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ABSTRACT

Rapid urbanization has accelerated land use/land cover (LULC) changes and accompanying thermal stress in
cities across sub-Saharan Africa. This study investigated the relationships between urban growth and ecological
thermal conditions in Kaduna Metropolis, Nigeria, between 2004 and 2024 via Landsat data and remote sensing
indices. LULC was divided into five classes—bare terrain, built-up areas, cultivated lands, tree cover, and water
bodies—through multiresolution segmentation and a decision tree algorithm. The land surface temperature
(LST) was derived via thermal bands, whereas the urban heat island (UHI) intensity and the urban thermal field
variance index (UTFVI) were employed to measure spatial changes in thermal stress. This study introduces the
Vegetation Cooling Efficiency Index (VCEI) to evaluate the cooling impact of vegetation. The results
demonstrate strong increases in built-up areas (+121.04 km?) and bare fields (+596.19 km?), mostly at the
expense of cultivated lands (—525.54 km?) and tree cover (—191.91 km?). The mean LST rose from 32.2 °C in
2004 to 35.7 °C in 2024, with significant geographic differences in surface heating. UHI hotspots persisted in
urban cores; however, the maximum intensity decreased significantly (from +5.27 °C to +3.72 °C), whereas
the UTFVI suggested moderate and rather stable ecological thermal stress. The VCEI confirmed the continuous
cooling effect of vegetation, while its efficacy diminished with vegetation removal. These findings reinforce
the importance of unplanned urban growth in modifying thermal settings and highlight the necessity of green
infrastructure and vegetation preservation in promoting ecological resilience and thermal comfort.
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INTRODUCTION

Owing to rapid population growth, infrastructure
development, and industrialization, urbanization has become
a global environmental issue (Amir Siddique et al., 2024). The
world's urban population is projected to increase by 2.5 billion
between 2018 and 2050, with approximately 90% of this
increase occurring in Africa and Asia (Sharma & Vashishtha,
2024). Nigeria is among the most urbanized regions in sub-
Saharan Africa, with an annual rate of urbanization of 3.5%
(World Bank, 2024). According to Statista (2024), the share
of Nigeria's urban population rose to 53.52 percent in the year
2022. Kaduna metropolis, particularly, has experienced
tremendous growth in population, from approximately
250,000 in the 1960s to over three (3) million people in the
year 2024 (Kaduna Bureau of Statistics, 2024). This increase
in urbanization has led to the modification of land cover
across the globe, significantly impacting humans and causing
severe environmental degradation (Rashid et al., 2022).
Changes in land use and land cover have been identified as
key factors influencing land surface temperature (LST) (Al
Shawabkeh et al., 2024), although previous studies have
reported that LST is influenced by a combination of other
factors, such as the removal of vegetation (Abubakar et al.,
2024), physical properties of construction materials,
buildings, morphology, surface roughness (Litardo et al.,
2020; Tesfamariam et al., 2024), and anthropogenic heat
sources. These changes impact the thermal capacity of cities,
heat conductivity, and albedo coefficient (Kusumawardani &
Hidayati, 2022). The Intergovernmental Panel on Climate
Change (IPCC) projects that atmospheric carbon dioxide
levels will double from preindustrial levels by 2100 and that
the average global land surface temperature (LST) will rise by
1.4-58 °C (Faisal et al, 2021). Furthermore, this
uncontrolled increase in LST has been identified as the main
driver of the formation of the urban heat island (UHI) effect
globally (Das et al., 2020; Koko, Yue, et al., 2021). The UHI

effect is defined as the difference in air and surface
temperatures between urban centers and their natural
surroundings (Hidalgo-Garcia & Arco-Diaz, 2022; Koko,
Wu, et al., 2021; Ullah et al., 2024), and it has become a
serious concern to researchers because of its negative impact
on human health (Muhammad & Abubakar, 2025), as well as
environmental variables such as air quality, precipitation,
temperature, carbon storage, and energy balance (Rousta et
al., 2018). Additionally, increased energy consumption in
cities as a result of warming can significantly impact SDG-3
to ensure healthy lives and promote well-being at all ages
(Unsal et al., 2024), SDG-6 for clean and affordable energy
(Mahato et al., 2024), SDG-11 for sustainable cities and
communities, and SDG-13 climate action (Unsal et al., 2024).
Thus, studying thermal islands is critical in regional planning
(Zandi et al., 2022).

Remote sensing provides adequate spatial and spectral
resources that can be used to study urban-related issues at the
macro level (Abubakar, 2019). Moreover, freely available
sensors from Landsat, Moderate Resolution Imaging
Spectroradiometer (MODIS), and Sentinel satellites/sensors
have provided multispectral and multitemporal images that
have been used in urban studies (Addo et al., 2024; Amir
Siddique et al., 2024; Andronis et al., 2022; Arias et al., 2024;
Naserikia et al., 2024; Peng et al., 2020; Sandoval et al., 2024;
Shukla & Jain, 2021; Singh et al., 2024; Sugianto et al., 2024;
Taripanah & Ranjbar, 2021). Specifically, studies have
applied UHIs and UTFVIs to study thermal comfort in cities
globally (Mhana et al., 2024; Moisa & Gemeda, 2022; Patel
et al., 2024; Rao et al., 2024; Rashid et al., 2022; Siswanto et
al., 2024; Tesfamariam et al., 2024; Wemegah et al., 2020;
Zandi et al., 2022).

In the Kaduna metropolis, different studies have been carried
out on land surface temperature. For example, Zaharaddeen et
al. (2016) estimated the LST in the Kaduna Metropolis via
Landsat images and reported a negative relationship between
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the vegetation density and land surface temperature.
Abubakar et al. (2024) assessed the relationship between the
LST and NDVI via MODIS time series data. However, on the
basis of the available literature, studies on surface urban heat
island intensity (SUHII) and the urban thermal field variance
index (UTFVI) are rare.

In recent years, the Kaduna metropolis has experienced a
significant expansion of settlements due to rapid population
growth (Amin & Dadan-Garba, 2014). According to records
from  Nigeria's  National Bureau of  Statistics
(http://www.citypopulation.de/), the population of the
Kaduna metropolis increased from approximately 993,642 in
1991 to 1.9 million by 2022. Additionally, the city witnessed
infrastructural development, construction and upgrades of
existing road networks, and construction of neighborhood
centers, among others, as part of the Urban Renewal
Programme (Kaduna State Government, 2021). This has led
to an increase in impervious surfaces and the removal of
vegetation, which intensifies urban heat islands.

Previous studies in Kaduna have examined the LST and
NDVI, but little is known about the SUHII and UTFVI, and
no study has quantified the cooling efficiency of vegetation.
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Thus, this study aimed to assess the changes in land use,
vegetation, and surface temperature and their relationships
with the UHI and UTFVI phenomena via remote sensing. This
study also proposes the vegetation cooling efficiency index
(VCEI) on the basis of the relationship between surface
temperature and vegetation. Finally, the findings from this
study can help policymakers and urban planners plan for a
sustainable environment in the future.

MATERIALS AND METHODS

Study Area

The Kaduna Metropolis is composed of the Kaduna North and
Kaduna South Local Government Areas and parts of the
Chikun and Igabi Local Government Areas (Akpu et al.,
2017). The Kaduna Metropolis lies between latitudes
10°20°00” and 10°39°00" North of the Equator and between
longitudes 7°20°16” and 7°35°00” East of the Greenwich
Meridian, with an area of 3156 km? (see Figure 1). The
metropolis is bordered from the north, northeast, and
northwest by the rest of the Igabi Local Government Area and
from the south, southeast, and southwest by the rest of the
Chikun Local Government Area (Baba et al., 2020).

7°1£:'0'E 7’39’0'6 70451‘0-5
N
KADUNA METROPOLIS N ¢> ~
~ . -
T\ &
| /’/\\v e / 5\, - L3
{ S~ ] Y i
\‘\ ~'../ i,// -
” “: . -_>.,; - i =
L ad ? M
r 4 et |
4 LB
= I
5 A \ [2
J r |2
R 0
.
J
4
. - {
s - - ‘)
. ™G
Legend . I~ [ z
’- River Kadun? \.,\”/ ;—?_7
;'_'_..' Kaduna Metropoks =
Ward Boundary
0 10 20 40 KM
L L I L 1 1 L L J
7°15'0°E 7'300°E 7°450°E

Figure 1: The study area showing the elevation of the Kaduna metropolis

Source: GRID3 - Nigeria, (2022)

Kaduna is situated in a tropical wet and dry climate
(Abdussalam, 2020). The wet season runs for approximately
six to seven months, mostly between April and October, with
an average rainfall of 1400 mm. The dry season denotes
Harmattan, which has severe dust haze, with northerly winds
blowing from the desert (Abubakar & Abdussalam, 2024).
The maximum temperature in Kaduna metropolis can be over
30 °C, with the hottest months being March, April and May.
The relative humidity typically ranges from 25% to 90%
depending on the month of the year, with the lowest humidity

occurring between December and February (Ahmed et al.,
2024).

The relief of Kaduna as a plain, comprising extensive tracts
of almost level to gently undulating, lightly dissected land, is
broken in places by groups of rocky hills and inselbergs.
Much of the area lies between 600 and 800 m, with scattered
hills rising 50-200 m above the surrounding land (Bennett et
al., 1979). The drainage net is predominantly tributary to the
Niger via the Kaduna and Gurara Rivers. Downcutting by
rivers is most common in the southern and western margins
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of the Kaduna Plains (Musa & Abubakar, 2024). The area lies
in the northern Guinea savannah zone. Therefore, it has a
savanna grassland type of vegetation that is made up of tall
grasses, scattered trees, and a gallery. Fringe forests, "Kurmi"
in Hausa in some localities, are presently at the mercy of
increasing demands for fuel wood in fast-growing towns and
urban centers (Ajibade & Okwori, 2009).

Data used
Three Landsat satellite images, ETM+ from 2004 and
OLI/TIRS from 2014 and 2024, were obtained from the

Table 1: Characteristics of the Landsat images used
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USGS website. The cloud coverage of both datasets was less
than 10%. These Landsat images (Table 1) were obtained to
analyze the LULC and LST in Kaduna; hence, the date was
chosen to be between December and February to prevent
foggy pixel difficulties. To perform spatial analysis, all of
these datasets were transformed to a 30 m cell size and
combined into a single projection. All satellite photos were
preprocessed, and the necessary activities for LULC
classification and LST computation were carried out in
ArcGIS 10.8.

Sensor Path Row Date of Acquisition

Landsat 7 (ETM+) 189 053 2004/03/04

Landsat 8 (OLI/TIRS) 189 053 2014/12/20

Landsat 8 (OLI/TIRS) 189 053 2024/02/15
Method cultivated land, tree cover, and water bodies (Table 2).
Image classification Decision  tree/CART  was  used because it is
The decision tree/CART algorithm on Trimble highly reliable and is suitable for index-based classification

eCognition was used to classify land use into five major
classes. The land use classes are bare land, built-up areas,

Table 2: Land cover categories

(Laliberte et al., 2007; Phiri et al., 2020).

Land Use Class Description

Bare land Exposed soil layer, landfills, and excavated areas
Built Areas Residential, institutional, industrial, roads, rail, etc.
Cultivated Lands Cultivated areas, croplands, and grasslands.

Tree Cover Natural (undisturbed) vegetation.

Water Bodies Rivers, streams, lakes, and reservoirs.

For this study, two steps were involved in the classification.
The first stage was multiresolution segmentation, where the
images were broken into objects. A threshold was
subsequently employed to determine a class via ranges from
computed remote sensing indices. The classification was
subsequently carried out via decision trees. This approach is
one of the most instinctive classifiers, using decision rules that
convert inputs such as indices or spectral reflectance into
discrete themes as outputs or LULC classes (Agarwal &
Sharma, 2011). Furthermore, decision trees that have more
than one input are important for classification. For example,
spectral reflectances from Landsat and elevation data are
incorporated into the classification scheme (Kodors, 2019).

Accuracy assessment

To determine the proportion of correctly identified pixels, an
accuracy evaluation was carried out to compare the LULC
classifications. Both kappa statistics and overall accuracy
(Congalton, 1991) were calculated for this purpose. Accuracy
assessment is an unavoidable step in LULC mapping, as the
increased complexity of classification increases the chance of
error (Bharath et al., 2020; Congalton, 1991; Rwanga &
Ndambuki, 2017). One of the major challenges of this process
is the availability of maps used to examine the validity of
image analysis (Basu & Das, 2021). For this study, we used
high-resolution imagery (Google Earth imagery from the
HCMGIS plugin and orthophotography). In this approach, we
used historical images to validate land use and land cover
maps of the same periods. Points are taken randomly for
accuracy assessment (Alawamy et al., 2020).

The error matrix from the accuracy assessment is used to
compare the polygon or pixel of the classification result to the
real-world (ground-truth) data (Peacock, 2014). These
matrices mirror the overall accuracy and the Kappa

coefficient value for each year. An overall accuracy greater
than 70% is generally considered acceptable, and a kappa
coefficient between 0.40 and 0.85 indicates good
correspondence (Congalton, 1991).

The kappa coefficient is calculated via Eq. (1):
Observed accuracy—Expected accuracy
Kappa =

1-Expected accuracy

O

LST Retrieval
To compute the LST, the Landsat spectral data were
converted to radiance. The formula is given below:
Conversion of DN values to spectral radiance

The satellite data products were a geometrically corrected
dataset. The first step of the proposed work is to convert the
digital number (DN) values of band 10 to at-sensor spectral
radiance via Eq. (2).
(Lmax—Lmin)*Qcal

Lt = L.... —O; 2
T (Qcalmax_Qcalmin)+ min Ol ( )

where Lmax is the maximum radiance (Wm2sr'um™), Lmin is
the minimum radiance (Wm?2sr'um™"), Qca is the DN value
of the pixel, Qcal max is the maximum DN value of the pixels,
Qcal min is the minimum DN value of the pixels, and O; is the
correction value for band 10.

After the DN values are converted to at-sensor spectral
radiance, the TIRS band data are converted to brightness
temperature (BT) via Eq. (3):

K2
BT = M 273.15 3)

where K1 and K2 are the thermal constants of TIR band 10
and can be identified in the metadata file associated with the
satellite image (Avdan & Jovanovska, 2016; Barsi, Lee, et al.,
2014; Barsi, Schott, et al., 2014). To obtain results in degrees
Celsius, it is necessary to revise by adding absolute zero,
which is approximately equal to -273.15 °C. Since the
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atmosphere in our research area is relatively dry and therefore,
the range of water vapor values is relatively small, the
atmospheric effect is not taken into consideration when
retrieving the LST.
The LSE calculation is required to estimate the LST.
The LSE is defined as the ratio of the radiance emitted by an
object to the radiance it would emit if it were a perfect black
body at the same thermodynamic temperature (Norman &
Becker, 1995). Extensive measurements of LSE have been
made because of its importance to satellite remote sensing of
LST (Becker, 1987), surface energy balance estimation (Hall
et al.,, 1992), mineral exploration, and identification and
radiation budget calculation (Prata et al., 1995). The satellite-
based measurements can be modified via LSE in three ways:
i. The LSE reduces the top of atmosphere (ToA) radiance
in comparison with a blackbody,
Nonblack body surfaces reflecting downwelling
radiances, and
When we introduce the anisotropy of the LSE, it
reduces or increases the surface leaving radiance.
The LSE can be calculated via Eq. (4):
LSE =¢es* (1 —FVC) + (ev * FVC) “)
where €s = Emissivity of bare soil and ev = Emissivity of
vegetation.
The surface temperature of the SCA (snow-covered area),
sunlit and SCA shadow areas is determined via the TIRS band
10 data of Landsat-8, which are centered at 10.9 um. Relative
to band 10 data, band 11 data (centered at 12 pm) are affected
by a greater stray light effect in the telescope, resulting in
uncertainty in its calibration, which restricts its further use
(Barsi, Lee, et al., 2014). To retrieve the surface temperature
(Ts), initially, the spectral radiance at the sensor is converted
to surface radiance, and then, Ts is calculated from the surface
radiance values via Eq. (5).
LS =(Lsat — Lu) /et — (1 — €)/ elLd 5)
where LS = surface radiance after atmospheric correction,
Lsat = spectral radiance at the sensor, Lu = upwelling spectral
radiance between the surface and the sensor, € = emissivity, T
= atmospheric transmission, and Ld = downwelling spectral
radiance from the sky.
The corrected surface radiance values of band 10 are
converted into surface temperatures via Eq. (6):

LST = —=2 (©6)

m(33)+1
where LTS = land surface temperature,
K1 and K2 = calibration constants, and
LS = surface radiance.
The LST is the radiative skin temperature of the land surface,
as measured in the direction of the remote sensor. It is
estimated from ToA brightness temperatures from the

ii.

iii.
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infrared spectral channels of a constellation of geostationary
satellites. Its estimation further depends on the albedo,
vegetation cover, and soil moisture.

UHIs and UTFVIs
The impact of UHIs has gained much attention in the field of
urban climate and environmental change. Different

methodologies have been employed globally to determine the
extent and magnitude of UHIs (Faisal et al., 2021; Kim &
Brown, 2021; Li et al., 2019). Advancements in remote
sensing have made it possible to study UHIs via images.
Additionally, LULC is linked to UHIs and the geographic
distribution of vegetation intensity (Abubakar et al., 2024).
The UHI effect is computed via Eq. (viii). On the other hand,
the urban thermal variance field index (UTFVI) is the degree
of thermal comfort that is calculated and used to determine
the effect of UHIs on urban life quantitatively via Egs. (7) and

().

LST—-LSTmean

UHI = —— @)

and

UTFVI = TS—Tmean (8)
TS

where UTFVI is the urban thermal field variance index; TS is
the LST of a pixel in °C; and Tmean is the mean LST of the
study area in °C. The values of the UTFVI were divided into
six tiers. Each categorization of the UTFVI is correlated with
an ecological evaluation index (EEI). The ecological
assessment index is a status indicator that qualitatively
examines the influence of urban thermals on urban ecology
(Zhang et al., 2006).

Vegetation Cooling Efficiency Index (VCEI)

This study proposed the vegetation cooling efficiency index
(VCEI) to examine the influence of vegetation on LST. This
is determined via Eq. (9).

LST =a+ b+ NDVI )

The slope b b is the vegetation cooling efficiency index
(VCEI). A negative slope indicates that vegetation cooled the
surface, whereas values near zero or positive values of the
slope indicate a poor cooling effect of vegetation. This could
be in areas with sparse/dry vegetation, water bodies, and
impervious surfaces.

RESULTS AND DISCUSSION

Accuracy assessment

Table 3 presents the accuracy assessment from the land use
and land cover assessments for the years 2004, 2014, and
2024.

Table 3: Accuracy assessment of the 2004, 2014, and 2024 LULC classifications

2004 2014 2024

Producer User Producer User Producer User

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
Bare Land 88.54 90 93.5 95 88.58 90
Built-up 88.58 90 83.25 85 88.58 90
Cropland 84.25 88 88.58 90 78.7 80
Vegetation 73.8 75 75.23 78 70.2 70
Water 84.7 87 69.25 72 70.2 70
Overall Accuracy  86% 84% 80%
Kappa Coefficient 0.919 0.891 0.888

Source: Author’s Analysis, 2024
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For the 2004 land use/land cover classification, the overall
accuracy was 0.86 (86%), which indicates a very high
correlation, whereas the kappa coefficient was 0.919, which
further established the level of accuracy of the observed land
use pattern in Kaduna. For the 2014 land use/land cover
classification, the overall accuracy was 0.84 (84%), which
indicates a very high correlation between the classified and
actual land cover types. The kappa coefficient is 0.891, which
further establishes the level of accuracy of the observed land
usage pattern in Kaduna.

The accuracy assessment of the 2024 land use and land cover
classification is shown in Table 3. The overall accuracy is
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0.80 (80%), which indicates a very high correlation between
the classified and actual data. The kappa coefficient is 0.888,
which further establishes the level of accuracy of the observed
land usage pattern in Kaduna.

Land Use and Land Cover Changes

The magnitude of changes in each land use and land cover
class was computed for the first epoch, which was between
2004 and 2014, and the second epoch, which was from 2014
to 2024. The results are shown in Table 4 and Figure. 2.

Table 4: Magnitude and rate of land use/land cover change in the Kaduna metropolis

Land Use Magnitude of Change Rate of Change
2004-2014 2014-2024 2004-2024 2004-2014 2014-2024 2004-2024
Bare 57.29 538.90 596.19 5.73 53.89 29.81
Built Area 26.05 94.99 121.04 2.61 9.50 6.05
Cultivated -42.77 -482.77 -525.54 -4.28 -48.28 -26.28
Tree Cover -40.78 -151.13 -191.91 -4.08 -15.11 -9.60
Water 0.21 0.02 0.22 0.02 0.00 0.01
Total 0.00 0.00 0.00

Source: Author’s Analysis, 2024

Table 4 reveals that between 2004 and 2014, bare land, built-
up areas, and water bodies increased by 57.29 km?, 26.06 km?,
and 0.21 km?, respectively, whereas cultivated land and tree
cover decreased by 42.77 km? and 40.78 km?, respectively.
Between 2014 and 2024, bare land, built-up areas, and water
bodies increased by 538.90 km?, 94.99 km?, and 0.02 km?
respectively, whereas cultivated land and tree cover lost
482.77 km? and 151.13 km?, respectively. During the entire
study period (2004--2024), bare land, built-up areas, and
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water bodies gained 596.19 km?, 121.04 km?, and 0.22 km?,
respectively, whereas cultivated land and tree cover lost
525.54 km? and 191.91 km?, respectively. For the rate of land
use land cover conversion in the Kaduna metropolis, Table 2
reveals that bare lands, built-up areas, and water bodies
gained 5.73 km?, 2.61 km?, and 0.02 km?, respectively, per
annum, whereas cultivated lands and tree cover lost 4.28 km?
and 4.08 km? per annum, respectively.
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Figure 2: Land use/land cover characteristics of the Kaduna metropolis from 2004 to 2024

Spatiotemporal variation in LST
The results of the LST are shown in Table 5 and Figure 3.

Table 5: Distribution of land surface temperature in Kaduna from 2004-2024

. LST
Variables 2004 2014 2024
Minimum 27.66 28.66 2081
Maximum 36.26 37.19 39.69
Mean 32.16 33.18 35.67
STD 0.78 0.89 1.08

Table 5 shows the land surface temperature (LST) results for
2004, 2014, and 2024, revealing a clear warming trend over
time, with both the minimum and maximum values, as well as
the overall mean, steadily increasing. In 2004, the LST ranged
between approximately 27.7 °C and 36.3 °C, with an average
of 32.2 °C, but by 2014, these values had risen to a range of
28.7-37.2 °C and a mean of 33.2 °C, reflecting a moderate but
consistent rise in surface heating. By 2024, the LST shows a
sharper increase, with minimum values near 29.8 °C,
maximum values approaching 39.7 °C, and an average of 35.7

°C—over 3.5 °C higher than two decades earlier. The gradual
increase in standard deviation, from 0.78 in 2004 to 1.08 in
2024, further indicates a growing spatial variability in surface
heating, suggesting intensifying heat extremes. Collectively,
these results highlight both a progressive rise in baseline
surface temperatures and widening disparities across the
landscape, underscoring the influence of climate change and
possible land use/land cover changes on local thermal
environments.
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Figure 3: Land surface temperature of the Kaduna metropolis from 2004 to 2024
UHIs and UTFVIs
The temporal variations in the UHI effect and UTFVI are presented in this subsection. The results are shown in Table 6 and
Figures 4 and 5.
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Table 6: Spatiotemporal variation in the UHI effect
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2004 2014 2024
UHI
Minimum -5.80 -5.07 -5.43
Maximum 5.27 4.51 3.72
Mean 0.00 0.00 0.00
STD 1.00 1.00 1.00
UTFVI
Minimum -0.14 -0.14 -0.16
Maximum 0.13 0.12 0.11
Mean 0.00 0.00 0.00

Table 6 shows the urban heat island (UHI) results for 2004,
2014, and 2024, revealing a stable overall pattern, since the
mean UHI across the study area remains at 0.00 for all three
periods, an outcome of the normalization approach where
deviations are measured relative to the mean land surface
temperature (LST). However, the minimum and maximum
values reveal important dynamics in the spatial variability of
heat distribution. In 2004, the UHI intensity ranged from
approximately —5.8 °C (areas cooler than the mean, likely
vegetated or water-dominated surfaces) to +5.3 °C (areas
significantly warmer than the mean, typically dense built-up
zones). By 2014, the range had narrowed slightly (-5.07 °C to
+4.51 °C), suggesting a mild reduction in thermal extremes,
possibly linked to changes in land use or local climatic
moderation. In 2024, the spread further contracted (-5.43 °C
to +3.72 °C), indicating that while some areas are still cooler
or hotter than average, the most intense hotspots are
diminishing in magnitude. The constant standard deviation of
1.00 across years reflects that relative variability has been
standardized, emphasizing comparative rather than absolute
change. Overall, these results suggest that while UHIs persist,
their peak intensity may weaken over time, potentially due to
urban greening efforts, infrastructural changes, or broader
increases in baseline temperatures, reducing the relative
contrast between urban areas and surrounding rural areas.

The urban thermal field variance index (UTFVI) results for
2004, 2014, and 2024 demonstrate relatively small but
meaningful variations in thermal stress across the study area.
By definition, the mean remains at 0.00 for all years since the
UTFVI expresses deviations in the LST relative to the area’s
average. The minimum values (—0.14 to —0.16) reflect areas
that are consistently cooler than the mean, likely associated
with vegetation, open land, or water bodies, whereas the
maximum values (0.13 in 2004, declining slightly to 0.11 in
2024) correspond to localized urban or built-up hotspots. The
gradual reduction in the maximum suggests that although
urban areas continue to be warmer than their surroundings,
the degree of thermal stress relative to the mean has weakened
over time. Moreover, the increase in standard deviation from
0.02 in 2004 to 0.03 in 2014 and 2024 indicates slightly
greater spatial variability in thermal conditions, meaning that
while extremes are less intense, contrasts across the landscape
are still becoming more scattered. Overall, the UTFVI
findings suggest that ecological thermal stress remains
moderate and fairly balanced, with no severe anomalies, but
the persistence of both cooler and hotter zones underscores
the importance of sustainable land use management to
mitigate localized heat stress and maintain ecological
resilience.
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Figure 4: Urban heat islands of the Kaduna metropolis from 2004--2024
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Figure 5: Urban thermal field variance index (UTFVI) of the Kaduna metropolis in 2004

VCEI

The vegetation cooling index was used to quantify the cooling influence of vegetation in the Kaduna metropolis. The results

are shown in Table 7.

Table 7: Vegetation cooling efficiency index

Slope Intercept
Max +1.39 43.5°C
Mean -16.90 39.7°C
Min -33.71 27.6 °C

Table 7 reveals that the calculated vegetation cooling
efficiency index (VCEI) values ranged from —33.7 to +1.39,
with a mean slope of —16.9. This implies that, on average, a
unit increase in the NDVI corresponds to a reduction of ~17
°C in the land surface temperature. Areas with dense
vegetation (NDVI > 0.6) presented the strongest cooling
effect (—33 °C), whereas certain built-up/stressed vegetation
zones presented negligible or even positive VCEI values
(+1.3 °C). These results highlight the importance of
vegetation in mitigating thermal discomfort while also
emphasizing spatial heterogeneity in cooling efficiency across
the landscape.

Discussions

This study examined the correlation between urban expansion
and ecological thermal conditions in the Kaduna metropolis
from 2004--2024, utilizing multitemporal Landsat data and
indicators such as the LST, UHI, UTFVI, and the newly
introduced vegetation cooling efficiency index (VCEI). These
findings underscore that rapid urban expansion, marked by
substantial expansions of developed regions and barren lands
at the cost of agricultural land and forest cover, has
significantly influenced surface temperature and ecological
thermal comfort.

The spatiotemporal rise in the mean LST from 32.2 °C in 2004
to 35.7 °C in 2024 highlights the warming trend of the Kaduna
metropolis, which aligns with observations from other
African cities undergoing comparable urban transitions (Abd-

Elmabod et al., 2022; Tesfamariam et al., 2024). The rise in
impervious surfaces, the loss of plant cover, and the thermal
characteristics of building materials all contributed to this
increasing trend. These factors all lower evapotranspiration
and increase surface heat storage. The higher standard
deviation of the LST also shows that the temperature
differences across the city are increasing, which exacerbates
localized heat stress.

Research on UHIs has shown that built-up regions are
consistently warmer than vegetated and water-dominated
surfaces. This is similar to the findings of (Cetin et al., 2024)
and (Siswanto et al., 2023), who revealed that urban surfaces
such as concrete and asphalt absorb and retain more heat,
while reducing vegetation limits cooling through
evapotranspiration, and water bodies provide a cooling effect.
The maximum UHI intensity decreased from +5.27 °C in
2004 to +3.72 °C in 2024, which shows that heat islands are
still present, but their relative intensity has weakened over
time. This study contradicts the typical assumption of
increasing UHI severity in rapidly urbanizing areas. A
probable reason is the general rise in baseline temperatures
across the city, which narrows the relative difference between
urban and peri-urban zones. The Kaduna Urban Renewal
Programme (Kaduna State Government, 2021) is also making
improvements to infrastructure and adding more green space,
which may have helped cool some of the hottest places.

The UTFVI data revealed modest ecological stress, with both
cooler (vegetated) and warmer (built-up) zones remaining
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throughout the study period. The gradual decrease in the
maximum UTFVI values suggests fewer temperature
extremes, whereas the increase in standard deviation indicates
greater heterogeneity in thermal comfort across the
metropolis. This result is similar to the findings of (Mokarram
et al., 2023), who reported that a decline in UTFVI values
suggests worsening ecological comfort due to urbanization
and reduced vegetation. This regional heterogeneity means
that while overall ecological circumstances remain generally
balanced, small pockets of discomfort continue and could
grow under future climate change.

The proposed VCEI further highlights the crucial role of
vegetation in regulating surface temperature. The negative
slope results confirmed that vegetation has a cooling impact
across the Kaduna metropolis; however, the effects differ in
terms of efficiency depending on vegetation density and
health. The lowering of this cooling efficacy in areas of sparse
or damaged vegetation is consistent with findings from earlier
studies emphasizing the sensitivity of urban greenery to rapid
land change (Litardo et al., 2020; Patel et al., 2024). This
highlights the necessity of conserving and growing urban
green infrastructure to sustain the cooling advantages of
vegetation.

Taken together, the results reveal that uncontrolled urban
expansion in the Kaduna metropolis has produced major
thermal modifications, with implications for human health,
energy demand, and urban ecology. If uncontrolled, these
dynamics could worsen urban heat stress and jeopardize
progress toward the Sustainable Development Goals (SDGs),
particularly SDG 11 (sustainable cities and communities) and
SDG 13 (climate action).

CONCLUSION

This study investigated the impacts of urban expansion on
ecological thermal comfort in the Kaduna metropolis over two
decades via Landsat imagery and indices such as the LST,
UHI, UTFVI, and proposed VCEI. The results demonstrated
a significant change in agricultural land and tree cover into
built-up areas and barren lands, resulting in a constant
increase in land surface temperature and mild but persistent
ecological stress. Although the intensities of the UHI and
UTFVI marginally diminished over time, the persistence of
thermal hotspots demonstrates the vulnerability of urban
populations to localized heat stress. The VCEI validated the
critical cooling effect of vegetation, although its efficacy is
being degraded by continuing land change. The study
revealed that increasing urbanization in the Kaduna
metropolis is altering the city’s ecological balance and
thermal environment. To increase resilience and improve
thermal comfort, policymakers and planners should
emphasize policies that retain and expand vegetation cover,
incorporate green infrastructure into new constructions, and
use climate-sensitive designs in urban regeneration programs.
Protecting vegetation is particularly crucial, as it remains the
most effective natural buffer against rising surface
temperatures. Future research should incorporate household-
level exposure evaluations, socioeconomic vulnerability
analysis, and predictive climate models to provide more
holistic knowledge of urban thermal dynamics and adaptation
routes for Kaduna and similar cities in sub-Saharan Africa.

Data availability statement
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current study are available from the corresponding author on
reasonable request.
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