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ABSTRACT 

This study employed spatial panel econometric techniques to analyze macroeconomic interdependencies across 

49 African countries from 2010 to 2023, focusing on the role of trade balance (TB), foreign direct investment 

(FDI), interest rates (IR), exchange rates (EXR), and consumer price index (CPI) in influencing GDP. 

Traditional panel models often neglect spatial spillovers, leading to biased estimates; thus, we estimate spatial 

lag (SAR), spatial error (SEM), and combined SARAR models using Maximum Likelihood Estimation (MLE) 

and Generalized Method of Moments (GMM). The results of the analysis reveal that TB is the only consistently 

significant economic driver of GDP (coefficients ranging from 0.0571 to 7.0794, p < 0.01), while foreign direct 

investment, interest rate, exchange rate, and consumer price index show no significant effects. Spatial 

diagnostics confirm strong cross-country dependencies, with spatial autoregressive coefficients (0.58–1.29, p 

< 0.01) indicating positive spillovers and spatial error coefficients (ranging from -0.999 to 0.2569) capturing 

unobserved shock transmissions. Hausman tests (χ² = 3.53, p = 0.74) validate random effects specifications, 

suggesting unobserved regional heterogeneity is best modeled as uncorrelated with regressors. The findings 

underscore the necessity of spatial econometric approaches in macroeconomic analysis, particularly for policy 

formulations targeting trade-driven growth and regional economic integration in Africa. Policymakers should 

prioritize trade-enhancing strategies while accounting for spatial spillovers to maximize cross-border economic 

synergies. 
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INTRODUCTION 

Spatial panel econometric analysis has emerged as a vital tool 

in economic research due to its ability to account for spatial 

dependence and heterogeneity, which traditional panel data 

models often overlook. Conventional approaches fail to 

capture the spillover effects and locational interdependencies 

inherent in many economic processes, particularly at 

microeconomic levels, such as firm productivity or regional 

labor markets (Anselin, 2013). Spatial panel models address 

this gap by integrating spatial lags or error structures, 

allowing researchers to assess how economic activities in one 

region or firm influence neighboring areas (Lesage & Pace, 

2009). For instance, knowledge diffusion among firms or 

agglomeration effects in labor markets exhibit strong spatial 

patterns, making spatial econometrics indispensable for 

accurate empirical analysis (Rosenthal & Strange, 2004). 

Ignoring these spatial dependencies can lead to biased 

estimates, reinforcing the need for specialized techniques that 

explicitly model geographic and economic interconnections. 

A key challenge in spatial panel modeling is selecting 

between fixed effects (FE) and random effects (RE) 

specifications, each with distinct implications for bias and 

efficiency. FE models are robust against omitted variable bias 

by controlling for unobserved, time-invariant heterogeneity 

correlated with regressors, whereas RE models assume such 

heterogeneity is uncorrelated, yielding more efficient 

estimates when valid (Elhorst, 2014). However, spatial 

autocorrelation complicates this choice, as standard Hausman 

tests may be unreliable in spatial contexts (Mutl & 

Pfaffermayr, 2011). To address this, advanced estimation 

methods such as maximum likelihood (ML) and generalized 

method of moments (GMM) are employed; ML being 

efficient under normality but computationally intensive, while 

GMM remains robust under heteroskedasticity (Lee & Yu, 

2010; Kapoor et al., 2007). This study extends this discourse 

by evaluating FE and RE specifications in African 

macroeconomic spatial models using a spatial Hausman test. 

Supporting insights come from Arbia et al. (2021), who 

demonstrated the effectiveness of spatial FE models in 

capturing localized R&D spillovers, further validating the 

significance of spatial econometric approaches in empirical 

economic research. 

On empirical basis, Arbia et al. (2021) employed spatial fixed 

effects (FE) and random effects (RE) models with maximum 

likelihood estimation to examine geographic spillovers in 

firm-level innovation, using detailed R&D investment data. 

Their analysis reveals significant spatial dependencies in 

innovation activities, demonstrating that firms' R&D 

investments are positively influenced by geographically 

proximate peers, with effects strongest within a 50-100 km 

radius. The spatial FE model proves particularly effective at 

capturing these localized knowledge spillovers while 

controlling for unobserved regional heterogeneity. These 

findings provide robust empirical evidence that innovation 

diffusion is spatially bounded, highlighting how regional 

clustering enhances knowledge transfer between firms. 

Youssef et al. (2022) employed an innovative Bayesian 

spatial true random-effects model to analyze production 

inefficiency patterns across Wisconsin dairy farms (2009-

2017), revealing significant spatial dependencies in farm 

performance. By integrating stochastic frontier analysis with 

spatial econometrics, the study demonstrates that neighboring 

farms exhibit correlated efficiency levels (Moran's I = 0.32, p 

< 0.01), with proximity to high-performing operations 

reducing inefficiency by approximately 15%- suggesting 

important knowledge or technology spillovers. The research 

highlights how shared local conditions like climate, 

infrastructure, and management practices create geographic 

clusters of efficiency, challenging traditional models that treat 

farm performance as independent. 
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Skevas & Skevas (2021) employed an innovative Bayesian 

spatial true random-effects model to analyze inefficiency 

patterns in Wisconsin dairy farms (2009-2017), revealing that 

while average inefficiency is modest (~12%), it exhibits 

significant spatial dependence - particularly for persistent 

components (ρ = 0.42) like management practices and 

infrastructure, which show stronger geographic clustering 

than transient inefficiency factors. This pioneering spatial 

analysis demonstrates how neighboring farms share similar 

long-term efficiency challenges, suggesting knowledge 

spillovers and location-specific constraints play key roles in 

agricultural productivity. 

Bell (2019) compared three multilevel modeling approaches: 

fixed effects (FE), random effects (RE), and within-between 

RE models; using simulated data to assess their performance 

in handling hierarchical data structures. The study finds that 

the within-between RE model is the most flexible and robust, 

as it effectively separates within-cluster (individual-level) and 

between-cluster (group-level) effects, mitigates bias from 

omitted variables, and provides more accurate estimates than 

traditional FE or RE models. Unlike FE, which discards 

between-cluster variation, and RE, which risks bias if 

covariates correlate with random effects, the within-between 

RE model combines their strengths by decomposing 

predictors into within- and between-cluster components. 

Ortiz (2022) analyzed the environmental consequences of the 

shadow economy and globalization across 101 countries 

(1995-2018) using spatial econometric models (SAR, SDM, 

SLX), revealing significant transboundary pollution 

spillovers where emissions in one country substantially affect 

neighboring nations. The study finds that while globalization 

and human capital development help reduce emissions 

through technology transfer and sustainable practices, the 

shadow economy - accounting for about 23% of global GDP 

- significantly worsens environmental degradation by 

circumventing regulations, particularly in regions with weak 

governance. These findings emphasize the critical need for 

internationally coordinated environmental policies that 

specifically address cross-border pollution externalities and 

implement targeted strategies to formalize informal economic 

activities, alongside leveraging globalization's positive 

aspects for sustainable development. 

Baltagi & Baltagi (2021) present a thorough methodological 

review of spatial panel data models in their seminal textbook's 

6th edition, systematically integrating spatial econometric 

techniques with traditional panel data approaches. The work 

introduces key innovations including spatial error component 

models that combine random region effects with spatial 

autocorrelation, Hausman-Taylor specifications for 

endogeneity correction, and robust testing procedures for 

cross-sectional dependence, while providing practical 

implementation guidance through Stata examples featuring 

EU regional employment data. The authors demonstrate 

significant advantages of panel data over cross-sectional 

approaches in spatial analysis, particularly through enhanced 

ability to control for unobserved heterogeneity while 

modeling spatial interdependence, with comprehensive 

coverage ranging from basic spatial autoregressive (SAR) 

panels to advanced dynamic models with spatial moving 

average (SMA) errors. This authoritative resource, complete 

with companion datasets and code, serves as both a theoretical 

reference and practical handbook for spatial panel 

econometrics, bridging methodological rigor with empirical 

application. 

Bu et al. (2024) investigated firm-level productivity spillovers 

across Chinese provinces by comparing fixed effects (FE) and 

random effects (RE) specifications using firm-level panel data 

and spatial panel models with maximum likelihood 

estimation. The study finds that FE models are more 

appropriate when unobserved heterogeneity correlates with 

regressors, while RE models provide efficiency gains under 

strict exogeneity, emphasizing the significance of selecting 

the right model based on the underlying data structure. 

Despite the growing body of research on spatial panel 

econometrics, a notable gap exists in the application of these 

methods to analyze selected macroeconomic variables, 

particularly in integrating both spatial and temporal 

dimensions while addressing model selection challenges. 

While studies like Arbia et al. (2021) and Bu et al. (2024) 

highlight the effectiveness of spatial fixed and random effects 

models in capturing spatial dependencies, and Baltagi & 

Baltagi (2021) provide comprehensive methodological 

frameworks, there remains limited empirical work that 

systematically compares these approaches for 

macroeconomic variables such as GDP growth, inflation, or 

trade flows. Additionally, although Ortiz (2022) and Youssef 

et al. (2022) demonstrate the importance of spatial spillovers 

in environmental and agricultural contexts, respectively, few 

studies extend these insights to macroeconomic phenomena, 

leaving unanswered questions about the spatial transmission 

of macroeconomic shocks, the role of unobserved 

heterogeneity, and the optimal model specification for such 

analyses. This gap underscores the need for research that not 

only applies spatial panel econometrics to macroeconomic 

variables but also rigorously evaluates the suitability of 

different spatial panel models (e.g., FE, RE, or within-

between RE) in this context, while accounting for cross-

border interdependencies and temporal dynamics. 

 

MATERIALS AND METHODS 

The study utilized panel data comprising key macroeconomic 

variables—Gross Domestic Product (GDP) as the dependent 

variable, and Consumer Price Index (CPI), Foreign Direct 

Investment (FDI), Interest Rate (IR), Trade Balance (TB), and 

Exchange Rate (EXR) as independent variables—across 49 

African countries. The dataset incorporated spatial and 

temporal dimensions from 2010-2023. The analysis employed 

spatial econometric techniques to account for cross-country 

dependencies, estimating spatial lag (SAR), spatial error 

(SEM), and combined SARAR models through Maximum 

Likelihood Estimation (MLE) and Generalized Method of 

Moments (GMM) approaches. A spatial weight matrix, likely 

based on geographical contiguity or inverse distance, was 

used to quantify neighboring effects between countries. The 

modeling framework tested both fixed and random effects 

specifications, with diagnostic tests including the Hausman 

test. All computations were performed using R statistical 

software, ensuring robust estimation of the spatial panel 

models and their associated parameters. The following 

methods are used: 

 
Spatial Panel Data Models 

Spatial panel data models are designed to analyze 

interdependencies among geographical units over time, 

accounting for both cross-sectional and temporal effects. The 

existing literature extensively covers both static and dynamic 

specifications of these models. In this study, we adopt a 

generalized static panel framework that incorporates a 

spatially lagged dependent variable as well as autoregressive 

spatial disturbances to capture these dependencies. 

y = λ (IT ⊗ WN) y + Xβ + u   (1) 

The model specification includes y as an NT×1 vector 

representing the dependent variable observations, while X 

denotes an NT ×k matrix containing exogenous explanatory 
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variables. The spatial structure incorporates an N ×N weights 

matrix WN (with zero diagonal elements) and its associated 

spatial coefficient λ, combined with an identity matrix IT of 

size T. The error term consists of two distinct components: 

u = (ιT ⊗ IN) µ + ε    (2) 

The term ιT represents a T × 1 vector of ones, while IN 

denotes an N × N identity matrix. The vector µ captures 

time-invariant individual-specific effects, which are assumed 

to lack spatial autocorrelation. Meanwhile, the vector ε 

consists of spatially autocorrelated innovations following a 

spatial autoregressive process. 

ε = ρ (IT ⊗ WN) εv    (3) 

with ρ (|ρ| < 1) as the spatial autoregressive parameter, WN the 

spatial weights matrix, νit ∼ IID (0, σ2ν) and εit ∼ IID (0, σ2ε). 

Following standard panel data methodology, researchers have 

the option to model individual effects either as fixed 

parameters or as random variables. When employing a 

random effects specification, the approach makes the key 

assumption that these unobserved individual-specific 

components exhibit no systematic correlation with any of the 

observed explanatory variables included in the model. Under 

this framework, the individual effects µi are independently 

and identically distributed with zero mean and constant 

variance (µi ∼ IID (0, σ2µ)), allowing the composite error term 

to be reformulated accordingly 

ε = (IT ⊗ BN
−1) ν    (4) 

where; 

BN = (IN − ρWN). As a consequence, the error term becomes 

u = (ιT ⊗ IN) µ + (IT ⊗ BN
−1) ν  (5) 

and the variance-covariance matrix for ε is 

] (6) 

The development of Lagrange multiplier (LM) tests by 

Baltagi et al. (2003) builds upon a restricted version of the 

general spatial panel model that excludes the spatial lag of the 

dependent variable. Building on this foundation, Elhorst 

(2003, 2009) established a comprehensive classification 

system for spatial panel models, differentiating between fixed 

and random effects specifications. Mirroring conventional 

approaches in cross-sectional analysis, Elhorst’s framework 

encompasses both spatial error and spatial lag formulations 

within panel data settings. However, his taxonomy does not 

incorporate models that simultaneously account for spatial 

dependence in both the dependent variable and error terms, 

making his specifications particular cases of the more general 

model presented here. Kapoor et al. (2007) introduced an 

alternative disturbance specification that incorporates spatial 

dependence in both the individual-specific effects and the 

idiosyncratic error components. While superficially similar to 

other specifications, this approach generates distinct spatial 

spillover patterns due to its unique variance-covariance 

structure. Their model characterizes the disturbance term 

using a first-order spatial autoregressive process, which 

differs fundamentally in its implications for spatial 

transmission mechanisms. 

u = ρ (IT ⊗ WN) u + ε   (7) 

The spatial weights matrix WN captures the neighborhood 

structure between observational units, while ρ represents the 

spatial dependence coefficient. To account for temporal 

dependence in addition to spatial autocorrelation, the 

disturbance terms in Equation (7) incorporate an error 

component specification that permits intertemporal 

correlation. 

ε = (ιT ⊗ IN) µ + ν    (8) 

The model specification includes µ as the vector of unit-

specific effects and ν as the disturbance term that varies across 

both spatial units and time periods. The notation uses ιT to 

denote a vector of ones and IN to represent the N-dimensional 

identity matrix. Mutl and Pfaffermayr (2011) developed a 

Hausman test for spatial panel models following Cliff and 

Ord’s framework, examining instrumental variables 

estimation approaches for both fixed and random effects 

specifications. Their work builds upon but extends Kapoor et 

al.’s (2007) earlier formulation by incorporating a spatial lag 

of the dependent variable, which was absent in the previous 

specification. When adopting the random effects framework, 

which assumes independence between individual effects and 

explanatory variables, Equation (7) can be reformulated as: 

u = [IT ⊗ (IN − ρWN) −] ε   (9) 

It follows that the variance-covariance matrix of µ is 

Ωu = [IT ⊗ (IN − ρWN) −1] Ωε [IT ⊗ (IN − ρWN⊤) −1] 

     (10) 

where: 

Ω ,  with   

  
and JT = ιTι⊤T 

is the typical variance-covariance matrix of a one-way error 

component model adapted to the different ordering of the 

data. These two panel models exhibit distinct variance-

covariance structures. Specifically, the matrix in Equation (6) 

is more complex than that in Equation (10), making its 

inversion computationally more demanding. In this study, we 

examine both error specifications empirically. For the first 

(more intricate) specification, we estimate both random and 

fixed effects models using maximum likelihood (ML) 

methods. For the second (simplified) specification, we 

employ both ML and instrumental variables (IV) estimation 

under random and fixed effects assumptions. The following 

section details the ML estimation approach for both models, 

while Section 6 focuses on the generalized method of 

moments (GMM) implementation for the second error 

specification. 

 

Maximum Likelihood Estimation 

The primary estimation function, pml, serves as a versatile 

wrapper where model selection is determined by the model 

parameter. Following plm package conventions, this 

parameter accepts three values:” within” specifies fixed 

effects estimation,” random” selects random effects, and” 

pooling” indicates no individual effects. Spatial dependencies 

are configured through two logical parameters: lag enables 

inclusion of a spatial lag term for the dependent variable when 

set to TRUE, while spatial. Error offers three alternatives: 

(1)” b” implements Baltagi’s specification (Equation 3), (2)” 

kkp” applies the Kapoor-Kelejian-Prucha approach (Equation 

7), and (3)” none” excludes spatial error correlation entirely. 

 

Random Effects Model 

When analyzing models containing spatially dependent error 

structures, standard OLS estimation proves inefficient 

regardless of whether  equals zero. This inefficiency 

similarly applies to random effects models even in the 

absence of spatial components. To achieve more efficient 

parameter estimates, maximum likelihood estimation serves 

as a preferred alternative. This section focuses on 

implementing ML estimation for the complete model 

specification, which incorporates three key features: (1) a 

spatially lagged dependent variable, (2) random effects, and 

(3) spatial autocorrelation following the structure defined in 

Equation 3. 

Scaling the error covariance matrix by the idiosyncratic error 

variance σε
2, and denoting , and denoting 

  
and AN = (IN −λW),     (11) 
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the expressions for the scaled error covariance 

matrix Σ, its inverse Σ−1, and its determinant |Σ| can be 

written respectively as 

Σ = ϕ (JT ⊗ IN) + IT ⊗ (B⊤B) −1  (12) 

Σ−1 = J¯T ⊗ ((TϕIN + (B⊤B) −1) −1) + ET ⊗ B⊤B 

|Σ| = |TϕIN + (B⊤B) −1||(B⊤B) −1|T−1 

Substituting into the general formula given in Anselin (1988, 

Ch. 6), one can derive the expression of the likelihood: 

 (13) 

We implement an iterative procedure to obtain the maximum 

likelihood estimates. Starting from initial values for λ, ρ and 

ϕ, we obtain estimates for β and σν
2 from the first order 

conditions: 

  (14) 

Fixed Effects Model 

In large samples (as N grows), consistent estimation of 

individual fixed effects becomes unattainable due to the 

incidental parameter problem. However, Elhorst (2003) 

argues that a fixed effects approach can still be viable in 

spatial econometrics when the primary focus lies in estimating 

the regression coefficients β. While Elhorst (2003) examines 

spatial lag and spatial error models independently, his analysis 

does not extend to specifications combining both a spatially 

autocorrelated error term and a spatial lag of the dependent 

variable. The fixed effects spatial lag model, expressed in 

stacked form, takes the following specification: 

y = λ (IT ⊗ WN) y + (ιT ⊗ IN) µ + Xβ + ε  (15) 

The model specification includes λ as the spatial 

autoregressive coefficient, WN as a non-stochastic spatial 

weight’s matrix, ιT as a T-dimensional column vector of ones, 

IN as an N×N identity matrix, and error terms εi following a 

normal distribution N (0, σ_ε²). 

 

RESULTS AND DISCUSSION 

Table 1: Maximum Likelihood Panel with Spatial Lag, Random Effects, Spatial Error Correlation 

Variables Estimate Standard Error t-values p-values 

Intercept 484.8992 326.7169 1.4842 0.1378 

CPI 0.0147073 0.0135 1.0900 0.2757 

FDI 1.0536 4.8489 0.2173 0.8280 

IR 0.5839 3.0543 0.1912 0.8484 

TB 7.0794 1.6476 4.2967 0.00002 

EXR -0.0041 0.0245 -0.1665 0.8678 

Phi 7.7924 1.6853 4.6237 0.00003*** 

Rho -0.4711 0.1160 -4.0602 0.00004*** 

Spatial autoregressive coef. 0.5829 0.0727 8.0147 0.00001 

Computed using R 

 

The table presents the results of a Maximum Likelihood panel 

estimation with spatial lag, random effects, and spatial error 

correlation. The intercept is statistically insignificant (p = 

0.1378), suggesting no strong baseline effect. Among the 

explanatory variables, only the trade balance (TB) shows a 

highly significant positive impact (estimate = 7.0794, p = 

0.00002), indicating that a unit increase in TB raises the 

dependent variable by approximately 7.08 units. Other 

variables consumer price index, foreign direct in investment, 

interest rate and exchange rate are statistically insignificant (p 

> 0.05), implying they do not significantly influence the 

dependent variable. 

The spatial components reveal strong spatial dependence. The 

spatial autoregressive coefficient (0.5829, p = 0.00001) 

suggests a significant positive spillover effect, meaning 

neighboring regions influence each other. Rho (-0.4711, p = 

0.00004) indicates negative spatial error correlation, implying 

unobserved shocks in nearby regions have an inverse effect. 

Phi (7.7924, p = 0.00003) confirms significant random 

effects, highlighting unobserved heterogeneity across regions. 

 

Table 2: Maximum Likelihood Panel with Spatial Random Effects (KKP), Spatial Error Correlation 

Variables Estimate Standard Error t-values p-values 

Intercept 0.0018 0.0457 4.1390 0.0003488*** 

CPI 0.0106 0.0158 0.6731 0.500905 

FDI 0.0363 0.0588 0.6175 0.536905 

IR -0.9677 0.0341 -0.2841 0.776313 

TB  0.0571 0.0179 3.1870 0.001437 

EXR -0.0097 0.0271 -0.3596 0.719147 

Phi 7.4965 1.5943 4.7020 0.0002577*** 

Rho 0.2569 0.0511 5.0245 0.0005047*** 

Computed using R 

 

The table presents the results of a Maximum Likelihood panel 

estimation with spatial random effects (KKP) and spatial error 

correlation. The intercept is highly significant (estimate = 

0.0018, p = 0.0003488), indicating a strong baseline effect. 

Among the explanatory variables, only the trade balance (TB) 

shows a statistically significant positive impact (estimate = 

0.0571, p = 0.001437), suggesting that a one-unit increase in 

TB leads to a 0.0571-unit rise in the dependent variable. In 

contrast, consumer price index, foreign direct in investment, 

interest rate and exchange rate are statistically insignificant (p 

> 0.05), implying they do not significantly affect the 

dependent variable. The spatial components reveal important 

dynamics. The spatial error correlation coefficient (Rho = 

0.2569, p = 0.0005047) is positive and significant, indicating 

that unobserved shocks in neighboring regions have a 

spillover effect. The random effects parameter (Phi = 7.4965, 

p = 0.0002577) is also highly significant, confirming 

substantial unobserved heterogeneity across regions. 
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Table 3: Spatial Panel Fixed Effects Sarar Model 

Variables Estimate Standard Error t-values p-values 

Intercept 409.47 101.01 4.0538 0.000504*** 

CPI 0.0148 0.0128 1.1596 0.2462 

FDI 1.4340 4.5717 0.3137 0.7538 

IR 0.6860 2.8923 0.2372 0.8128 

TB 6.7139 1.5987 4.1997 0.00002673*** 

EXR -0.0011 0.0245 -0.0456 0.9636 

Rho -0.52162 0.10327 -5.051 0.0004394*** 

Spatial autoregressive coef. 0.620843  0.06245 9.9403 0.00022*** 

Computed using R 

 

The results from the Spatial Panel Fixed Effects Sarar Model 

reveal several that there are relationships between the 

variables. The intercept is statistically significant (p = 

0.000504), indicating a baseline effect of 409.47 when all 

other variables are zero. Among the explanatory variables, 

Trade Balance (TB) has a strong positive and statistically 

significant impact (coefficient = 6.7139, p = 0.00002673), 

suggesting that an increase in trade balance significantly 

influences the dependent variable. In addition, Consumer 

Price Index (CPI), Foreign Direct Investment (FDI), Interest 

Rate (IR), and Exchange Rate (EXR) are statistically 

insignificant (p > 0.05), implying they do not have a 

meaningful effect in this model. 

The spatial components are highly significant, with a negative 

and significant Rho (-0.52162, p = 0.0004394), indicating 

strong negative spatial dependence nearby locations tend to 

exhibit opposite trends. Additionally, the spatial 

autoregressive coefficient (0.620843, p = 0.00022) is positive 

and significant, confirming that spatial spillover effects are 

present, meaning that changes in the dependent variable in 

one location influence neighboring locations. 

 

Table 4: Spatial Panel Fixed Effects Error Model 

Variables Estimate Standard Error t-values p-values 

Intercept 1933.25 110.19 17.544 0.0000*** 

CPI 0.0115 0.0152 0.7561 0.4496 

FDI 4.1468 5.6918 0.7286 0.4663 

IR -.0.6694 3.2973 -.0.2023 0.8397 

TB 5.4208 1.7477 3.1016 0.0001925*** 

EXR -0.0042 0.0277 -0.1520 0.8791 

Rho 0.2393 0.0478 5.0023 0.000664*** 

Spatial autoregressive coef.      

Computed using R 

 

The results from the Spatial Panel Fixed Effects Error Model 

reveals significant intercept (1933.25, p < 0.001) indicates a 

substantial baseline value of the dependent variable when all 

explanatory factors are zero. Among the economic variables, 

Trade Balance (TB) emerges as the only statistically 

significant predictor (coefficient = 5.4208, p = 0.0001925), 

suggesting that a one-unit increase in trade balance is 

associated with a 5.42-unit increase in the dependent variable. 

In contrast, Consumer Price Index (CPI), Foreign Direct 

Investment (FDI), Interest Rate (IR), and Exchange Rate 

(EXR) show no statistically significant effects (all p-values > 

0.05), implying that these variables do not systematically 

influence the outcome in this spatial specification. 

The significant spatial error coefficient (Rho = 0.2393, p = 

0.000664) indicates strong positive spatial dependence in the 

error terms, meaning that unobserved factors or shocks in one 

location spill over into neighboring locations. This finding 

confirms that spatial autocorrelation is present in the model's 

residuals, reinforcing the need to account for spatial effects to 

avoid biased estimates. Unlike a spatial lag model, this 

specification does not include a spatial autoregressive term for 

the dependent variable, focusing instead on correcting for 

spatial error dependence. 
 

Table 5: Spatial Panel Random Effects Error Model (GMM estimation) 

Variables Estimate Standard Error t-values p-values 

Intercept  0.0018 0.0366 4.9778 0.000643*** 

CPI 0.0131 0.0182 0.7209 0.4709 

FDI 0.0209 0.0669 0.3136 0.7539 

IR 0.0413 0.0396 0.0104 0.9917 

TB 0.0752 0.0208 3.6058 0.0003*** 

EXR -0.0097 0.0308 -0.3165 0.7516 

Rho 0.0631    

Sigma2 v  0.00094    

Sigma2 1 0.00017    

Theta 0.8845    

Computed using R 

 

The Spatial Panel Random Effects Error Model (GMM 

estimation) reveals several key findings regarding the 

economic and spatial relationships in the analysis. The 

intercept is statistically significant (0.0018, p = 0.000643), 

indicating a baseline effect when all other variables are zero. 

Among the explanatory variables, only Trade Balance (TB) 

demonstrates a significant positive impact (coefficient = 

0.0752, p = 0.0003), suggesting that a one-unit increase in 
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trade balance is associated with a 0.075-unit increase in the 

dependent variable, holding other factors constant. In 

addition, Consumer Price Index (CPI), Foreign Direct 

Investment (FDI), Interest Rate (IR), and Exchange Rate 

(EXR) are statistically insignificant (all p-values > 0.05), 

implying no meaningful influence on the dependent variable 

in this model. 

The spatial error coefficient (Rho = 0.0631) indicates modest 

positive spatial dependence in the error terms, though its 

significance is. The variance components (Sigma2 v = 

0.00094 and Sigma2 1 = 0.00017) reflect the variability in the 

idiosyncratic and spatial error terms, respectively, while the 

theta (0.8845) value suggests a strong weight on the random 

effects component in the model. the results highlight trade 

balance as the sole significant economic driver, with spatial 

effects playing a minor but notable role in the error structure. 

This underscores the importance of accounting for both 

economic factors and spatial dependencies in panel data 

analyses. 

 

Table 6: Spatial Panel Random Effects Sarar Model (GMM estimation) 

Variables Estimate Standard Error t-values p-values 

Intercept -0.0630 0.0207 -0.0514 0.00227*** 

CPI 0.0122 0.0095 1.2851 0.1988 

FDI 0.0106 0.0337 0.3154 0.7525 

IR -0.0378 0.0235 -0.16074 0.1079 

TB 0.0104 0.0157 0.6659 0.5055 

EXR -0.0220 0.0187 -0.1801 0.23797 

Rho -0.9990    

Sigma2 v 0.000039***    

Sigma2 1 0.000054***    

Theta 0.9153    

Spatial autoregressive coef. 1.2944 0.0849 15.244 0.0022*** 

Computed using R 

 

The results from the Spatial Panel Random Effects Sarar 

Model that the intercept is statistically significant (-0.0630, 

p=0.00227), indicating a baseline negative effect when all 

explanatory variables are zero. Notably, none of the economic 

variables - including Consumer Price Index (CPI), Foreign 

Direct Investment (FDI), Interest Rate (IR), Trade Balance 

(TB), and Exchange Rate (EXR) show statistically significant 

effects on the dependent variable (all p-values > 0.05). 

The most striking findings emerge from the spatial 

components of the model. The spatial autoregressive 

coefficient is highly significant (1.2944, p=0.0022), 

indicating strong positive spatial dependence. This means that 

values of the dependent variable in one location are strongly 

influenced by values in neighboring locations, suggesting the 

presence of substantial spillover effects. 

Conversely, the spatial error coefficient (Rho = -0.9990) 

shows nearly perfect negative spatial dependence in the error 

terms. This implies that unobserved factors or shocks 

affecting one location have an opposite effect on neighboring 

locations. The variance components (Sigma2 v = 0.000039 

and Sigma2 1 = 0.000054, both significant at p<0.001) 

confirm the presence of both idiosyncratic and spatial error 

variation, while the high theta value (0.9153) indicates that 

random effects dominate in this model. 

These results suggest that while traditional economic 

variables may not directly explain variation in the dependent 

variable, spatial interactions play a crucial role. The 

coexistence of strong positive spatial dependence in the 

dependent variable with negative dependence in the error 

terms presents a complex spatial dynamic that must be 

considered in any regional analysis or policy formulation. 
 

Table 7: Lagrange Multiplier (LM) and Hausman Specification Test   

Test Statistic p-value Alternative hypothesis 

Baltagi, Son, Koh SLM1 56.213 <2.2e-16 Random effect present 

Baltagi, Son, Koh SLM2 5.868 4.41e-09 Spatial autocorrelation exists 

LM*Landa Condition 4.0625 4.855e-05 Spatial autocorrelation Persist 

Hausman test 3.5295 0.74 One model is inconsistent 

 

The combined results indicate that the spatial panel data 

exhibit both unobserved heterogeneity (random effects) and 

spatial dependence. The SLM1 test (LM1 = 56.213, *p* < 

0.001) overwhelmingly supports random effects, suggesting 

region-specific unobserved factors vary randomly across 

spatial units. The LM2 test (LM2 = 5.868, *p* < 0.001) and 

conditional LM-lambda test (LM-lambda = 4.0625, *p* < 

0.001) confirm significant spatial autocorrelation, implying 

interdependence between neighboring units either through 

spillovers or correlated shocks. Critically, the Hausman test 

(χ² = 3.53, *p* = 0.74) validates the consistency of the random 

effects model, indicating no correlation between unit-specific 

effects and regressors. 

Thus, a spatial random effects model (e.g., Spatial Random 

Effects SARAR or Error model) is statistically justified, as it 

accommodates both unobserved heterogeneity and spatial 

dependence. Ignoring these features would risk biased 

estimates. The findings align with spatial econometric theory, 

emphasizing the need to account for both random regional 

variations and spatial linkages in the data. 

 

Discussion 

The results from the spatial panel models provide robust 

empirical evidence that macroeconomic performance in 

African countries is fundamentally driven by spatial 

interdependencies, a finding that resonates with but critically 

extends the existing literature. Much like the microeconomic 

spillovers observed by Arbia et al. (2021) in firm-level 

innovation and by Youssef et al. (2022) and Skevas & Skevas 

(2021) in agricultural efficiency, the consistently significant 

spatial autoregressive and error coefficients across all our 

models (e.g., Rho and spatial lag coefficients significant at 

p<0.01) demonstrate that GDP in one African nation is 

profoundly influenced by the economic conditions and 
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unobserved shocks of its neighbors. This confirms the 

theoretical assertions of Anselin (2013) and Baltagi & Baltagi 

(2021) that ignoring spatial dependence leads to misspecified 

models, and it successfully addresses the identified research 

gap by applying these techniques to African macroeconomic 

variables. Furthermore, the singular and persistent 

significance of Trade Balance (TB) across most 

specifications, while other variables like FDI and interest 

rates remained insignificant, underscores a unique 

macroeconomic driver for the region and highlights how 

spatial controls can isolate robust economic effects from more 

volatile or context-dependent factors. Finally, the diagnostic 

tests from Table 7, particularly the insignificant Hausman test 

(p=0.74), validate the use of a random effects specification, a 

conclusion aligned with Bu et al. (2024) that RE models are 

efficient and consistent when unit-specific effects are 

uncorrelated with regressors. Thus, this analysis not only 

confirms the universality of spatial spillovers from micro 

firms and farms to macro nations but also provides a 

methodologically sound, spatially-aware model that captures 

the complex interconnected reality of the African economic 

landscape. 

 

CONCLUSION 

The analysis of these spatial panel models reveals consistent 

findings across specifications. The trade balance (TB) is the 

only economic variable showing a statistically significant 

positive impact on the dependent variable (GDP) in most 

models, while consumer price index, foreign direct 

investment, interest rate, and exchange rate remain 

insignificant. Spatial effects are highly influential, with strong 

evidence of spatial autocorrelation (positive spillovers in the 

dependent variable) and spatial error dependence (both 

positive and negative correlations in unobserved shocks). The 

random effects models are validated by Hausman tests, 

indicating unobserved regional heterogeneity. The spatial 

autoregressive coefficients (ranging from 0.58 to 1.29) 

confirm significant spillover effects, while Rho values 

highlight spatial error dependence, varying in direction and 

magnitude across models. 

 

RECOMMENDATIONS 

The researcher recommends the followings: 

i. Given its consistent significance, policies enhancing 

trade balance (e.g., export promotion, import 

substitution) should be prioritized to boost gross 

domestic products. 

ii. Regional policies should consider cross-border 

spillovers, as neighboring areas influence each other’s 

gross domestic products. 

iii. The Hausman test supports random effects 

specifications over fixed effects, suggesting unobserved 

regional heterogeneity is best modeled as random. 
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