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ABSTRACT 

Rapid urbanization has accelerated land use/land cover (LULC) changes and accompanying thermal stress in 

cities across sub-Saharan Africa. This study investigated the relationships between urban growth and ecological 

thermal conditions in Kaduna Metropolis, Nigeria, between 2004 and 2024 via Landsat data and remote sensing 

indices. LULC was divided into five classes—bare terrain, built-up areas, cultivated lands, tree cover, and water 

bodies—through multiresolution segmentation and a decision tree algorithm. The land surface temperature 

(LST) was derived via thermal bands, whereas the urban heat island (UHI) intensity and the urban thermal field 

variance index (UTFVI) were employed to measure spatial changes in thermal stress. This study introduces the 

Vegetation Cooling Efficiency Index (VCEI) to evaluate the cooling impact of vegetation. The results 

demonstrate strong increases in built-up areas (+121.04 km²) and bare fields (+596.19 km²), mostly at the 

expense of cultivated lands (–525.54 km²) and tree cover (–191.91 km²). The mean LST rose from 32.2 °C in 

2004 to 35.7 °C in 2024, with significant geographic differences in surface heating. UHI hotspots persisted in 

urban cores; however, the maximum intensity decreased significantly (from +5.27 °C to +3.72 °C), whereas 

the UTFVI suggested moderate and rather stable ecological thermal stress. The VCEI confirmed the continuous 

cooling effect of vegetation, while its efficacy diminished with vegetation removal. These findings reinforce 

the importance of unplanned urban growth in modifying thermal settings and highlight the necessity of green 

infrastructure and vegetation preservation in promoting ecological resilience and thermal comfort. 
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INTRODUCTION 

Owing to rapid population growth, infrastructure 

development, and industrialization, urbanization has become 

a global environmental issue (Amir Siddique et al., 2024). The 

world's urban population is projected to increase by 2.5 billion 

between 2018 and 2050, with approximately 90% of this 

increase occurring in Africa and Asia (Sharma & Vashishtha, 

2024). Nigeria is among the most urbanized regions in sub-

Saharan Africa, with an annual rate of urbanization of 3.5% 

(World Bank, 2024). According to Statista (2024), the share 

of Nigeria's urban population rose to 53.52 percent in the year 

2022. Kaduna metropolis, particularly, has experienced 

tremendous growth in population, from approximately 

250,000 in the 1960s to over three (3) million people in the 

year 2024 (Kaduna Bureau of Statistics, 2024). This increase 

in urbanization has led to the modification of land cover 

across the globe, significantly impacting humans and causing 

severe environmental degradation (Rashid et al., 2022). 

Changes in land use and land cover have been identified as 

key factors influencing land surface temperature (LST) (Al 

Shawabkeh et al., 2024), although previous studies have 

reported that LST is influenced by a combination of other 

factors, such as the removal of vegetation (Abubakar et al., 

2024), physical properties of construction materials, 

buildings, morphology, surface roughness (Litardo et al., 

2020; Tesfamariam et al., 2024), and anthropogenic heat 

sources. These changes impact the thermal capacity of cities, 

heat conductivity, and albedo coefficient (Kusumawardani & 

Hidayati, 2022). The Intergovernmental Panel on Climate 

Change (IPCC) projects that atmospheric carbon dioxide 

levels will double from preindustrial levels by 2100 and that 

the average global land surface temperature (LST) will rise by 

1.4–5.8 °C (Faisal et al., 2021). Furthermore, this 

uncontrolled increase in LST has been identified as the main 

driver of the formation of the urban heat island (UHI) effect 

globally (Das et al., 2020; Koko, Yue, et al., 2021). The UHI 

effect is defined as the difference in air and surface 

temperatures between urban centers and their natural 

surroundings (Hidalgo-García & Arco-Díaz, 2022; Koko, 

Wu, et al., 2021; Ullah et al., 2024), and it has become a 

serious concern to researchers because of its negative impact 

on human health (Muhammad & Abubakar, 2025), as well as 

environmental variables such as air quality, precipitation, 

temperature, carbon storage, and energy balance (Rousta et 

al., 2018). Additionally, increased energy consumption in 

cities as a result of warming can significantly impact SDG-3 

to ensure healthy lives and promote well-being at all ages 

(Ünsal et al., 2024), SDG-6 for clean and affordable energy 

(Mahato et al., 2024), SDG-11 for sustainable cities and 

communities, and SDG-13 climate action (Ünsal et al., 2024). 

Thus, studying thermal islands is critical in regional planning 

(Zandi et al., 2022). 

Remote sensing provides adequate spatial and spectral 

resources that can be used to study urban-related issues at the 

macro level (Abubakar, 2019). Moreover, freely available 

sensors from Landsat, Moderate Resolution Imaging 

Spectroradiometer (MODIS), and Sentinel satellites/sensors 

have provided multispectral and multitemporal images that 

have been used in urban studies (Adão et al., 2024; Amir 

Siddique et al., 2024; Andronis et al., 2022; Arias et al., 2024; 

Naserikia et al., 2024; Peng et al., 2020; Sandoval et al., 2024; 

Shukla & Jain, 2021; Singh et al., 2024; Sugianto et al., 2024; 

Taripanah & Ranjbar, 2021). Specifically, studies have 

applied UHIs and UTFVIs to study thermal comfort in cities 

globally (Mhana et al., 2024; Moisa & Gemeda, 2022; Patel 

et al., 2024; Rao et al., 2024; Rashid et al., 2022; Siswanto et 

al., 2024; Tesfamariam et al., 2024; Wemegah et al., 2020; 

Zandi et al., 2022). 

In the Kaduna metropolis, different studies have been carried 

out on land surface temperature. For example, Zaharaddeen et 

al. (2016) estimated the LST in the Kaduna Metropolis via 

Landsat images and reported a negative relationship between 
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the vegetation density and land surface temperature. 

Abubakar et al. (2024) assessed the relationship between the 

LST and NDVI via MODIS time series data. However, on the 

basis of the available literature, studies on surface urban heat 

island intensity (SUHII) and the urban thermal field variance 

index (UTFVI) are rare. 

In recent years, the Kaduna metropolis has experienced a 

significant expansion of settlements due to rapid population 

growth (Amin & Dadan-Garba, 2014). According to records 

from Nigeria's National Bureau of Statistics 

(http://www.citypopulation.de/), the population of the 

Kaduna metropolis increased from approximately 993,642 in 

1991 to 1.9 million by 2022. Additionally, the city witnessed 

infrastructural development, construction and upgrades of 

existing road networks, and construction of neighborhood 

centers, among others, as part of the Urban Renewal 

Programme (Kaduna State Government, 2021). This has led 

to an increase in impervious surfaces and the removal of 

vegetation, which intensifies urban heat islands. 

Previous studies in Kaduna have examined the LST and 

NDVI, but little is known about the SUHII and UTFVI, and 

no study has quantified the cooling efficiency of vegetation. 

Thus, this study aimed to assess the changes in land use, 

vegetation, and surface temperature and their relationships 

with the UHI and UTFVI phenomena via remote sensing. This 

study also proposes the vegetation cooling efficiency index 

(VCEI) on the basis of the relationship between surface 

temperature and vegetation. Finally, the findings from this 

study can help policymakers and urban planners plan for a 

sustainable environment in the future. 

 

MATERIALS AND METHODS 

Study Area 

The Kaduna Metropolis is composed of the Kaduna North and 

Kaduna South Local Government Areas and parts of the 

Chikun and Igabi Local Government Areas (Akpu et al., 

2017). The Kaduna Metropolis lies between latitudes 

10°20ˊ00˝ and 10°39ˊ00˝ North of the Equator and between 

longitudes 7°20ˊ16˝ and 7°35ˊ00˝ East of the Greenwich 

Meridian, with an area of 3156 km2 (see Figure 1). The 

metropolis is bordered from the north, northeast, and 

northwest by the rest of the Igabi Local Government Area and 

from the south, southeast, and southwest by the rest of the 

Chikun Local Government Area (Baba et al., 2020). 

 

 
Figure 1: The study area showing the elevation of the Kaduna metropolis 

Source: GRID3 - Nigeria, (2022) 

 

Kaduna is situated in a tropical wet and dry climate 

(Abdussalam, 2020). The wet season runs for approximately 

six to seven months, mostly between April and October, with 

an average rainfall of 1400 mm. The dry season denotes 

Harmattan, which has severe dust haze, with northerly winds 

blowing from the desert (Abubakar & Abdussalam, 2024). 

The maximum temperature in Kaduna metropolis can be over 

30 °C, with the hottest months being March, April and May. 

The relative humidity typically ranges from 25% to 90% 

depending on the month of the year, with the lowest humidity 

occurring between December and February (Ahmed et al., 

2024). 

The relief of Kaduna as a plain, comprising extensive tracts 

of almost level to gently undulating, lightly dissected land, is 

broken in places by groups of rocky hills and inselbergs. 

Much of the area lies between 600 and 800 m, with scattered 

hills rising 50–200 m above the surrounding land (Bennett et 

al., 1979). The drainage net is predominantly tributary to the 

Niger via the Kaduna and Gurara Rivers. Downcutting by 

rivers is most common in the southern and western margins 

http://www.citypopulation.de/
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of the Kaduna Plains (Musa & Abubakar, 2024). The area lies 

in the northern Guinea savannah zone. Therefore, it has a 

savanna grassland type of vegetation that is made up of tall 

grasses, scattered trees, and a gallery. Fringe forests, "Kurmi" 

in Hausa in some localities, are presently at the mercy of 

increasing demands for fuel wood in fast-growing towns and 

urban centers (Ajibade & Okwori, 2009). 

 

Data used 

Three Landsat satellite images, ETM+ from 2004 and 

OLI/TIRS from 2014 and 2024, were obtained from the 

USGS website. The cloud coverage of both datasets was less 

than 10%. These Landsat images (Table 1) were obtained to 

analyze the LULC and LST in Kaduna; hence, the date was 

chosen to be between December and February to prevent 

foggy pixel difficulties. To perform spatial analysis, all of 

these datasets were transformed to a 30 m cell size and 

combined into a single projection. All satellite photos were 

preprocessed, and the necessary activities for LULC 

classification and LST computation were carried out in 

ArcGIS 10.8. 

 

Table 1: Characteristics of the Landsat images used 

Sensor Path Row Date of Acquisition 

Landsat 7 (ETM+) 189 053 2004/03/04 

Landsat 8 (OLI/TIRS) 189 053 2014/12/20 

Landsat 8 (OLI/TIRS) 189 053 2024/02/15 

 

Method 

Image classification 

The decision tree/CART algorithm on Trimble 

eCognition was used to classify land use into five major 

classes. The land use classes are bare land, built-up areas, 

cultivated land, tree cover, and water bodies (Table 2). 

Decision tree/CART was used because it is 

highly reliable and is suitable for index-based classification 

(Laliberte et al., 2007; Phiri et al., 2020). 

 

Table 2: Land cover categories 

Land Use Class Description 

Bare land Exposed soil layer, landfills, and excavated areas 

Built Areas Residential, institutional, industrial, roads, rail, etc. 

Cultivated Lands Cultivated areas, croplands, and grasslands. 

Tree Cover Natural (undisturbed) vegetation. 

Water Bodies Rivers, streams, lakes, and reservoirs. 

 

For this study, two steps were involved in the classification. 

The first stage was multiresolution segmentation, where the 

images were broken into objects. A threshold was 

subsequently employed to determine a class via ranges from 

computed remote sensing indices. The classification was 

subsequently carried out via decision trees. This approach is 

one of the most instinctive classifiers, using decision rules that 

convert inputs such as indices or spectral reflectance into 

discrete themes as outputs or LULC classes (Agarwal & 

Sharma, 2011). Furthermore, decision trees that have more 

than one input are important for classification. For example, 

spectral reflectances from Landsat and elevation data are 

incorporated into the classification scheme (Kodors, 2019). 

 

Accuracy assessment 

To determine the proportion of correctly identified pixels, an 

accuracy evaluation was carried out to compare the LULC 

classifications. Both kappa statistics and overall accuracy 

(Congalton, 1991) were calculated for this purpose. Accuracy 

assessment is an unavoidable step in LULC mapping, as the 

increased complexity of classification increases the chance of 

error (Bharath et al., 2020; Congalton, 1991; Rwanga & 

Ndambuki, 2017). One of the major challenges of this process 

is the availability of maps used to examine the validity of 

image analysis (Basu & Das, 2021). For this study, we used 

high-resolution imagery (Google Earth imagery from the 

HCMGIS plugin and orthophotography). In this approach, we 

used historical images to validate land use and land cover 

maps of the same periods. Points are taken randomly for 

accuracy assessment (Alawamy et al., 2020). 

The error matrix from the accuracy assessment is used to 

compare the polygon or pixel of the classification result to the 

real-world (ground-truth) data (Peacock, 2014). These 

matrices mirror the overall accuracy and the Kappa 

coefficient value for each year. An overall accuracy greater 

than 70% is generally considered acceptable, and a kappa 

coefficient between 0.40 and 0.85 indicates good 

correspondence (Congalton, 1991). 

The kappa coefficient is calculated via Eq. (1): 

𝐾𝑎𝑝𝑝𝑎 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
  (1) 

 

LST Retrieval 

To compute the LST, the Landsat spectral data were 

converted to radiance. The formula is given below: 

Conversion of DN values to spectral radiance 

The satellite data products were a geometrically corrected 

dataset. The first step of the proposed work is to convert the 

digital number (DN) values of band 10 to at-sensor spectral 

radiance via Eq. (2). 

𝐿𝜋 =
(𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛)∗𝑄𝑐𝑎𝑙

(𝑄𝑐𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
+ 𝐿𝑚𝑖𝑛 − 𝑂𝑖   (2) 

where Lmax is the maximum radiance (Wm-2sr-1μm-1), Lmin is 

the minimum radiance (Wm-2sr-1μm-1), Qcal is the DN value 

of the pixel, Qcal max is the maximum DN value of the pixels, 

Qcal min is the minimum DN value of the pixels, and Oi is the 

correction value for band 10. 

After the DN values are converted to at-sensor spectral 

radiance, the TIRS band data are converted to brightness 

temperature (BT) via Eq. (3): 

𝐵𝑇 =
𝐾2

𝑙𝑛[(
𝐾1

𝐿𝜋
)]+1

− 273.15    (3) 

where K1 and K2 are the thermal constants of TIR band 10 

and can be identified in the metadata file associated with the 

satellite image (Avdan & Jovanovska, 2016; Barsi, Lee, et al., 

2014; Barsi, Schott, et al., 2014). To obtain results in degrees 

Celsius, it is necessary to revise by adding absolute zero, 

which is approximately equal to -273.15 °C. Since the 
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atmosphere in our research area is relatively dry and therefore, 

the range of water vapor values is relatively small, the 

atmospheric effect is not taken into consideration when 

retrieving the LST. 

The LSE calculation is required to estimate the LST. 

The LSE is defined as the ratio of the radiance emitted by an 

object to the radiance it would emit if it were a perfect black 

body at the same thermodynamic temperature (Norman & 

Becker, 1995). Extensive measurements of LSE have been 

made because of its importance to satellite remote sensing of 

LST (Becker, 1987), surface energy balance estimation (Hall 

et al., 1992), mineral exploration, and identification and 

radiation budget calculation (Prata et al., 1995). The satellite-

based measurements can be modified via LSE in three ways: 

i. The LSE reduces the top of atmosphere (ToA) radiance 

in comparison with a blackbody, 

ii. Nonblack body surfaces reflecting downwelling 

radiances, and 

iii. When we introduce the anisotropy of the LSE, it 

reduces or increases the surface leaving radiance. 

The LSE can be calculated via Eq. (4): 

𝐿𝑆𝐸 = 𝜀𝑠 ∗  (1 − 𝐹𝑉𝐶) + (𝜀𝑣 ∗  𝐹𝑉𝐶)   (4) 

where εs = Emissivity of bare soil and εv = Emissivity of 

vegetation. 

The surface temperature of the SCA (snow-covered area), 

sunlit and SCA shadow areas is determined via the TIRS band 

10 data of Landsat-8, which are centered at 10.9 μm. Relative 

to band 10 data, band 11 data (centered at 12 μm) are affected 

by a greater stray light effect in the telescope, resulting in 

uncertainty in its calibration, which restricts its further use 

(Barsi, Lee, et al., 2014). To retrieve the surface temperature 

(Ts), initially, the spectral radiance at the sensor is converted 

to surface radiance, and then, Ts is calculated from the surface 

radiance values via Eq. (5). 

𝐿𝑆 = (𝐿𝑠𝑎𝑡 −  𝐿𝑢) / 𝜀𝜏 − (1 −  𝜀)/ 𝜀 𝐿𝑑   (5) 

where LS = surface radiance after atmospheric correction, 

Lsat = spectral radiance at the sensor, Lu = upwelling spectral 

radiance between the surface and the sensor, ε = emissivity, τ 

= atmospheric transmission, and Ld = downwelling spectral 

radiance from the sky. 

The corrected surface radiance values of band 10 are 

converted into surface temperatures via Eq. (6): 

𝐿𝑆𝑇 =  
𝐾2

𝐼𝑛(
𝐾1

𝐿𝑆
)+1

        (6) 

where  LTS = land surface temperature, 

K1 and K2 = calibration constants, and 

LS = surface radiance. 

The LST is the radiative skin temperature of the land surface, 

as measured in the direction of the remote sensor. It is 

estimated from ToA brightness temperatures from the 

infrared spectral channels of a constellation of geostationary 

satellites. Its estimation further depends on the albedo, 

vegetation cover, and soil moisture. 

 

UHIs and UTFVIs 

The impact of UHIs has gained much attention in the field of 

urban climate and environmental change. Different 

methodologies have been employed globally to determine the 

extent and magnitude of UHIs (Faisal et al., 2021; Kim & 

Brown, 2021; Li et al., 2019). Advancements in remote 

sensing have made it possible to study UHIs via images. 

Additionally, LULC is linked to UHIs and the geographic 

distribution of vegetation intensity (Abubakar et al., 2024). 

The UHI effect is computed via Eq. (viii). On the other hand, 

the urban thermal variance field index (UTFVI) is the degree 

of thermal comfort that is calculated and used to determine 

the effect of UHIs on urban life quantitatively via Eqs. (7) and 

(8). 

UHI =
 LST−LSTmean

STD
        (7) 

and 

UTFVI =
TS−Tmean

𝑇𝑆
       (8) 

where UTFVI is the urban thermal field variance index; TS is 

the LST of a pixel in °C; and Tmean is the mean LST of the 

study area in °C. The values of the UTFVI were divided into 

six tiers. Each categorization of the UTFVI is correlated with 

an ecological evaluation index (EEI). The ecological 

assessment index is a status indicator that qualitatively 

examines the influence of urban thermals on urban ecology 

(Zhang et al., 2006). 

 

Vegetation Cooling Efficiency Index (VCEI) 

This study proposed the vegetation cooling efficiency index 

(VCEI) to examine the influence of vegetation on LST. This 

is determined via Eq. (9). 

𝐿𝑆𝑇 = 𝑎 + 𝑏 ∗ 𝑁𝐷𝑉𝐼    (9) 

The slope 𝑏 b is the vegetation cooling efficiency index 

(VCEI). A negative slope indicates that vegetation cooled the 

surface, whereas values near zero or positive values of the 

slope indicate a poor cooling effect of vegetation. This could 

be in areas with sparse/dry vegetation, water bodies, and 

impervious surfaces. 

 

RESULTS AND DISCUSSION 

Accuracy assessment 

Table 3 presents the accuracy assessment from the land use 

and land cover assessments for the years 2004, 2014, and 

2024. 

 

Table 3: Accuracy assessment of the 2004, 2014, and 2024 LULC classifications 

 2004 2014 2024 

 

Producer 

Accuracy 

User 

Accuracy 

Producer 

Accuracy 

User 

Accuracy 

Producer 

Accuracy 

User 

Accuracy 

Bare Land 88.54 90 93.5 95 88.58 90 

Built-up 88.58 90 83.25 85 88.58 90 

Cropland 84.25 88 88.58 90 78.7 80 

Vegetation 73.8 75 75.23 78 70.2 70 

Water 84.7 87 69.25 72 70.2 70 

Overall Accuracy 86% 84% 80% 

Kappa Coefficient 0.919 0.891 0.888 

Source: Author’s Analysis, 2024 
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For the 2004 land use/land cover classification, the overall 

accuracy was 0.86 (86%), which indicates a very high 

correlation, whereas the kappa coefficient was 0.919, which 

further established the level of accuracy of the observed land 

use pattern in Kaduna. For the 2014 land use/land cover 

classification, the overall accuracy was 0.84 (84%), which 

indicates a very high correlation between the classified and 

actual land cover types. The kappa coefficient is 0.891, which 

further establishes the level of accuracy of the observed land 

usage pattern in Kaduna. 

The accuracy assessment of the 2024 land use and land cover 

classification is shown in Table 3. The overall accuracy is 

0.80 (80%), which indicates a very high correlation between 

the classified and actual data. The kappa coefficient is 0.888, 

which further establishes the level of accuracy of the observed 

land usage pattern in Kaduna. 

 

Land Use and Land Cover Changes 

The magnitude of changes in each land use and land cover 

class was computed for the first epoch, which was between 

2004 and 2014, and the second epoch, which was from 2014 

to 2024. The results are shown in Table 4 and Figure. 2. 

 

Table 4: Magnitude and rate of land use/land cover change in the Kaduna metropolis 

Land Use 
Magnitude of Change  Rate of Change 

2004-2014 2014-2024 2004-2024  2004-2014 2014-2024 2004-2024 

Bare 57.29 538.90 596.19  5.73 53.89 29.81 

Built Area 26.05 94.99 121.04  2.61 9.50 6.05 

Cultivated -42.77 -482.77 -525.54  -4.28 -48.28 -26.28 

Tree Cover -40.78 -151.13 -191.91  -4.08 -15.11 -9.60 

Water 0.21 0.02 0.22  0.02 0.00 0.01 

Total 0.00 0.00 0.00     

Source: Author’s Analysis, 2024 

 

Table 4 reveals that between 2004 and 2014, bare land, built-

up areas, and water bodies increased by 57.29 km2, 26.06 km2, 

and 0.21 km2, respectively, whereas cultivated land and tree 

cover decreased by 42.77 km2 and 40.78 km2, respectively. 

Between 2014 and 2024, bare land, built-up areas, and water 

bodies increased by 538.90 km2, 94.99 km2, and 0.02 km2, 

respectively, whereas cultivated land and tree cover lost 

482.77 km2 and 151.13 km2, respectively. During the entire 

study period (2004--2024), bare land, built-up areas, and 

water bodies gained 596.19 km2, 121.04 km2, and 0.22 km2, 

respectively, whereas cultivated land and tree cover lost 

525.54 km2 and 191.91 km2, respectively. For the rate of land 

use land cover conversion in the Kaduna metropolis, Table 2 

reveals that bare lands, built-up areas, and water bodies 

gained 5.73 km2, 2.61 km2, and 0.02 km2, respectively, per 

annum, whereas cultivated lands and tree cover lost 4.28 km2 

and 4.08 km2 per annum, respectively. 

 

 

 

 
a) 2004  b) 2014 
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c) 2024 

Figure 2: Land use/land cover characteristics of the Kaduna metropolis from 2004 to 2024 

 

Spatiotemporal variation in LST 

The results of the LST are shown in Table 5 and Figure 3. 

 

Table 5: Distribution of land surface temperature in Kaduna from 2004-2024 

Variables 
LST 

2004 2014 2024 

Minimum 27.66 28.66 29.81 

Maximum 36.26 37.19 39.69 

Mean 32.16 33.18 35.67 

STD 0.78 0.89 1.08 

 

Table 5 shows the land surface temperature (LST) results for 

2004, 2014, and 2024, revealing a clear warming trend over 

time, with both the minimum and maximum values, as well as 

the overall mean, steadily increasing. In 2004, the LST ranged 

between approximately 27.7 °C and 36.3 °C, with an average 

of 32.2 °C, but by 2014, these values had risen to a range of 

28.7–37.2 °C and a mean of 33.2 °C, reflecting a moderate but 

consistent rise in surface heating. By 2024, the LST shows a 

sharper increase, with minimum values near 29.8 °C, 

maximum values approaching 39.7 °C, and an average of 35.7 

°C—over 3.5 °C higher than two decades earlier. The gradual 

increase in standard deviation, from 0.78 in 2004 to 1.08 in 

2024, further indicates a growing spatial variability in surface 

heating, suggesting intensifying heat extremes. Collectively, 

these results highlight both a progressive rise in baseline 

surface temperatures and widening disparities across the 

landscape, underscoring the influence of climate change and 

possible land use/land cover changes on local thermal 

environments. 
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a) 2004  b) 2014 

 

 
c) 2024 

Figure 3: Land surface temperature of the Kaduna metropolis from 2004 to 2024 

 

UHIs and UTFVIs 

The temporal variations in the UHI effect and UTFVI are presented in this subsection. The results are shown in Table 6 and 

Figures 4 and 5. 
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Table 6: Spatiotemporal variation in the UHI effect 

 2004 2014 2024 

UHI    

Minimum -5.80 -5.07 -5.43 

Maximum 5.27 4.51 3.72 

Mean 0.00 0.00 0.00 

STD 1.00 1.00 1.00 

UTFVI    

Minimum -0.14 -0.14 -0.16 

Maximum 0.13 0.12 0.11 

Mean 0.00 0.00 0.00 

 

Table 6 shows the urban heat island (UHI) results for 2004, 

2014, and 2024, revealing a stable overall pattern, since the 

mean UHI across the study area remains at 0.00 for all three 

periods, an outcome of the normalization approach where 

deviations are measured relative to the mean land surface 

temperature (LST). However, the minimum and maximum 

values reveal important dynamics in the spatial variability of 

heat distribution. In 2004, the UHI intensity ranged from 

approximately –5.8 °C (areas cooler than the mean, likely 

vegetated or water-dominated surfaces) to +5.3 °C (areas 

significantly warmer than the mean, typically dense built-up 

zones). By 2014, the range had narrowed slightly (–5.07 °C to 

+4.51 °C), suggesting a mild reduction in thermal extremes, 

possibly linked to changes in land use or local climatic 

moderation. In 2024, the spread further contracted (–5.43 °C 

to +3.72 °C), indicating that while some areas are still cooler 

or hotter than average, the most intense hotspots are 

diminishing in magnitude. The constant standard deviation of 

1.00 across years reflects that relative variability has been 

standardized, emphasizing comparative rather than absolute 

change. Overall, these results suggest that while UHIs persist, 

their peak intensity may weaken over time, potentially due to 

urban greening efforts, infrastructural changes, or broader 

increases in baseline temperatures, reducing the relative 

contrast between urban areas and surrounding rural areas. 

The urban thermal field variance index (UTFVI) results for 

2004, 2014, and 2024 demonstrate relatively small but 

meaningful variations in thermal stress across the study area. 

By definition, the mean remains at 0.00 for all years since the 

UTFVI expresses deviations in the LST relative to the area’s 

average. The minimum values (–0.14 to –0.16) reflect areas 

that are consistently cooler than the mean, likely associated 

with vegetation, open land, or water bodies, whereas the 

maximum values (0.13 in 2004, declining slightly to 0.11 in 

2024) correspond to localized urban or built-up hotspots. The 

gradual reduction in the maximum suggests that although 

urban areas continue to be warmer than their surroundings, 

the degree of thermal stress relative to the mean has weakened 

over time. Moreover, the increase in standard deviation from 

0.02 in 2004 to 0.03 in 2014 and 2024 indicates slightly 

greater spatial variability in thermal conditions, meaning that 

while extremes are less intense, contrasts across the landscape 

are still becoming more scattered. Overall, the UTFVI 

findings suggest that ecological thermal stress remains 

moderate and fairly balanced, with no severe anomalies, but 

the persistence of both cooler and hotter zones underscores 

the importance of sustainable land use management to 

mitigate localized heat stress and maintain ecological 

resilience. 

 

 

 

 
a) 2004  b) 2014 
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c) 2024 

Figure 4: Urban heat islands of the Kaduna metropolis from 2004--2024 
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c) 2024 

Figure 5: Urban thermal field variance index (UTFVI) of the Kaduna metropolis in 2004 

 

VCEI 

The vegetation cooling index was used to quantify the cooling influence of vegetation in the Kaduna metropolis. The results 

are shown in Table 7. 

 

Table 7: Vegetation cooling efficiency index 

 Slope Intercept 

Max +1.39 43.5 °C 

Mean –16.90 39.7 °C 

Min –33.71 27.6 °C 

 

Table 7 reveals that the calculated vegetation cooling 

efficiency index (VCEI) values ranged from –33.7 to +1.39, 

with a mean slope of –16.9. This implies that, on average, a 

unit increase in the NDVI corresponds to a reduction of ~17 

°C in the land surface temperature. Areas with dense 

vegetation (NDVI > 0.6) presented the strongest cooling 

effect (–33 °C), whereas certain built-up/stressed vegetation 

zones presented negligible or even positive VCEI values 

(+1.3 °C). These results highlight the importance of 

vegetation in mitigating thermal discomfort while also 

emphasizing spatial heterogeneity in cooling efficiency across 

the landscape. 

 

Discussions 

This study examined the correlation between urban expansion 

and ecological thermal conditions in the Kaduna metropolis 

from 2004--2024, utilizing multitemporal Landsat data and 

indicators such as the LST, UHI, UTFVI, and the newly 

introduced vegetation cooling efficiency index (VCEI). These 

findings underscore that rapid urban expansion, marked by 

substantial expansions of developed regions and barren lands 

at the cost of agricultural land and forest cover, has 

significantly influenced surface temperature and ecological 

thermal comfort. 

The spatiotemporal rise in the mean LST from 32.2 °C in 2004 

to 35.7 °C in 2024 highlights the warming trend of the Kaduna 

metropolis, which aligns with observations from other 

African cities undergoing comparable urban transitions (Abd-

Elmabod et al., 2022; Tesfamariam et al., 2024). The rise in 

impervious surfaces, the loss of plant cover, and the thermal 

characteristics of building materials all contributed to this 

increasing trend. These factors all lower evapotranspiration 

and increase surface heat storage. The higher standard 

deviation of the LST also shows that the temperature 

differences across the city are increasing, which exacerbates 

localized heat stress. 

Research on UHIs has shown that built-up regions are 

consistently warmer than vegetated and water-dominated 

surfaces. This is similar to the findings of (Cetin et al., 2024) 

and (Siswanto et al., 2023), who revealed that urban surfaces 

such as concrete and asphalt absorb and retain more heat, 

while reducing vegetation limits cooling through 

evapotranspiration, and water bodies provide a cooling effect. 

The maximum UHI intensity decreased from +5.27 °C in 

2004 to +3.72 °C in 2024, which shows that heat islands are 

still present, but their relative intensity has weakened over 

time. This study contradicts the typical assumption of 

increasing UHI severity in rapidly urbanizing areas. A 

probable reason is the general rise in baseline temperatures 

across the city, which narrows the relative difference between 

urban and peri-urban zones. The Kaduna Urban Renewal 

Programme (Kaduna State Government, 2021) is also making 

improvements to infrastructure and adding more green space, 

which may have helped cool some of the hottest places. 

The UTFVI data revealed modest ecological stress, with both 

cooler (vegetated) and warmer (built-up) zones remaining 



URBAN GROWTH AND THERMAL…        Mohammed and Mustapha FJS 

FUDMA Journal of Sciences (FJS) Vol. 10 No. 1, January, 2026, pp 1 – 14 11 

throughout the study period. The gradual decrease in the 

maximum UTFVI values suggests fewer temperature 

extremes, whereas the increase in standard deviation indicates 

greater heterogeneity in thermal comfort across the 

metropolis. This result is similar to the findings of (Mokarram 

et al., 2023), who reported that a decline in UTFVI values 

suggests worsening ecological comfort due to urbanization 

and reduced vegetation. This regional heterogeneity means 

that while overall ecological circumstances remain generally 

balanced, small pockets of discomfort continue and could 

grow under future climate change. 

The proposed VCEI further highlights the crucial role of 

vegetation in regulating surface temperature. The negative 

slope results confirmed that vegetation has a cooling impact 

across the Kaduna metropolis; however, the effects differ in 

terms of efficiency depending on vegetation density and 

health. The lowering of this cooling efficacy in areas of sparse 

or damaged vegetation is consistent with findings from earlier 

studies emphasizing the sensitivity of urban greenery to rapid 

land change (Litardo et al., 2020; Patel et al., 2024). This 

highlights the necessity of conserving and growing urban 

green infrastructure to sustain the cooling advantages of 

vegetation. 

Taken together, the results reveal that uncontrolled urban 

expansion in the Kaduna metropolis has produced major 

thermal modifications, with implications for human health, 

energy demand, and urban ecology. If uncontrolled, these 

dynamics could worsen urban heat stress and jeopardize 

progress toward the Sustainable Development Goals (SDGs), 

particularly SDG 11 (sustainable cities and communities) and 

SDG 13 (climate action). 

 

CONCLUSION 

This study investigated the impacts of urban expansion on 

ecological thermal comfort in the Kaduna metropolis over two 

decades via Landsat imagery and indices such as the LST, 

UHI, UTFVI, and proposed VCEI. The results demonstrated 

a significant change in agricultural land and tree cover into 

built-up areas and barren lands, resulting in a constant 

increase in land surface temperature and mild but persistent 

ecological stress. Although the intensities of the UHI and 

UTFVI marginally diminished over time, the persistence of 

thermal hotspots demonstrates the vulnerability of urban 

populations to localized heat stress. The VCEI validated the 

critical cooling effect of vegetation, although its efficacy is 

being degraded by continuing land change. The study 

revealed that increasing urbanization in the Kaduna 

metropolis is altering the city’s ecological balance and 

thermal environment. To increase resilience and improve 

thermal comfort, policymakers and planners should 

emphasize policies that retain and expand vegetation cover, 

incorporate green infrastructure into new constructions, and 

use climate-sensitive designs in urban regeneration programs. 

Protecting vegetation is particularly crucial, as it remains the 

most effective natural buffer against rising surface 

temperatures. Future research should incorporate household-

level exposure evaluations, socioeconomic vulnerability 

analysis, and predictive climate models to provide more 

holistic knowledge of urban thermal dynamics and adaptation 

routes for Kaduna and similar cities in sub-Saharan Africa. 

 

Data availability statement 

The datasets generated during and/or analysed during the 

current study are available from the corresponding author on 

reasonable request.  

 

 

REFERENCES 

Abd-Elmabod, S. K., Jiménez-González, M. A., Jordán, A., 

Zhang, Z., Mohamed, E. S., Hammam, A. A., El Baroudy, A. 

A., Abdel-Fattah, M. K., Abdelfattah, M. A., & Jones, L. 

(2022). Past and future impacts of urbanisation on land 

surface temperature in Greater Cairo over a 45 year period. 

The Egyptian Journal of Remote Sensing and Space Science, 

25(4), 961–974. https://doi.org/10.1016/j.ejrs.2022.10.001 

 

Abdussalam, A. F. (2020). Climate Change and Health 

Vulnerability in Informal Urban Settlements of Kaduna 

Metropolis. Science World Journal, 15(3), 127–132. 

https://doi.org/10.47514/swj/15.03.2020.020 

 

Abubakar, M. L. (2019). Analysis of Land Use Land Cover in 

Danja Local Government Area, Katsina - Nigeria, From 1986 

To 2019. 60th Annual Conference of the Association of 

Nigerian Geographers (ANG). 

https://doi.org/10.13140/RG.2.2.12948.65920 

 

Abubakar, M. L., & Abdussalam, A. F. (2024). Geospatial 

analysis of land use changes and wetland dynamics in Kaduna 

Metropolis, Kaduna, Nigeria. Science World Journal, 19(3), 

687–696. https://doi.org/10.4314/swj.v19i3.15 

 

Abubakar, M. L., Thomas, D., Ahmed, M. S., & Abdussalam, 

A. F. (2024). Assessment of the Relationship Between Land 

Surface Temperature and Vegetation Using MODIS LST and 

NDVI Timerseries Data in Kaduna Metropolis, Nigeria. 

FUDMA JOURNAL OF SCIENCES, 8(2), 137–148. 

https://doi.org/10.33003/fjs-2024-0802-2305 

 

Adão, F., Fraga, H., Fonseca, A., Malheiro, A. C., & Santos, 

J. A. (2023). The Relationship between Land Surface 

Temperature and Air Temperature in the Douro Demarcated 

Region, Portugal. Remote Sensing 2023, Vol. 15, Page 5373, 

15(22), 5373. https://doi.org/10.3390/RS15225373 

 

Agarwal, C., & Sharma, A. (2011). Image understanding 

using decision tree based machine learning. 2011 

International Conference on Information Technology and 

Multimedia: “Ubiquitous ICT for Sustainable and Green 

Living”, ICIM 2011. 

https://doi.org/10.1109/ICIMU.2011.6122757 

 

Ahmed, M. S., Abubakar, M. L., Lawal, A. I., & Richifa, K. 

I. (2024). Influence of extreme temperature on adverse 

pregnancy outcomes in Kaduna State, Nigeria. Science World 

Journal, 19(2), 409–417. 

https://doi.org/10.4314/swj.v19i2.17 

 

Ajibade, L. T., & Okwori, A. (2009). Developing an 

Information System for Rural Water Supply Scheme in 

Kaduna State. Journal of Environmental Science, 1(1), 1–8. 

 

Akpu, B., Tanko, A., Jeb, D., & Dogo, B. (2017). Geospatial 

Analysis of Urban Expansion and Its Impact on Vegetation 

Cover in Kaduna Metropolis, Nigeria. Asian Journal of 

Environment & Ecology, 3(2), 1–11. 

https://doi.org/10.9734/ajee/2017/31149 

 

Al Shawabkeh, R., AlHaddad, M., Al-Fugara, A., Al-

Hawwari, L., Al-Hawwari, M. I., Omoush, A., & Arar, M. 

(2023). Modeling the impact of urban land cover features and 

changes on the land surface temperature (LST): The case of 

Jordan. Ain Shams Engineering Journal, June, 102359. 

https://doi.org/10.1016/j.asej.2023.102359 

https://doi.org/10.1016/j.ejrs.2022.10.001
https://doi.org/10.47514/swj/15.03.2020.020
https://doi.org/10.13140/RG.2.2.12948.65920
https://doi.org/10.4314/swj.v19i3.15
https://doi.org/10.33003/fjs-2024-0802-2305
https://doi.org/10.3390/RS15225373
https://doi.org/10.1109/ICIMU.2011.6122757
https://doi.org/10.4314/swj.v19i2.17
https://doi.org/10.9734/ajee/2017/31149
https://doi.org/10.1016/j.asej.2023.102359


URBAN GROWTH AND THERMAL…        Mohammed and Mustapha FJS 

FUDMA Journal of Sciences (FJS) Vol. 10 No. 1, January, 2026, pp 1 – 14 12 

 

Alawamy, J. S., Balasundram, S. K., Mohd. Hanif, A. H., & 

Boon Sung, C. T. (2020). Detecting and Analyzing Land Use 

and Land Cover Changes in the Region of Al-Jabal Al-

Akhdar, Libya Using Time-Series Landsat Data from 1985 to 

2017. Sustainability, 12(11), 4490. 

https://doi.org/10.3390/su12114490 

 

Amin, M., & Dadan-Garba, A. (2014). Urban Vegetation 

Study of Kaduna Metropolis using GIS and Remotely sensed 

Data. Journal of Natural Sciences Research, 4(4), 160–171. 

 

Andronis, V., Karathanassi, V., Tsalapati, V., Kolokoussis, 

P., Miltiadou, M., & Danezis, C. (2022). Time Series Analysis 

of Landsat Data for Investigating the Relationship between 

Land Surface Temperature and Forest Changes in Paphos 

Forest, Cyprus. Remote Sensing, 14(1010). 

https://doi.org/10.3390/rs14041010 

 

Arias, M., Notarnicola, C., Campo-Bescós, M. Á., Arregui, L. 

M., & Álvarez-Mozos, J. (2023). Evaluation of soil moisture 

estimation techniques based on Sentinel-1 observations over 

wheat fields. Agricultural Water Management, 287, 108422. 

https://doi.org/10.1016/J.AGWAT.2023.108422 

 

Avdan, U., & Jovanovska, G. (2016). Algorithm for 

Automated Mapping of Land Surface Temperature Using 

LANDSAT 8 Satellite Data. Journal of Sensors, 2016, 1–8. 

https://doi.org/10.1155/2016/1480307 

 

Baba, B. M., Abubakar, M. L., Raji, R. B., & Ibrahim, R. 

(2020). Spatial Distribution of Electric Transformers in 

Narayi Ward, Chikun Local Government Area of Kaduna 

State, Nigeria. Kaduna Journal of Geography, 2(2), 114–130. 

https://doi.org/10.5281/zenodo.14598765 

 

Barsi, J. A., Lee, K., Kvaran, G., Markham, B. L., & Pedelty, 

J. A. (2014). The spectral response of the Landsat-8 

operational land imager. Remote Sensing, 6(10), 10232–

10251. https://doi.org/10.3390/rs61010232 

 

Barsi, J. A., Schott, J., Hook, S., Raqueno, N., Markham, B., 

& Radocinski, R. (2014). Landsat-8 Thermal Infrared Sensor 

(TIRS) Vicarious Radiometric Calibration. Remote Sensing, 

6(11), 11607–11626. https://doi.org/10.3390/rs61111607 

 

Basu, A., & Das, S. (2021). Afforestation, revegetation, and 

regeneration: a case study on Purulia district, West Bengal 

(India) (pp. 497–524). https://doi.org/10.1016/B978-0-12-

823895-0.00014-2 

 

Becker, F. (1987). The impact of spectral emissivity on the 

measurement of land surface temperature from a satellite. 

International Journal of Remote Sensing, 8(10), 1509–1522. 

https://doi.org/10.1080/01431168708954793 

 

Bennett, J. G., Rains, A. B., Gosden, P. N., Howard, W. J., 

Hutcheon, A. A., Kerr, W. B., Mansfield, J. E., Rackham, L. 

J., & Wood, A. W. (1979). Land Resources of central Nigeria; 

agricultural development possibilities. Volume 3A. The 

Jema’a Platform Executive Summary. In I. D. Hill (Ed.), 

Agricultural development possibilities: The Jema’a Platform 

(Vol. 3B). Land Resources Development Centre. 

 

Bharath, H. A., Nimish, G., & Chandan, M. C. (2020). 

Exposition of spatial urban growth pattern using PSO-

SLEUTH and identifying its effects on surface temperature. 

In Urban Ecology (pp. 49–68). Elsevier. 

https://doi.org/10.1016/B978-0-12-820730-7.00004-5 

 

Cetin, M., Ozenen Kavlak, M., Senyel Kurkcuoglu, M. A., 

Bilge Ozturk, G., Cabuk, S. N., & Cabuk, A. (2024). 

Determination of land surface temperature and urban heat 

island effects with remote sensing capabilities: the case of 

Kayseri, Türkiye. Natural Hazards, 120(6), 5509–5536. 

https://doi.org/10.1007/S11069-024-06431-5/METRICS 

 

Congalton, R. G. (1991). A review of assessing the accuracy 

of classifications of remotely sensed data. Remote Sensing of 

Environment, 37(1), 35–46. https://doi.org/10.1016/0034-

4257(91)90048-B 

 

Das, D. N., Chakraborti, S., Saha, G., Banerjee, A., & Singh, 

D. (2020). Analysing the dynamic relationship of land surface 

temperature and landuse pattern: A city level analysis of two 

climatic regions in India. City and Environment Interactions, 

8, 100046. https://doi.org/10.1016/j.cacint.2020.100046 

 

Faisal, A. Al, Kafy, A. A., Al Rakib, A., Akter, K. S., Jahir, 

D. M. A., Sikdar, M. S., Ashrafi, T. J., Mallik, S., & Rahman, 

M. M. (2021). Assessing and predicting land use/land cover, 

land surface temperature and urban thermal field variance 

index using Landsat imagery for Dhaka Metropolitan area. 

Environmental Challenges, 4. 

https://doi.org/10.1016/J.ENVC.2021.100192 

 

GRID3 - Nigeria. (2024). Geo-Referenced Infrastructure and 

Demographic Data for Development. National Space 

Research and Development Agency. http://grid3.gov.ng/ 

 

Hidalgo-García, D., & Arco-Díaz, J. (2022). Modeling the 

Surface Urban Heat Island (SUHI) to study of its relationship 

with variations in the thermal field and with the indices of land 

use in the metropolitan area of Granada (Spain). Sustainable 

Cities and Society, 87(March). 

https://doi.org/10.1016/j.scs.2022.104166 

 

Kaduna Bureau of Statistics. (2015). Population Projections 

for Kaduna State. 

 

Kaduna State Government. (2021). El-Rufai launches 

Kaduna Urban Renewal Project. 

 

Kim, S. W., & Brown, R. D. (2021). Urban heat island (UHI) 

intensity and magnitude estimations: A systematic literature 

review. Science of The Total Environment, 779, 146389. 

https://doi.org/10.1016/j.scitotenv.2021.146389 

 

Kodors, S. (2019). Detection of Man-Made Constructions 

Using LiDAR Data and Decision Trees. Baltic Journal of 

Modern Computing, 7(2). 

https://doi.org/10.22364/bjmc.2019.7.2.05 

 

Koko, A. F., Wu, Y., Abubakar, G. A., Alabsi, A. A. N., 

Hamed, R., & Bello, M. (2021). Thirty Years of Land 

Use/Land Cover Changes and Their Impact on Urban 

Climate: A Study of Kano Metropolis, Nigeria. Land, 10(11), 

1106. https://doi.org/10.3390/LAND10111106 

 

Koko, A. F., Yue, W., Abubakar, G. A., Alabsi, A. A. N., & 

Hamed, R. (2021). Spatiotemporal influence of land use/land 

cover change dynamics on surface urban heat island: A case 

study of abuja metropolis, nigeria. ISPRS International 

https://doi.org/10.3390/su12114490
https://doi.org/10.3390/rs14041010
https://doi.org/10.1016/J.AGWAT.2023.108422
https://doi.org/10.1155/2016/1480307
https://doi.org/10.5281/zenodo.14598765
https://doi.org/10.3390/rs61010232
https://doi.org/10.3390/rs61111607
https://doi.org/10.1016/B978-0-12-823895-0.00014-2
https://doi.org/10.1016/B978-0-12-823895-0.00014-2
https://doi.org/10.1080/01431168708954793
https://doi.org/10.1016/B978-0-12-820730-7.00004-5
https://doi.org/10.1007/S11069-024-06431-5/METRICS
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/j.cacint.2020.100046
https://doi.org/10.1016/J.ENVC.2021.100192
http://grid3.gov.ng/
https://doi.org/10.1016/j.scs.2022.104166
https://doi.org/10.1016/j.scitotenv.2021.146389
https://doi.org/10.22364/bjmc.2019.7.2.05
https://doi.org/10.3390/LAND10111106


URBAN GROWTH AND THERMAL…        Mohammed and Mustapha FJS 

FUDMA Journal of Sciences (FJS) Vol. 10 No. 1, January, 2026, pp 1 – 14 13 

Journal of Geo-Information, 10(5). 

https://doi.org/10.3390/ijgi10050272 

 

Kusumawardani, K. P., & Hidayati, I. N. (2022). Analysis of 

urban heat island and urban ecological quality based on 

remote sensing imagery transformation in semarang city. IOP 

Conference Series: Earth and Environmental Science, 

1089(1). https://doi.org/10.1088/1755-1315/1089/1/012037 

 

Laliberte, A. S., Fredrickson, E. L., & Rango, A. (2007). 

Combining decision trees with hierarchical object-oriented 

image analysis for mapping arid rangelands. 

Photogrammetric Engineering and Remote Sensing, 73(2), 

197–207. https://doi.org/10.14358/PERS.73.2.197 

 

Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., & Li, W. (2019). 

Urban heat island impacts on building energy consumption: 

A review of approaches and findings. Energy, 174, 407–419. 

https://doi.org/10.1016/j.energy.2019.02.183 

 

Litardo, J., Palme, M., Borbor-Cordova, M., Caiza, R., 

Macias, J., Hidalgo-Leon, R., & Soriano, G. (2020). Urban 

Heat Island intensity and buildings’ energy needs in Duran, 

Ecuador: Simulation studies and proposal of mitigation 

strategies. Sustainable Cities and Society, 62(July), 102387. 

https://doi.org/10.1016/j.scs.2020.102387 

 

Mahato, S., Kundu, B., Makwana, N., & Joshi, P. K. (2023). 

Early summer temperature anomalies and potential impacts 

on achieving Sustainable Development Goals (SDGs) in 

National Capital Region (NCR) of India. Urban Climate, 52, 

101705. https://doi.org/10.1016/j.uclim.2023.101705 

 

Mhana, K. H., Norhisham, S. Bin, Katman, H. Y. B., & 

Yaseen, Z. M. (2023). Environmental impact assessment of 

transportation and land alteration using Earth observational 

datasets: Comparative study between cities in Asia and 

Europe. Heliyon, 9(9), e19413. 

https://doi.org/10.1016/j.heliyon.2023.e19413 

 

Moisa, M. B., & Gemeda, D. O. (2022). Assessment of urban 

thermal field variance index and thermal comfort level of 

Addis Ababa metropolitan city, Ethiopia. Heliyon, 8(8). 

https://doi.org/10.1016/j.heliyon.2022.e10185 

 

Mokarram, M., Taripanah, F., & Pham, T. M. (2023). 

Investigating the effect of surface urban heat island on the 

trend of temperature changes. Advances in Space Research, 

72(8), 3150–3169. https://doi.org/10.1016/j.asr.2023.06.048 

 

Muhammad, R. Z., & Abubakar, M. L. (2025). Assessing the 

influence of land surface temperature and sociodemographic 

factors on measles prevalence using AutoML and SHAP in 

Kaduna North, Nigeria. GeoJournal, 90(3), 103. 

https://doi.org/10.1007/s10708-025-11361-1 

 

Musa, K., & Abubakar, M. L. (2024). Monitoring urban 

growth and landscape fragmentation in Kaduna, Nigeria, 

using remote sensing approach. Journal of Degraded and 

Mining Lands Management, 12(1), 6757–6769. 

https://doi.org/10.15243/jdmlm.2024.121.6757 

 

Naserikia, M., Hart, M. A., Nazarian, N., Bechtel, B., Lipson, 

M., & Nice, K. A. (2023). Land surface and air temperature 

dynamics: The role of urban form and seasonality. Science of 

The Total Environment, 905, 167306. 

https://doi.org/10.1016/J.SCITOTENV.2023.167306 

 

Norman, J. M., & Becker, F. (1995). Terminology in thermal 

infrared remote sensing of natural surfaces. Agricultural and 

Forest Meteorology, 77(3–4), 153–166. 

https://doi.org/10.1016/0168-1923(95)02259-Z 

 

Patel, S., Indraganti, M., & Jawarneh, R. N. (2024). Urban 

planning impact on summer human thermal comfort in Doha, 

Qatar. Building and Environment, 254(February), 111374. 

https://doi.org/10.1016/j.buildenv.2024.111374 

 

Peacock, R. (2014). Accuracy Assessment of Supervised and 

Unsupervised Classification Using Landsat Imagery of Little 

Rock, Arkansas. NORTHWEST MISSOURI STATE 

UNIVERISTY. 

 

Peng, X., Wu, W., Zheng, Y., Sun, J., Hu, T., & Wang, P. 

(2020). Correlation analysis of land surface temperature and 

topographic elements in Hangzhou, China. Scientific Reports, 

10(1), 1–16. https://doi.org/10.1038/s41598-020-67423-6 

 

Phiri, D., Simwanda, M., Nyirenda, V., Murayama, Y., & 

Ranagalage, M. (2020). Decision Tree Algorithms for 

Developing Rulesets for Object-Based Land Cover 

Classification. ISPRS International Journal of Geo-

Information, 9(5), 329. https://doi.org/10.3390/ijgi9050329 

 

Prata, A. J., V. Casellescoll, C., Sobrino, J. A., & Ottle, C. 

(1995). Thermal remote sensing of land surface temperature 

from satellites: current status and future prospects. Remote 

Sensing Reviews, 12(3–4), 175–224. 

https://doi.org/10.1080/02757259509532285 

 

Rao, P., Tassinari, P., & Torreggiani, D. (2023). Exploring the 

land-use urban heat island nexus under climate change 

conditions using machine learning approach: A spatio-

temporal analysis of remotely sensed data. Heliyon, 9(8), 

e18423. https://doi.org/10.1016/j.heliyon.2023.e18423 

 

Rashid, N., Alam, J. A. M. M., Chowdhury, M. A., & Islam, 

S. L. U. (2022). Impact of landuse change and urbanization 

on urban heat island effect in Narayanganj city, Bangladesh: 

A remote sensing-based estimation. Environmental 

Challenges, 8(June), 100571. 

https://doi.org/10.1016/j.envc.2022.100571 

 

Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., 

Ranagalage, M., Murayama, Y., Zhang, H., & Mushore, T. D. 

(2018). Spatiotemporal analysis of land use/land cover and its 

effects on surface urban heat Island using landsat data: A case 

study of Metropolitan City Tehran (1988-2018). 

Sustainability (Switzerland), 10(12). 

https://doi.org/10.3390/su10124433 

 

Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy 

Assessment of Land Use/Land Cover Classification Using 

Remote Sensing and GIS. International Journal of 

Geosciences, 08(04), 611–622. 

https://doi.org/10.4236/ijg.2017.84033 

 

Sandoval, S., Escobar-Flores, J. G., & Badar Munir, M. 

(2023). Urbanization and its impacts on land surface 

temperature and sea surface temperature in a tourist region in 

Mexico from 1990 to 2020. Remote Sensing Applications: 

Society and Environment, 32(July), 101046. 

https://doi.org/10.1016/j.rsase.2023.101046 

 

https://doi.org/10.3390/ijgi10050272
https://doi.org/10.1088/1755-1315/1089/1/012037
https://doi.org/10.14358/PERS.73.2.197
https://doi.org/10.1016/j.energy.2019.02.183
https://doi.org/10.1016/j.scs.2020.102387
https://doi.org/10.1016/j.uclim.2023.101705
https://doi.org/10.1016/j.heliyon.2023.e19413
https://doi.org/10.1016/j.heliyon.2022.e10185
https://doi.org/10.1016/j.asr.2023.06.048
https://doi.org/10.1007/s10708-025-11361-1
https://doi.org/10.15243/jdmlm.2024.121.6757
https://doi.org/10.1016/J.SCITOTENV.2023.167306
https://doi.org/10.1016/0168-1923(95)02259-Z
https://doi.org/10.1016/j.buildenv.2024.111374
https://doi.org/10.1038/s41598-020-67423-6
https://doi.org/10.3390/ijgi9050329
https://doi.org/10.1080/02757259509532285
https://doi.org/10.1016/j.heliyon.2023.e18423
https://doi.org/10.1016/j.envc.2022.100571
https://doi.org/10.3390/su10124433
https://doi.org/10.4236/ijg.2017.84033
https://doi.org/10.1016/j.rsase.2023.101046


URBAN GROWTH AND THERMAL…        Mohammed and Mustapha FJS 

FUDMA Journal of Sciences (FJS) Vol. 10 No. 1, January, 2026, pp 1 – 14 14 

 ©2026 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

Sharma, A., & Vashishtha, D. (2023). Spatio-temporal 

Assessment of Land Use Land Cover Changes and Their 

Impact on Variations of Land Surface Temperature in Aligarh 

Municipality. Journal of the Indian Society of Remote 

Sensing, 51(4), 799–827. https://doi.org/10.1007/s12524-

022-01652-2 

 

Shukla, A., & Jain, K. (2021). Analyzing the impact of 

changing landscape pattern and dynamics on land surface 

temperature in Lucknow city, India. Urban Forestry and 

Urban Greening, 58, 126877. 

https://doi.org/10.1016/j.ufug.2020.126877 

 

Siddique, M. A., Boqing, F., & Dongyun, L. (2023). 

Modeling the Impact and Risk Assessment of Urbanization on 

Urban Heat Island and Thermal Comfort Level of Beijing 

City, China (2005–2020). Sustainability, 15(7), 1–18. 

 

Singh, M. S., Kumar, D. P., Parijat, D. R., Gonengcil, B., & 

Rai, M. A. (2023). Establishing the relationship between land 

use land cover, normalized difference vegetation index and 

land surface temperature: A case of Lower Son River Basin, 

India. Geography and Sustainability. 

https://doi.org/10.1016/J.GEOSUS.2023.11.006 

 

Siswanto, S., Nuryanto, D. E., Ferdiansyah, M. R., Prastiwi, 

A. D., Dewi, O. C., Gamal, A., & Dimyati, M. (2023). Spatio-

temporal characteristics of urban heat Island of Jakarta 

metropolitan. Remote Sensing Applications: Society and 

Environment, 32(September), 101062. 

https://doi.org/10.1016/j.rsase.2023.101062 

 

Statista. (2024). Nigeria: Urbanization from 2012 to 2022. 

 

Sugianto, S., Arabia, T., Rusdi, M., Syakur, S., & Trishiani, 

M. (2023). Spatial distribution vegetation density, land 

surface temperature, and land surface moisture of Banda 

Aceh, Indonesia after 17 years of tsunami: a multitemporal 

analysis approaches. Environmental Monitoring and 

Assessment, 195(1), 1–23. https://doi.org/10.1007/S10661-

022-10827-W/METRICS 

 

Taripanah, F., & Ranjbar, A. (2021). Quantitative analysis of 

spatial distribution of land surface temperature (LST) in 

relation Ecohydrological, terrain and socio- economic factors 

based on Landsat data in mountainous area. Advances in 

Space Research, 68(9), 3622–3640. 

https://doi.org/10.1016/j.asr.2021.07.008 

 

Tesfamariam, S., Govindu, V., & Uncha, A. (2023). Spatio-

temporal analysis of urban heat island (UHI) and its effect on 

urban ecology: The case of Mekelle city, Northern Ethiopia. 

Heliyon, 9(2), e13098. 

https://doi.org/10.1016/J.HELIYON.2023.E13098 

 

Tesfamariam, S., Govindu, V., & Uncha, A. (2024). Urban 

ecology in the context of urban heat island vulnerability 

potential zone mapping: the case of Mekelle city, Ethiopia. 

Frontiers in Climate, 6(December). 

https://doi.org/10.3389/fclim.2024.1446048 

 

Ullah, W., Ahmad, K., Ullah, S., Ahmad, A., Faisal, M., 

Nazir, A., Mehmood, A., Aziz, M., & Mohamed, A. (2023). 

Analysis of the relationship among land surface temperature 

(LST), land use land cover (LULC), and normalized 

difference vegetation index (NDVI) with topographic 

elements in the lower Himalayan region. Heliyon, 9(2), 

e13322. https://doi.org/10.1016/j.heliyon.2023.e13322 

 

Ünsal, Ö., Lotfata, A., & Avcı, S. (2023). Exploring the 

Relationships between Land Surface Temperature and Its 

Influencing Determinants Using Local Spatial Modeling. 

Sustainability (Switzerland), 15(15). 

https://doi.org/10.3390/su151511594 

 

Wemegah, C. S., Yamba, E. I., Aryee, J. N. A., Sam, F., & 

Amekudzi, L. K. (2020). Assessment of urban heat island 

warming in the greater accra region. Scientific African, 8, 

e00426. https://doi.org/10.1016/j.sciaf.2020.e00426 

 

World Bank. (2023). Urban population (% of total 

population) - Nigeria. United Nations Population Division. 

World Urbanization Prospects: 2018 Revision. 

 

Zaharaddeen, I., Baba, I. I., & Ayuba, Z. (2016). Estimation 

of land surface temperature of Kaduna Metropolis, Nigeria 

using landsat images. Science World Journal, 11(3), 36–42. 

 

Zandi, R., Zanganeh, Y., Karami, M., & Khosravian, M. 

(2022). Analysis of the Spatio-temporal variations of thermal 

patterns of Shiraz city by satellite images and GIS processing. 

Egyptian Journal of Remote Sensing and Space Science, 

25(4), 1069–1088. https://doi.org/10.1016/j.ejrs.2022.11.005 

 

Zhang, Y., Yu, T., & Gu, X. (2006). Land surface temperature 

retrieval from CBERS-02 IRMSS thermal infrared data and 

its applications in quantitative analysis of urban heat island 

effect. National Remote Sensing Bulletin, 10(5), 789–797. 

https://doi.org/10.1016/S0379-4172(06)60102-9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12524-022-01652-2
https://doi.org/10.1007/s12524-022-01652-2
https://doi.org/10.1016/j.ufug.2020.126877
https://doi.org/10.1016/J.GEOSUS.2023.11.006
https://doi.org/10.1016/j.rsase.2023.101062
https://doi.org/10.1007/S10661-022-10827-W/METRICS
https://doi.org/10.1007/S10661-022-10827-W/METRICS
https://doi.org/10.1016/j.asr.2021.07.008
https://doi.org/10.1016/J.HELIYON.2023.E13098
https://doi.org/10.3389/fclim.2024.1446048
https://doi.org/10.1016/j.heliyon.2023.e13322
https://doi.org/10.3390/su151511594
https://doi.org/10.1016/j.sciaf.2020.e00426
https://doi.org/10.1016/j.ejrs.2022.11.005
https://doi.org/10.1016/S0379-4172(06)60102-9

