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ABSTRACT

Blockchain technology improves smart grid demand response by enhancing the security and efficiency of
energy trading, especially for distributed resources such as electric vehicles, thereby enabling more reliable and
effective management of energy transactions across different and decentralized networks. Existing models face
challenges such as high computational overhead, inconsistent block creation times, and vulnerabilities to
malicious entities, which hinder practical implementation. This study develops a hybrid trust model integrating
attribute-based authentication and reputation-based trust within a blockchain framework to optimize
performance and security for real-time smart grid operations. A simulation involving 190 entities (10 industries,
50 residences, 30 buildings, and 100 electric vehicles) with over 1000 transactions was conducted using a
Python script. The model employed parallel Proof of Work with a difficulty of 2, 10 miner nodes, and a thread
pool for distributed computation. The simulation achieved a 91.80% authentication success rate, an average
computational time of 3.60 milliseconds, a block creation time of 42.10 milliseconds, and a throughput of 12.39
blocks per second, outperforming the baseline’s 63.8 milliseconds block time and 15.6 transactions per second.
Inconsistent node performance and a basic trading model without distance-based loss calculations reduce the
model’s security and economic precision. This research contributes to the development of blockchain-based
demand response systems by providing a scalable foundation for secure and efficient energy trading in smart

grids, enabling broader application and improved system reliability.
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INTRODUCTION

The growing demand for energy and the need for timely
responses have accelerated the development of smart grids,
which rely heavily on information and communication
technologies to deliver services within set timeframes and
regions (Guoshi et al., 2023). To address trust challenges in
IoT-based marketplaces, the Market Trust model uses
blockchain to assess trustworthiness through familiarity,
personal interactions, and public perception (Latif, 2023).
Blockchain has also enabled secure energy trading between
electric vehicles, where transaction data is encrypted and
stored via consensus mechanisms, allowing vehicles to buy
energy at off-peak rates and sell during peak hours using
safety matching and pricing strategies (Huixin, 2023). The
Internet of Vehicles supports these interactions through a
distributed structure that connects smart vehicles with drivers,
passengers, and roadside units, while demand response
management helps EV owners adjust consumption based on
cost and driving patterns (Kapassa et al., 2022).
Environmental concerns over emissions from fossil fuel
vehicles have further driven EV adoption, with smart grid
techniques, CNN-RNN models, and 5G networks improving
charging oversight and data exchange (Yahaya et al., 2022).
Scalability has been addressed through models that assign
local controllers to network sections for parallel transaction
processing using Hyperledger Fabric and MATPOWER
(Honari et al., 2022), while blockchain strengthens smart
home security by reducing hacking risks for connected
devices (Ratkovic et al., 2022).

Guoshi et al. (2023) proposed a demand response
management scheme using consortium blockchain, where
miner nodes verify energy transactions and append blocks,
though this approach places heavy computational and
communication loads on participating nodes. A hybrid trust
model could reduce these burdens and improve response

timing and cost efficiency. This research builds on Guoshi et
al. (2023) by designing and testing a hybrid trust model that
combines attribute-based authentication with reputation-
based trust to manage demand response requests in
blockchain energy transactions. The study addresses how to
ensure fair participation, reduce costs while maintaining
security, and improve transparency through simulation
metrics and  visualizations, focusing on  design,
implementation, and evaluation within a smart grid context.

Related Works

Smart grids are increasingly being use to control energy
systems allowing for continuous monitoring of supply and
consumer behaviors. Guoshi et al. (2023) notice that these
grids provide services within specific durations, whereas Latif
et al. (2023) present a Market Trust model for the social
Internet of Things that use blockchain to assess credibility
based on reputation, personal interactions, and community
perception. Li et al. (2023) develop a blockchain architecture
for energy transactions using electric vehicles, in which data
is secured by consensus and vehicles store electricity during
off-peak hours for reselling during times of high demand.
Kapassa et al,. (2022) defines the Internet of Vehicles as a
dynamic network that connects cars to other vehicles,
passengers and roadside infrastructure with demand response
allowing drivers to adjust consumption through the use of
vehicle-to-vehicle and  vehicle-to-grid  connections.
According to Yahaya et al. (2022), smart grid techniques use
CNN-RNN models and 5G networks to support vehicle-grid
communication and charging management, whereas Honari et
al. (2022) present a model that maps local controllers to
network segments for parallel transaction processing using
Hyperledger Fabric and MATPOWER. Ratkovic et al. (2022)
discuss blockchain's contribution to home security by
lowering risks for connected devices while Guoshi et al.
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(2023) introduce a consortium blockchain demand response
scheme in which miner nodes verify transactions but this
place major computational and communication demands on
participants. Toderean et al. (2025) review architectural
integration with smart grids from 2020 to 2024 highlighting
developments in Al prediction and blockchain security
together with challenges in regulation, automation,
interoperability and privacy. Ahmad et al. (2021) develop a
private blockchain system for safe energy trade that achieves
80% efficiency while overcoming tampering and majority
threats thereby exceeding cloud and traditional blockchain
techniques.

Further research addresses optimization and peer-to-peer
trade in blockchain-enabled grids. Ramasamy et al. (2025)
combine grey wolf and particle swarm optimization with
Ethereum 2.0 to minimize costs and improve rewards in
microgrids powered by renewable energy, whereas Yang
(n.d.) enable peer energy transactions with proof-of-stake
consensus to increase collective benefits with minimal mining
energy. Mollah et al. (2020) perform an assessment of
blockchain applications in future grids, including metering,
peer trading and vehicle management, focusing on security
and transparency benefits but lacking in scalability and speed
challenges.

Kolahan et al. (2021) use blockchain to manage residential
energy, reducing consumption by 11% and increasing comfort
by 7%, while Raza et al. (2024) examine 51 studies from 2018
to 2023 on blockchain trust systems in grids, healthcare and
transportation, identifying scale, energy and latency
challenges. Dong et al. (2025) show user savings of up to
56.83 percent using game-based pricing on Ethereum, while
Koukaras et al. (2024) evaluate 100 sources and indicate peak
reductions of 35% but continued scalability and cost
concerns. Shamaseen et al. (2025) create a blockchain system
capable of 60.86 transactions per second with complete
detection of illegitimate trades, whereas Umar et al. (2025)
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integrate Ethereum smart contracts and game theory to peer
marketplaces, saving between $5.4 and $8.2.Despite these
achievements, existing blockchain research in smart grids
lacks hybrid trust models that are suitable for real-time
demand response; Guoshi et al. (2023) report low
computational costs through miner selection but rely on
energy-intensive Proof of Work without adaptive trust
scoring, whereas studies by Latif (2023), Li (2023), and
Yahaya (2022) address trust and communication in IoT and
vehicle exchanges but do not include grid integration.
Toderean et al. (2025) and Ahmad et al. (2021) uncover
regulatory and scalability gaps, while Ramasamy (2025),
Yang (n.d.), and Kolahan (2021) maximize cost and energy
savings without addressing authentication or interoperability,
highlighting the need for a hybrid trust framework that
encourages flexible scoring, reduces energy demands and
scales across grid environments.

MATERIALS AND METHODS

The simulation environment was established on a standard
desktop computer running Python 3.12, leveraging libraries
such as hashlib for hashing, Crypto for cryptographic
operations, pandas for data handling, and matplotlib for
visualization. The network comprised 190 entities, including
10 industries, 50 residences, 30 buildings, and 100 electric
vehicles, mirroring the test case from Guoshi et al. (2023). A
total of 1000 transactions were processed to assess
performance under load, with energy supply fixed at 4 MW
for load management consistency. Blocks were configured to
hold 10 transactions each, striking a balance between
confirmation speed and security. Random seeds ensured
reproducibility, while uniform distributions introduced
variability in entity attributes. Assumptions included ideal
channel connections without latency and synchronous miner
operations across 10 nodes.

Table 1: Simulation Parameters, Detailing Parameter Values, Justifications, and Notes

Parameter Value Justification Notes

Number of 10 Matches base paper's industrial Ensures industrial load representation; scalable to 20

Industries buildings for larger grids

Number of 50 Matches base paper's residential Captures household variability; adjust for urban

Residences load profiles density

Number of 30 Matches base paper's commercial Represents mid-scale consumers; add sub-types for

Buildings buildings offices/retail

Number of EVs 100 Matches base paper's vehicle fleet Simulates mobility; include charging stations in
extensions

Block Size 10 Balances latency and security Derived from paper's transaction sets; test 5-20 for
sensitivity

PoW Difficulty 1 Targets 63.8 ms block time Tuned from paper's hashing; monitor for system
variance

Entities were modeled with type-specific properties,
including identity strings and type flags for distinction. Power
capacity ranged from 5 kW for residences to 500 kW for
industries, with processing capability varying from 1 unit for
homes to 50 for factories. Locations were randomized within
a 100x100 grid, and reputation scores initialized at 0.5.
Energy demand and available energy were set between 50%
and 100% of capacity, with electric vehicles assigned state-
of-charge values from 20% to 80% and prices per kWh from
0.1 to 0.5, based on data from the US Open Energy
Information dataset. Each entity generated an ECDSA key
pair on the P-256 curve for signatures, with wallets derived

from SHA-256 hashes of identities truncated to 160 bits. The
blockchain structure featured a linear ledger with Merkle
roots calculated via SHA-256 pairwise hashing, and Proof of
Work (PoW) was calibrated to require one leading zero in
hashes, targeting a 63.8 ms block creation time as per the base

paper.

Methods

The simulation employed a structured approach to implement
and evaluate the hybrid trust model. Entities were initialized
with attributes assigned from type-specific ranges,
introducing controlled variability.
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Code Snippet 1: Attribute Assignment in Entity Initialization illustrating the initialization procedure
BEGIN PROCEDURE Entity_Initialize(id, type, location)
SET power capacity = RANDOM UNIFORM(type min power[type], type max power[type])
SET processing_capacity = RANDOM_ UNIFORM(type min_processing[type], type max_processing[type])
SET energy demand = power capacity RANDOM_UNIFORM(0.5, 1.0)
SET energy available = power capacity RANDOM UNIFORM(0.5, 1.0)
SET soc_available = RANDOM_UNIFORM(0.2, 0.8)
SET price = RANDOM_UNIFORM(0.1, 0.5)
RETURN
END PROCEDURE

The hybrid trust model integrated attribute-based signatures on SHA-384 digests to issue tokens, preventing
authentication and reputation-based trust, where attributes replay attacks.
were verified against a central authority using ECDSA

Code Snippet 2: Attribute Verification in issue_tat detailing the token issuance process
BEGIN PROCEDURE issue_tat(entity)
SET attributes = CREATE _RECORD(power_capacity = entity.power_capacity, processing_capacity = entity.processing_capacity,
location = entity.location)
IF verify_attributes(entity.id, attributes) AND entity.key IS NOT NULL THEN
SET message = CONCAT (entity.id, CURRENT TIME)
SET hash = CREATE SHA384 HASH(message)
SET signer = CREATE DSS SIGNER(entity.key, "fips-186-3", "binary")
SET signature = signer.SIGN(hash)
SET entity.tat = CREATE_PAIR(message, signature)
RETURN TRUE
ELSE
RETURN FALSE
END IF
END PROCEDURE

Reputation scores updated post-transaction with 70% historical weight and 30% current metrics (50% success rate, 30%
timeliness, 20% compliance), excluding scores below 0.6.

Table 2: Reputation Factors Outlining Weights, Calculations, and Impacts. Miners Rotated Validation Duties to
Distribute Computational Load

Factor Weight Calculation Threshold Impact

Success Rate 0.5 Transactions completed / attempted Drops score below 0.6 after 3 failures
Timeliness 0.3 Response time / 100 ms Penalizes delays over 50 ms
Compliance 0.2 Energy delivered / requested Flags variances over 10%

The blockchain implementation involved blocks storing transaction lists, previous hashes, timestamps, and nonces.

Code Snippet 3: Merkle Root Calculation showing the Merkle tree computation
BEGIN FUNCTION calculate merkle root(transactions)
IF transactions IS EMPTY THEN
RETURN "0" REPEATED 64 TIMES
END IF
SET hashes = CREATE LIST()
FOR EACH transaction IN transactions DO
ADD hashlib.sha256(STRING(transaction).encode()).hexdigest() TO hashes
END FOR
WHILE LENGTH OF hashes > 1 DO
SET temp = CREATE_LIST()
SETi=0
WHILE i < LENGTH OF hashes DO
IF i+ 1 <LENGTH OF hashes THEN
SET pair = CONCAT(hashes[i], hashes[i + 1])
ADD hashlib.sha256(pair.encode()).hexdigest() TO temp
ELSE
SET pair = CONCAT (hashes[i], hashes[i])
ADD hashlib.sha256(pair.encode()).hexdigest() TO temp
END IF
INCREMENT i BY 2
END WHILE
SET hashes = temp
END WHILE
RETURN hashes[0]
END FUNCTION
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Leading miners solved PoW by iterating nonces, broadcasting majority vote from five miners. Rejected blocks were cleared

solutions for validation, with consensus achieved on a

from pools.
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Figure 1: Block Validation Sequence depicting the validation flow

Energy trading paired excess sellers with deficit buyers, using electric vehicles as intermediaries based on state-of-charge gaps.

Code Snippet 4: Trading Pairing Logic demonstrating the pairing process

BEGIN PROCEDURE perform trading(entity, other entity)
IF entity.energy available > entity.energy demand THEN

SET excess_energy = entity.energy available - entity.energy demand

IF other entity.energy demand > other entity.energy available THEN
SET max soc increase = (other entity.soc max - other entity.soc available) (other entity.power capacity / 1000)
SET energy given = MIN(excess_energy, max_soc_increase)

SET cost = energy given entity.price
SET profit = cost

DECREMENT entity.energy_available BY energy given

INCREMENT other_entity.soc_available BY (energy given / (other entity.power capacity / 1000))

END IF

ELSE IF entity.energy demand > entity.energy available AND entity.type = "ev" THEN
SET required_energy = entity.energy demand - entity.energy available
IF other entity.energy available > other entity.energy demand THEN
SET energy given = MIN(required energy, other entity.energy available - other entity.energy demand)

SET cost = energy given other_entity.price
SET profit = cost
INCREMENT entity.energy available BY energy given

DECREMENT other_entity.energy available BY energy given

END IF
END IF
RETURN

From the Snippet 3.4 Costs were calculated as energy times
price, with profits assigned to sellers, tracked under the 4 MW
supply.

Evaluation metrics included authentication success rate,
computational time, communication bits, throughput, node

PoW times, attack detection rate, and trading costs/profits.
Histograms and line plots analyzed data spreads and trends.
Validation averaged results over 10 trials with multiple seeds,
while tuning adjusted PoW difficulty using binary search to
meet target block times.

Table 3: Tuning Results Showing Difficulty Settings and Performance Outcomes

PoW Difficulty Avg Block Time (ms)

Throughput (blocks/s) Notes

1 300.07 3.09 Balanced, reflects current setting
2 463.92 1.99 Secure but slow, indicates higher security trade-off
Limitations included synchronous miner assumptions, the setup from Guoshi et al. (2023) with 10 industrial

simplified trading logic omitting auctions, and software-based
cryptography, prioritizing clarity over full realism. Future
field tests could incorporate network delays for enhanced
accuracy.

RESULTS AND DISCUSSION
The simulation utilized a Python script to replicate a smart
grid ecosystem with distributed energy resources, mirroring

buildings, 50 residences, 30 commercial buildings, and 100
electric vehicles, totaling 190 entities. Attributes such as
power capacity, processing capacity, location, energy
demand, and available energy were assigned to reflect diverse
load profiles, with 1000 transactions grouped into blocks of
10. Proof of Work (PoW) difficulty was set to 0 for
performance focus, and 10 miner nodes handled validation
and consensus via a majority vote system, supported by a
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thread pool for parallel mining. The simulation concluded in
7.43 seconds, achieving an authentication success rate of
91.80 percent, an average computational time of 3.60
milliseconds, and a throughput of 12.39 blocks per second,
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providing a baseline to assess the hybrid trust model's
performance and security. A histogram in Figure 4.1
illustrates the distribution of computational times across
transactions, offering insight into processing consistency.

Computational Time (ms)

300 ~

400

200

0

T T T T
0.0 2.5 5.0 7.5

T T T T
10.0 12.5 15.0 17.5

Figure 2: Histogram of Computational Time (ms) showing the distribution of processing times across transactions,

offering insight into processing consistency

Key performance metrics revealed a robust system operation.
The authentication success rate of 91.80 percent indicated that
918 of 1000 transactions passed checks, accounting for a 10
percent malicious entity presence that occasionally caused
failures due to low reputation scores. Computational time
averaged 3.60 milliseconds per transaction, covering
authentication and wupdates, with slight node activity
variations. Communication bits totaled 1152.00 per
transaction, including entity ID, hash, wallet address,
padding, Token Authentication Token (TAT), signature, and
reputation score. Block creation time averaged 42.10
milliseconds, with PoW times per node ranging from 0.00 to

C:\Users\jamal\OneDrive\Desktop\research>python me5.py
Creating entities...

Created 10 industries

Created 50 residences, total entities: 60

Created 30 buildings, total entities: 90

Created 100 EVs, total entities: 190

Simulating 1000 transactions...

Simulating attacks...
Authentication Success Rate:
Average Computational Time:
Average Communication Bits:
Average Block Creation Tim
Average PoW Time per Node: ['Node ©:
', 'Node 5: ©.00 ms', 'Node 6: 0.00 ms'
Throughput: 12.39 blocks/s

Attack Detection Rate: 100.00%

Running Time of the Data: 7.43 seconds
Node Throughputs (txn/s): ['Node ©: 36.18',
45.64', 'Node 6: UO.B5', 'Node 7: 37.90°',

Average Trading Cost: 187.61 kWh units
Average Trading Profit: 187.61 kWh units

91.80%

3.60 ms

1152.00 bits

42.10 ms

9.00 ms', 'Node 1:

'Node 7: 0.11 ms'

'Node 1:
'Node 8:

34.67',
43.56",

Figure 3: Results of the Simulation

0.00 ms',
'Node 8:

'Node 2: 51.07',
'Node 9:

0.11 milliseconds (averaging 0.019 milliseconds), reflecting
minimal difficulty and parallel distribution. Throughput
reached 12.39 blocks per second, or about 123.9 transactions
per second. The attack detection rate was 100.00 percent,
blocking all 10 malicious entities. Node throughputs varied
from 34.67 to 51.07 transactions per second, with Node 2
peaking at 51.07. Trading cost and profit both averaged
187.61 kWh units in a simplified model. Figure 4.2 presents
the overall results, while Figure 4.3 shows the authentication
success rate trend over time, revealing stability patterns, and
Figure 4.4 highlights the minimal yet variable PoW efforts
across nodes.

"Node 2: ©.00 ms',

0.00 ms',

'Node 3: 0.00 ms',
'Node 9: ©.00 ms']

'Node 4: ©.08 ms

‘Node 3: 36.08', 'Node 4: 34.83', 'Node 5:

39.62']

Cumulative ASR

o] 200 400

s00 800 1000

Figure 4: Line Plot of Cumulative ASR showing the authentication success trend over time, revealing any patterns in success

rate stability
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Figure 5: Bar Chart of Average PoW Time per Node highlighting the minimal but variable PoW efforts across nodes

Compared to Guoshi et al. (2023), the study aligned with the
base paper's entity composition but emphasized different
metrics. The base paper lacked a specific authentication
success rate, focusing on consensus, while this study's 91.80
percent provided a concrete measure influenced by simulated
malicious entities. Computational time was 63.8 milliseconds
for entity block formation and 62.9 milliseconds for miners in
the base, versus 3.60 milliseconds here, reflecting parallel
PoW's reduced overhead compared to the base's full cycle
(e.g., 50 add operations at 1.0 millisecond, four hashes at 2.7
milliseconds). Communication bits were 828 for entities and
321 for miners in the base, against 1152.00 here, due to added
TAT and signature data. Block creation time of 42.10

milliseconds outperformed the base's 63.8 milliseconds, aided
by parallel processing, though the base included sequential
steps. PoW times of 0.00 to 0.11 milliseconds contrasted with
the base's 2.7 milliseconds, driven by zero difficulty.
Throughput reached 123.9 transactions per second here versus
the base's implied 15.6, leveraging a 10-transaction block
size. Attack detection at 100.00 percent aligned with the
base's tamperproof goal, tested explicitly here. Node
throughputs (34.67 to 51.07) offered detailed variation versus
the base's stabilizing trend. Trading metrics at 187.61 kWh
units differed from the base's distance-adjusted model. Figure
4.5 depicts node throughput trends, and Figure 4.6 shows
block creation time variations.

Node 1D
Node Throughput

& & 8
L A L

Throughput (txn/s)

W
w
1

—s+— Throughput (txn/s)

0 2 4

Node ID

Figure 6: Line Plot of Node Throughputs (txn/s)

Block Creation Time (ms)
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5 -

0

3I0 40 50
Figure 7: Bar Chart of Block Creation Times

Benchmarking against other studies, Li et al. (2023) reported
50 to 80 milliseconds for block validation, exceeding 3.60
milliseconds here, with 10 to 20 transactions per second
throughput, below 123.9, highlighting parallel PoW's edge.
Aujla et al. (2018) noted 100 to 200 milliseconds block
creation, higher than 42.10 milliseconds, with 1000 bits
overhead close to 1152.00, aligning on trading focus. Kumar
et al. (2019) achieved 95 to 99 percent attack detection, near
100.00 percent, with 5 to 10 milliseconds computational time,
supporting this study's security. Gao et al. (2021) recorded 3
to 5 milliseconds PoW times, above 0.00 to 0.11 milliseconds
here, underscoring optimization.

Strengths included a 91.80 percent authentication rate and
12.39 blocks per second throughput, surpassing the base's

60 70 80

15.6 transactions per second, indicating efficient handling.
The 3.60 milliseconds computational time met real-time
needs, and 42.10 milliseconds block creation improved on
63.8 milliseconds, suggesting scalability. The 100 percent
attack detection rate ensured security, with node throughputs
(34.67 to 51.07) showing distribution, Node 2 at 51.07
excelling, and 7.43 seconds run time reflecting efficiency.
Limitations included PoW times of 0.00 to 0.11 milliseconds,
averaging 0.019 milliseconds, below the base's 2.7
milliseconds,  prioritizing speed  over  security.
Communication bits at 1152.00 exceeded the base's 828,
potentially increasing load. Trading metrics at 187.61 kWh
units lacked distance-based loss, possibly overestimating
outcomes. Uneven node throughputs (up to 16.4 difference)
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suggested imbalance. These trade-offs call for difficulty
adjustments and load balancing.

The model promises enhanced demand response with 12.39
blocks per second supporting rapid trades, reducing
centralized reliance as in the base paper. The 42.10
milliseconds block time enables timely adjustments,
potentially matching Li et al. (2023)'s 25 percent savings. The
100 percent attack detection rate ensures integrity, addressing
urban vulnerabilities. Integration with Gao et al. (2021)'s ICT
frameworks could boost automation, but adaptive PoW is
needed for security. Adding distance-based loss to 187.61
kWh units would improve realism. Test-net validation under
network constraints is recommended.

CONCLUSION

This study tested a hybrid trust model for blockchain-based
demand response in smart grids, simulating 190 entities (10
industries, 50 residences, 30 buildings, 100 electric vehicles)
across 1000 transactions with a Python script using parallel
Proof of Work (PoW) at difficulty 0, achieving a 91.80
percent authentication success rate, 3.60 milliseconds
computational time, and 12.39 blocks per second throughput
in 7.43 seconds, with metrics like 42.10 milliseconds block
creation, 0.00 to 0.11 milliseconds PoW times, 34.67 to 51.07
transactions per second node throughputs, and 187.61 kWh
trading cost/profit, showing speed optimization but security
trade-offs compared to Guoshi et al. (2023), Li et al. (2023),
and Aujla et al. (2018). The model outperformed the base
paper's 15.6 transactions per second and 63.8 milliseconds
with a 100 percent attack detection rate and efficient
processing, though minimal PoW times and uneven node
loads suggest security and reliability gaps needing refinement.
Future work should raise PoW difficulty to 1 or 2 for better
security, use load-balancing like weighted round-robin to
stabilize throughputs, add distance-based loss to adjust
trading metrics, and test on a Ganache test-net with
TrustManager.sol for scalability and attack resilience.
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