR -.0.6694 3.2973 -.0.2023 0.8397
TB 5.4208 1.7477 3.1016 0.0001925%***
EXR -0.0042 0.0277 -0.1520 0.8791
Rho 0.2393 0.0478 5.0023 0.000664***
Spatial autoregressive coef.

Computed using R

The results from the Spatial Panel Fixed Effects Error Model
reveals significant intercept (1933.25, p < 0.001) indicates a
substantial baseline value of the dependent variable when all
explanatory factors are zero. Among the economic variables,
Trade Balance (TB) emerges as the only statistically
significant predictor (coefficient = 5.4208, p = 0.0001925),
suggesting that a one-unit increase in trade balance is
associated with a 5.42-unit increase in the dependent variable.
In contrast, Consumer Price Index (CPI), Foreign Direct
Investment (FDI), Interest Rate (IR), and Exchange Rate
(EXR) show no statistically significant effects (all p-values >

Table 5: Spatial Panel Random Effects Error Model (GMM

0.05), implying that these variables do not systematically
influence the outcome in this spatial specification.

The significant spatial error coefficient (Rho = 0.2393, p =
0.000664) indicates strong positive spatial dependence in the
error terms, meaning that unobserved factors or shocks in one
location spill over into neighboring locations. This finding
confirms that spatial autocorrelation is present in the model's
residuals, reinforcing the need to account for spatial effects to
avoid biased estimates. Unlike a spatial lag model, this
specification does not include a spatial autoregressive term for
the dependent variable, focusing instead on correcting for
spatial error dependence.

estimation)

Variables Estimate Standard Error t-values p-values
Intercept 0.0018 0.0366 4.9778 0.000643***
CPI 0.0131 0.0182 0.7209 0.4709
FDI 0.0209 0.0669 0.3136 0.7539
IR 0.0413 0.0396 0.0104 0.9917
TB 0.0752 0.0208 3.6058 0.0003***
EXR -0.0097 0.0308 -0.3165 0.7516
Rho 0.0631
Sigma? v 0.00094
Sigma? 1 0.00017
Theta 0.8845

Computed using R

The Spatial Panel Random Effects Error Model (GMM
estimation) reveals several key findings regarding the
economic and spatial relationships in the analysis. The
intercept is statistically significant (0.0018, p = 0.000643),

FUDMA Journal of Sciences (FJS) Vol.

indicating a baseline effect when all other variables are zero.
Among the explanatory variables, only Trade Balance (TB)
demonstrates a significant positive impact (coefficient =
0.0752, p = 0.0003), suggesting that a one-unit increase in
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trade balance is associated with a 0.075-unit increase in the
dependent variable, holding other factors constant. In
addition, Consumer Price Index (CPI), Foreign Direct
Investment (FDI), Interest Rate (IR), and Exchange Rate
(EXR) are statistically insignificant (all p-values > 0.05),
implying no meaningful influence on the dependent variable
in this model.

The spatial error coefficient (Rho = 0.0631) indicates modest
positive spatial dependence in the error terms, though its
significance is. The variance components (Sigma2 v =

Table 6: Spatial Panel Random Effects Sarar Model (GMM
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0.00094 and Sigma2 1 =0.00017) reflect the variability in the
idiosyncratic and spatial error terms, respectively, while the
theta (0.8845) value suggests a strong weight on the random
effects component in the model. the results highlight trade
balance as the sole significant economic driver, with spatial
effects playing a minor but notable role in the error structure.
This underscores the importance of accounting for both
economic factors and spatial dependencies in panel data
analyses.

estimation)

Variables Estimate Standard Error t-values p-values

Intercept -0.0630 0.0207 -0.0514 0.00227%**

CPI 0.0122 0.0095 1.2851 0.1988

FDI 0.0106 0.0337 0.3154 0.7525

IR -0.0378 0.0235 -0.16074 0.1079

TB 0.0104 0.0157 0.6659 0.5055

EXR -0.0220 0.0187 -0.1801 0.23797

Rho -0.9990

Sigma®v 0.000039%**

Sigma? 1 0.000054***

Theta 0.9153

Spatial autoregressive coef. 1.2944 0.0849 15.244 0.0022***
Computed using R

The results from the Spatial Panel Random Effects Sarar
Model that the intercept is statistically significant (-0.0630,
p=0.00227), indicating a baseline negative effect when all
explanatory variables are zero. Notably, none of the economic
variables - including Consumer Price Index (CPI), Foreign
Direct Investment (FDI), Interest Rate (IR), Trade Balance
(TB), and Exchange Rate (EXR) show statistically significant
effects on the dependent variable (all p-values > 0.05).

The most striking findings emerge from the spatial
components of the model. The spatial autoregressive
coefficient is highly significant (1.2944, p=0.0022),
indicating strong positive spatial dependence. This means that
values of the dependent variable in one location are strongly
influenced by values in neighboring locations, suggesting the
presence of substantial spillover effects.

Conversely, the spatial error coefficient (Rho = -0.9990)
shows nearly perfect negative spatial dependence in the error
terms. This implies that unobserved factors or shocks
affecting one location have an opposite effect on neighboring
locations. The variance components (Sigma2 v = 0.000039
and Sigma2 1 = 0.000054, both significant at p<0.001)
confirm the presence of both idiosyncratic and spatial error
variation, while the high theta value (0.9153) indicates that
random effects dominate in this model.

These results suggest that while traditional economic
variables may not directly explain variation in the dependent
variable, spatial interactions play a crucial role. The
coexistence of strong positive spatial dependence in the
dependent variable with negative dependence in the error
terms presents a complex spatial dynamic that must be
considered in any regional analysis or policy formulation.

Table 7: Lagrange Multiplier (LM) and Hausman Specification Test

Test Statistic p-value Alternative hypothesis
Baltagi, Son, Koh SLM1 56.213 <2.2e-16 Random effect present
Baltagi, Son, Koh SLM2 5.868 4.41e-09 Spatial autocorrelation exists
LM*Landa Condition 4.0625 4.855e-05 Spatial autocorrelation Persist
Hausman test 3.5295 0.74 One model is inconsistent

The combined results indicate that the spatial panel data
exhibit both unobserved heterogeneity (random effects) and
spatial dependence. The SLM1 test (LM1 = 56.213, *p* <
0.001) overwhelmingly supports random effects, suggesting
region-specific unobserved factors vary randomly across
spatial units. The LM2 test (LM2 = 5.868, *p* < 0.001) and
conditional LM-lambda test (LM-lambda = 4.0625, *p* <
0.001) confirm significant spatial autocorrelation, implying
interdependence between neighboring units either through
spillovers or correlated shocks. Critically, the Hausman test
(x> =3.53, *p* =0.74) validates the consistency of the random
effects model, indicating no correlation between unit-specific
effects and regressors.

Thus, a spatial random effects model (e.g., Spatial Random
Effects SARAR or Error model) is statistically justified, as it
accommodates both unobserved heterogeneity and spatial
dependence. Ignoring these features would risk biased
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estimates. The findings align with spatial econometric theory,
emphasizing the need to account for both random regional
variations and spatial linkages in the data.

Discussion

The results from the spatial panel models provide robust
empirical evidence that macroeconomic performance in
African countries is fundamentally driven by spatial
interdependencies, a finding that resonates with but critically
extends the existing literature. Much like the microeconomic
spillovers observed by Arbia et al. (2021) in firm-level
innovation and by Youssef et al. (2022) and Skevas & Skevas
(2021) in agricultural efficiency, the consistently significant
spatial autoregressive and error coefficients across all our
models (e.g., Rho and spatial lag coefficients significant at
p<0.01) demonstrate that GDP in one African nation is
profoundly influenced by the economic conditions and
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unobserved shocks of its neighbors. This confirms the
theoretical assertions of Anselin (2013) and Baltagi & Baltagi
(2021) that ignoring spatial dependence leads to misspecified
models, and it successfully addresses the identified research
gap by applying these techniques to African macroeconomic
variables. Furthermore, the singular and persistent
significance of Trade Balance (TB) across most
specifications, while other variables like FDI and interest
rates remained insignificant, underscores a unique
macroeconomic driver for the region and highlights how
spatial controls can isolate robust economic effects from more
volatile or context-dependent factors. Finally, the diagnostic
tests from Table 7, particularly the insignificant Hausman test
(p=0.74), validate the use of a random effects specification, a
conclusion aligned with Bu et al. (2024) that RE models are
efficient and consistent when unit-specific effects are
uncorrelated with regressors. Thus, this analysis not only
confirms the universality of spatial spillovers from micro
firms and farms to macro nations but also provides a
methodologically sound, spatially-aware model that captures
the complex interconnected reality of the African economic
landscape.

CONCLUSION

The analysis of these spatial panel models reveals consistent
findings across specifications. The trade balance (TB) is the
only economic variable showing a statistically significant
positive impact on the dependent variable (GDP) in most
models, while consumer price index, foreign direct
investment, interest rate, and exchange rate remain
insignificant. Spatial effects are highly influential, with strong
evidence of spatial autocorrelation (positive spillovers in the
dependent variable) and spatial error dependence (both
positive and negative correlations in unobserved shocks). The
random effects models are validated by Hausman tests,
indicating unobserved regional heterogeneity. The spatial
autoregressive coefficients (ranging from 0.58 to 1.29)
confirm significant spillover effects, while Rho values
highlight spatial error dependence, varying in direction and
magnitude across models.

RECOMMENDATIONS
The researcher recommends the followings:

i. Given its consistent significance, policies enhancing
trade balance (e.g., export promotion, import
substitution) should be prioritized to boost gross
domestic products.

ii. Regional policies should consider cross-border
spillovers, as neighboring areas influence each other’s
gross domestic products.

iii. The Hausman test supports random effects
specifications over fixed effects, suggesting unobserved
regional heterogeneity is best modeled as random.
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