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ABSTRACT 

Blockchain technology improves smart grid demand response by enhancing the security and efficiency of 

energy trading, especially for distributed resources such as electric vehicles, thereby enabling more reliable and 

effective management of energy transactions across different and decentralized networks. Existing models face 

challenges such as high computational overhead, inconsistent block creation times, and vulnerabilities to 

malicious entities, which hinder practical implementation. This study develops a hybrid trust model integrating 

attribute-based authentication and reputation-based trust within a blockchain framework to optimize 

performance and security for real-time smart grid operations. A simulation involving 190 entities (10 industries, 

50 residences, 30 buildings, and 100 electric vehicles) with over 1000 transactions was conducted using a 

Python script. The model employed parallel Proof of Work with a difficulty of 2, 10 miner nodes, and a thread 

pool for distributed computation. The simulation achieved a 91.80% authentication success rate, an average 

computational time of 3.60 milliseconds, a block creation time of 42.10 milliseconds, and a throughput of 12.39 

blocks per second, outperforming the baseline’s 63.8 milliseconds block time and 15.6 transactions per second. 

Inconsistent node performance and a basic trading model without distance-based loss calculations reduce the 

model’s security and economic precision. This research contributes to the development of blockchain-based 

demand response systems by providing a scalable foundation for secure and efficient energy trading in smart 

grids, enabling broader application and improved system reliability. 
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INTRODUCTION 

The growing demand for energy and the need for timely 

responses have accelerated the development of smart grids, 

which rely heavily on information and communication 

technologies to deliver services within set timeframes and 

regions (Guoshi et al., 2023). To address trust challenges in 

IoT-based marketplaces, the Market Trust model uses 

blockchain to assess trustworthiness through familiarity, 

personal interactions, and public perception (Latif, 2023). 

Blockchain has also enabled secure energy trading between 

electric vehicles, where transaction data is encrypted and 

stored via consensus mechanisms, allowing vehicles to buy 

energy at off-peak rates and sell during peak hours using 

safety matching and pricing strategies (Huixin, 2023). The 

Internet of Vehicles supports these interactions through a 

distributed structure that connects smart vehicles with drivers, 

passengers, and roadside units, while demand response 

management helps EV owners adjust consumption based on 

cost and driving patterns (Kapassa et al., 2022). 

Environmental concerns over emissions from fossil fuel 

vehicles have further driven EV adoption, with smart grid 

techniques, CNN-RNN models, and 5G networks improving 

charging oversight and data exchange (Yahaya et al., 2022). 

Scalability has been addressed through models that assign 

local controllers to network sections for parallel transaction 

processing using Hyperledger Fabric and MATPOWER 

(Honari et al., 2022), while blockchain strengthens smart 

home security by reducing hacking risks for connected 

devices (Ratkovic et al., 2022). 

Guoshi et al. (2023) proposed a demand response 

management scheme using consortium blockchain, where 

miner nodes verify energy transactions and append blocks, 

though this approach places heavy computational and 

communication loads on participating nodes. A hybrid trust 

model could reduce these burdens and improve response 

timing and cost efficiency. This research builds on Guoshi et 

al. (2023) by designing and testing a hybrid trust model that 

combines attribute-based authentication with reputation-

based trust to manage demand response requests in 

blockchain energy transactions. The study addresses how to 

ensure fair participation, reduce costs while maintaining 

security, and improve transparency through simulation 

metrics and visualizations, focusing on design, 

implementation, and evaluation within a smart grid context. 

 

Related Works 

Smart grids are increasingly being use to control energy 

systems allowing for continuous monitoring of supply and 

consumer behaviors. Guoshi et al. (2023) notice that these 

grids provide services within specific durations, whereas Latif 

et al. (2023) present a Market Trust model for the social 

Internet of Things that use blockchain to assess credibility 

based on reputation, personal interactions, and community 

perception. Li et al. (2023) develop a blockchain architecture 

for energy transactions using electric vehicles, in which data 

is secured by consensus and vehicles store electricity during 

off-peak hours for reselling during times of high demand. 

Kapassa et al,. (2022) defines the Internet of Vehicles as a 

dynamic network that connects cars to other vehicles, 

passengers and roadside infrastructure with demand response 

allowing drivers to adjust consumption through the use of 

vehicle-to-vehicle and vehicle-to-grid connections. 

According to Yahaya et al. (2022), smart grid techniques use 

CNN-RNN models and 5G networks to support vehicle-grid 

communication and charging management, whereas Honari et 

al. (2022) present a model that maps local controllers to 

network segments for parallel transaction processing using 

Hyperledger Fabric and MATPOWER. Ratkovic et al. (2022) 

discuss blockchain's contribution to home security by 

lowering risks for connected devices while Guoshi et al. 
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(2023) introduce a consortium blockchain demand response 

scheme in which miner nodes verify transactions but this 

place major computational and communication demands on 

participants. Toderean et al. (2025) review architectural 

integration with smart grids from 2020 to 2024 highlighting 

developments in AI prediction and blockchain security 

together with challenges in regulation, automation, 

interoperability and privacy. Ahmad et al. (2021) develop a 

private blockchain system for safe energy trade that achieves 

80% efficiency while overcoming tampering and majority 

threats thereby exceeding cloud and traditional blockchain 

techniques. 

Further research addresses optimization and peer-to-peer 

trade in blockchain-enabled grids. Ramasamy et al. (2025) 

combine grey wolf and particle swarm optimization with 

Ethereum 2.0 to minimize costs and improve rewards in 

microgrids powered by renewable energy, whereas Yang 

(n.d.) enable peer energy transactions with proof-of-stake 

consensus to increase collective benefits with minimal mining 

energy. Mollah et al. (2020) perform an assessment of 

blockchain applications in future grids, including metering, 

peer trading and vehicle management, focusing on security 

and transparency benefits but lacking in scalability and speed 

challenges. 

Kolahan et al. (2021) use blockchain to manage residential 

energy, reducing consumption by 11% and increasing comfort 

by 7%, while Raza et al. (2024) examine 51 studies from 2018 

to 2023 on blockchain trust systems in grids, healthcare and 

transportation, identifying scale, energy and latency 

challenges. Dong et al. (2025) show user savings of up to 

56.83 percent using game-based pricing on Ethereum, while 

Koukaras et al. (2024) evaluate 100 sources and indicate peak 

reductions of 35% but continued scalability and cost 

concerns. Shamaseen et al. (2025) create a blockchain system 

capable of 60.86 transactions per second with complete 

detection of illegitimate trades, whereas Umar et al. (2025) 

integrate Ethereum smart contracts and game theory to peer 

marketplaces, saving between $5.4 and $8.2.Despite these 

achievements, existing blockchain research in smart grids 

lacks hybrid trust models that are suitable for real-time 

demand response; Guoshi et al. (2023) report low 

computational costs through miner selection but rely on 

energy-intensive Proof of Work without adaptive trust 

scoring, whereas studies by Latif (2023), Li (2023), and 

Yahaya (2022) address trust and communication in IoT and 

vehicle exchanges but do not include grid integration. 

Toderean et al. (2025) and Ahmad et al. (2021) uncover 

regulatory and scalability gaps, while Ramasamy (2025), 

Yang (n.d.), and Kolahan (2021) maximize cost and energy 

savings without addressing authentication or interoperability, 

highlighting the need for a hybrid trust framework that 

encourages flexible scoring, reduces energy demands and 

scales across grid environments. 

 

MATERIALS AND METHODS 

The simulation environment was established on a standard 

desktop computer running Python 3.12, leveraging libraries 

such as hashlib for hashing, Crypto for cryptographic 

operations, pandas for data handling, and matplotlib for 

visualization. The network comprised 190 entities, including 

10 industries, 50 residences, 30 buildings, and 100 electric 

vehicles, mirroring the test case from Guoshi et al. (2023). A 

total of 1000 transactions were processed to assess 

performance under load, with energy supply fixed at 4 MW 

for load management consistency. Blocks were configured to 

hold 10 transactions each, striking a balance between 

confirmation speed and security. Random seeds ensured 

reproducibility, while uniform distributions introduced 

variability in entity attributes. Assumptions included ideal 

channel connections without latency and synchronous miner 

operations across 10 nodes.  

 

Table 1: Simulation Parameters, Detailing Parameter Values, Justifications, and Notes 

Parameter Value Justification Notes 

Number of 

Industries 

10 Matches base paper's industrial 

buildings 

Ensures industrial load representation; scalable to 20 

for larger grids 

Number of 

Residences 

50 Matches base paper's residential 

load profiles 

Captures household variability; adjust for urban 

density 

Number of 

Buildings 

30 Matches base paper's commercial 

buildings 

Represents mid-scale consumers; add sub-types for 

offices/retail 

Number of EVs 100 Matches base paper's vehicle fleet Simulates mobility; include charging stations in 

extensions 

Block Size 10 Balances latency and security Derived from paper's transaction sets; test 5–20 for 

sensitivity 

PoW Difficulty 1 Targets 63.8 ms block time Tuned from paper's hashing; monitor for system 

variance 

 

Entities were modeled with type-specific properties, 

including identity strings and type flags for distinction. Power 

capacity ranged from 5 kW for residences to 500 kW for 

industries, with processing capability varying from 1 unit for 

homes to 50 for factories. Locations were randomized within 

a 100x100 grid, and reputation scores initialized at 0.5. 

Energy demand and available energy were set between 50% 

and 100% of capacity, with electric vehicles assigned state-

of-charge values from 20% to 80% and prices per kWh from 

0.1 to 0.5, based on data from the US Open Energy 

Information dataset. Each entity generated an ECDSA key 

pair on the P-256 curve for signatures, with wallets derived 

from SHA-256 hashes of identities truncated to 160 bits. The 

blockchain structure featured a linear ledger with Merkle 

roots calculated via SHA-256 pairwise hashing, and Proof of 

Work (PoW) was calibrated to require one leading zero in 

hashes, targeting a 63.8 ms block creation time as per the base 

paper. 

 

Methods 

The simulation employed a structured approach to implement 

and evaluate the hybrid trust model. Entities were initialized 

with attributes assigned from type-specific ranges, 

introducing controlled variability.  
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Code Snippet 1: Attribute Assignment in Entity Initialization illustrating the initialization procedure 
BEGIN PROCEDURE Entity_Initialize(id, type, location) 

    SET power_capacity = RANDOM_UNIFORM(type_min_power[type], type_max_power[type]) 

    SET processing_capacity = RANDOM_UNIFORM(type_min_processing[type], type_max_processing[type]) 

    SET energy_demand = power_capacity  RANDOM_UNIFORM(0.5, 1.0) 

    SET energy_available = power_capacity  RANDOM_UNIFORM(0.5, 1.0) 

    SET soc_available = RANDOM_UNIFORM(0.2, 0.8) 

    SET price = RANDOM_UNIFORM(0.1, 0.5) 

    RETURN 

END PROCEDURE 

 

The hybrid trust model integrated attribute-based 

authentication and reputation-based trust, where attributes 

were verified against a central authority using ECDSA 

signatures on SHA-384 digests to issue tokens, preventing 

replay attacks.  

 

Code Snippet 2: Attribute Verification in issue_tat detailing the token issuance process 
BEGIN PROCEDURE issue_tat(entity) 

    SET attributes = CREATE_RECORD(power_capacity = entity.power_capacity, processing_capacity = entity.processing_capacity, 

location = entity.location) 

    IF verify_attributes(entity.id, attributes) AND entity.key IS NOT NULL THEN 

        SET message = CONCAT(entity.id, CURRENT_TIME) 

        SET hash = CREATE_SHA384_HASH(message) 

        SET signer = CREATE_DSS_SIGNER(entity.key, "fips-186-3", "binary") 

        SET signature = signer.SIGN(hash) 

        SET entity.tat = CREATE_PAIR(message, signature) 

        RETURN TRUE 

    ELSE 

        RETURN FALSE 

    END IF 

END PROCEDURE 

 

Reputation scores updated post-transaction with 70% historical weight and 30% current metrics (50% success rate, 30% 

timeliness, 20% compliance), excluding scores below 0.6.  

 

Table 2: Reputation Factors Outlining Weights, Calculations, and Impacts. Miners Rotated Validation Duties to 

Distribute Computational Load 

Factor Weight Calculation Threshold Impact 

Success Rate 0.5 Transactions completed / attempted Drops score below 0.6 after 3 failures 

Timeliness 0.3 Response time / 100 ms Penalizes delays over 50 ms 

Compliance 0.2 Energy delivered / requested Flags variances over 10% 

 

The blockchain implementation involved blocks storing transaction lists, previous hashes, timestamps, and nonces. 

 

Code Snippet 3: Merkle Root Calculation showing the Merkle tree computation 
BEGIN FUNCTION calculate_merkle_root(transactions) 

    IF transactions IS EMPTY THEN 

        RETURN "0" REPEATED 64 TIMES 

    END IF 

    SET hashes = CREATE_LIST() 

    FOR EACH transaction IN transactions DO 

        ADD hashlib.sha256(STRING(transaction).encode()).hexdigest() TO hashes 

    END FOR 

    WHILE LENGTH OF hashes > 1 DO 

        SET temp = CREATE_LIST() 

        SET i = 0 

        WHILE i < LENGTH OF hashes DO 

            IF i + 1 < LENGTH OF hashes THEN 

                SET pair = CONCAT(hashes[i], hashes[i + 1]) 

                ADD hashlib.sha256(pair.encode()).hexdigest() TO temp 

            ELSE 

                SET pair = CONCAT(hashes[i], hashes[i]) 

                ADD hashlib.sha256(pair.encode()).hexdigest() TO temp 

            END IF 

            INCREMENT i BY 2 

        END WHILE 

        SET hashes = temp 

    END WHILE 

    RETURN hashes[0] 

END FUNCTION 
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Leading miners solved PoW by iterating nonces, broadcasting 

solutions for validation, with consensus achieved on a 

majority vote from five miners. Rejected blocks were cleared 

from pools. 

 

 
Figure 1: Block Validation Sequence depicting the validation flow 

 

Energy trading paired excess sellers with deficit buyers, using electric vehicles as intermediaries based on state-of-charge gaps. 

 

Code Snippet 4: Trading Pairing Logic demonstrating the pairing process 
BEGIN PROCEDURE perform_trading(entity, other_entity) 

    IF entity.energy_available > entity.energy_demand THEN 

        SET excess_energy = entity.energy_available - entity.energy_demand 

        IF other_entity.energy_demand > other_entity.energy_available THEN 

            SET max_soc_increase = (other_entity.soc_max - other_entity.soc_available)  (other_entity.power_capacity / 1000) 

            SET energy_given = MIN(excess_energy, max_soc_increase) 

            SET cost = energy_given  entity.price 

            SET profit = cost 

            DECREMENT entity.energy_available BY energy_given 

            INCREMENT other_entity.soc_available BY (energy_given / (other_entity.power_capacity / 1000)) 

        END IF 

    ELSE IF entity.energy_demand > entity.energy_available AND entity.type = "ev" THEN 

        SET required_energy = entity.energy_demand - entity.energy_available 

        IF other_entity.energy_available > other_entity.energy_demand THEN 

            SET energy_given = MIN(required_energy, other_entity.energy_available - other_entity.energy_demand) 

            SET cost = energy_given  other_entity.price 

            SET profit = cost 

            INCREMENT entity.energy_available BY energy_given 

            DECREMENT other_entity.energy_available BY energy_given 

        END IF 

    END IF 

    RETURN 

 

From the Snippet 3.4 Costs were calculated as energy times 

price, with profits assigned to sellers, tracked under the 4 MW 

supply.  

Evaluation metrics included authentication success rate, 

computational time, communication bits, throughput, node 

PoW times, attack detection rate, and trading costs/profits. 

Histograms and line plots analyzed data spreads and trends. 

Validation averaged results over 10 trials with multiple seeds, 

while tuning adjusted PoW difficulty using binary search to 

meet target block times.  

 

Table 3: Tuning Results Showing Difficulty Settings and Performance Outcomes 

PoW Difficulty Avg Block Time (ms) Throughput (blocks/s) Notes 

1 300.07 3.09 Balanced, reflects current setting 

2 463.92 1.99 Secure but slow, indicates higher security trade-off 

 

Limitations included synchronous miner assumptions, 

simplified trading logic omitting auctions, and software-based 

cryptography, prioritizing clarity over full realism. Future 

field tests could incorporate network delays for enhanced 

accuracy. 

 

RESULTS AND DISCUSSION 

The simulation utilized a Python script to replicate a smart 

grid ecosystem with distributed energy resources, mirroring 

the setup from Guoshi et al. (2023) with 10 industrial 

buildings, 50 residences, 30 commercial buildings, and 100 

electric vehicles, totaling 190 entities. Attributes such as 

power capacity, processing capacity, location, energy 

demand, and available energy were assigned to reflect diverse 

load profiles, with 1000 transactions grouped into blocks of 

10. Proof of Work (PoW) difficulty was set to 0 for 

performance focus, and 10 miner nodes handled validation 

and consensus via a majority vote system, supported by a 



DEMAND RESPONSE MANAGEMENT FOR…        Isah et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December (Special Issue), 2025, pp 86 – 93 90 

thread pool for parallel mining. The simulation concluded in 

7.43 seconds, achieving an authentication success rate of 

91.80 percent, an average computational time of 3.60 

milliseconds, and a throughput of 12.39 blocks per second, 

providing a baseline to assess the hybrid trust model's 

performance and security. A histogram in Figure 4.1 

illustrates the distribution of computational times across 

transactions, offering insight into processing consistency. 

 

 
Figure 2: Histogram of Computational Time (ms) showing the distribution of processing times across transactions, 

offering insight into processing consistency 

 

Key performance metrics revealed a robust system operation. 

The authentication success rate of 91.80 percent indicated that 

918 of 1000 transactions passed checks, accounting for a 10 

percent malicious entity presence that occasionally caused 

failures due to low reputation scores. Computational time 

averaged 3.60 milliseconds per transaction, covering 

authentication and updates, with slight node activity 

variations. Communication bits totaled 1152.00 per 

transaction, including entity ID, hash, wallet address, 

padding, Token Authentication Token (TAT), signature, and 

reputation score. Block creation time averaged 42.10 

milliseconds, with PoW times per node ranging from 0.00 to 

0.11 milliseconds (averaging 0.019 milliseconds), reflecting 

minimal difficulty and parallel distribution. Throughput 

reached 12.39 blocks per second, or about 123.9 transactions 

per second. The attack detection rate was 100.00 percent, 

blocking all 10 malicious entities. Node throughputs varied 

from 34.67 to 51.07 transactions per second, with Node 2 

peaking at 51.07. Trading cost and profit both averaged 

187.61 kWh units in a simplified model. Figure 4.2 presents 

the overall results, while Figure 4.3 shows the authentication 

success rate trend over time, revealing stability patterns, and 

Figure 4.4 highlights the minimal yet variable PoW efforts 

across nodes. 

 

 
Figure 3: Results of the Simulation 

 

 
Figure 4: Line Plot of Cumulative ASR showing the authentication success trend over time, revealing any patterns in success 

rate stability 
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Figure 5: Bar Chart of Average PoW Time per Node highlighting the minimal but variable PoW efforts across nodes 

 

Compared to Guoshi et al. (2023), the study aligned with the 

base paper's entity composition but emphasized different 

metrics. The base paper lacked a specific authentication 

success rate, focusing on consensus, while this study's 91.80 

percent provided a concrete measure influenced by simulated 

malicious entities. Computational time was 63.8 milliseconds 

for entity block formation and 62.9 milliseconds for miners in 

the base, versus 3.60 milliseconds here, reflecting parallel 

PoW's reduced overhead compared to the base's full cycle 

(e.g., 50 add operations at 1.0 millisecond, four hashes at 2.7 

milliseconds). Communication bits were 828 for entities and 

321 for miners in the base, against 1152.00 here, due to added 

TAT and signature data. Block creation time of 42.10 

milliseconds outperformed the base's 63.8 milliseconds, aided 

by parallel processing, though the base included sequential 

steps. PoW times of 0.00 to 0.11 milliseconds contrasted with 

the base's 2.7 milliseconds, driven by zero difficulty. 

Throughput reached 123.9 transactions per second here versus 

the base's implied 15.6, leveraging a 10-transaction block 

size. Attack detection at 100.00 percent aligned with the 

base's tamperproof goal, tested explicitly here. Node 

throughputs (34.67 to 51.07) offered detailed variation versus 

the base's stabilizing trend. Trading metrics at 187.61 kWh 

units differed from the base's distance-adjusted model. Figure 

4.5 depicts node throughput trends, and Figure 4.6 shows 

block creation time variations. 

 

 
Figure 6: Line Plot of Node Throughputs (txn/s) 

 
Figure 7: Bar Chart of Block Creation Times 

 

Benchmarking against other studies, Li et al. (2023) reported 

50 to 80 milliseconds for block validation, exceeding 3.60 

milliseconds here, with 10 to 20 transactions per second 

throughput, below 123.9, highlighting parallel PoW's edge. 

Aujla et al. (2018) noted 100 to 200 milliseconds block 

creation, higher than 42.10 milliseconds, with 1000 bits 

overhead close to 1152.00, aligning on trading focus. Kumar 

et al. (2019) achieved 95 to 99 percent attack detection, near 

100.00 percent, with 5 to 10 milliseconds computational time, 

supporting this study's security. Gao et al. (2021) recorded 3 

to 5 milliseconds PoW times, above 0.00 to 0.11 milliseconds 

here, underscoring optimization. 

Strengths included a 91.80 percent authentication rate and 

12.39 blocks per second throughput, surpassing the base's 

15.6 transactions per second, indicating efficient handling. 

The 3.60 milliseconds computational time met real-time 

needs, and 42.10 milliseconds block creation improved on 

63.8 milliseconds, suggesting scalability. The 100 percent 

attack detection rate ensured security, with node throughputs 

(34.67 to 51.07) showing distribution, Node 2 at 51.07 

excelling, and 7.43 seconds run time reflecting efficiency. 

Limitations included PoW times of 0.00 to 0.11 milliseconds, 

averaging 0.019 milliseconds, below the base's 2.7 

milliseconds, prioritizing speed over security. 

Communication bits at 1152.00 exceeded the base's 828, 

potentially increasing load. Trading metrics at 187.61 kWh 

units lacked distance-based loss, possibly overestimating 

outcomes. Uneven node throughputs (up to 16.4 difference) 
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suggested imbalance. These trade-offs call for difficulty 

adjustments and load balancing. 

The model promises enhanced demand response with 12.39 

blocks per second supporting rapid trades, reducing 

centralized reliance as in the base paper. The 42.10 

milliseconds block time enables timely adjustments, 

potentially matching Li et al. (2023)'s 25 percent savings. The 

100 percent attack detection rate ensures integrity, addressing 

urban vulnerabilities. Integration with Gao et al. (2021)'s ICT 

frameworks could boost automation, but adaptive PoW is 

needed for security. Adding distance-based loss to 187.61 

kWh units would improve realism. Test-net validation under 

network constraints is recommended. 

 

CONCLUSION  

This study tested a hybrid trust model for blockchain-based 

demand response in smart grids, simulating 190 entities (10 

industries, 50 residences, 30 buildings, 100 electric vehicles) 

across 1000 transactions with a Python script using parallel 

Proof of Work (PoW) at difficulty 0, achieving a 91.80 

percent authentication success rate, 3.60 milliseconds 

computational time, and 12.39 blocks per second throughput 

in 7.43 seconds, with metrics like 42.10 milliseconds block 

creation, 0.00 to 0.11 milliseconds PoW times, 34.67 to 51.07 

transactions per second node throughputs, and 187.61 kWh 

trading cost/profit, showing speed optimization but security 

trade-offs compared to Guoshi et al. (2023), Li et al. (2023), 

and Aujla et al. (2018). The model outperformed the base 

paper's 15.6 transactions per second and 63.8 milliseconds 

with a 100 percent attack detection rate and efficient 

processing, though minimal PoW times and uneven node 

loads suggest security and reliability gaps needing refinement. 

Future work should raise PoW difficulty to 1 or 2 for better 

security, use load-balancing like weighted round-robin to 

stabilize throughputs, add distance-based loss to adjust 

trading metrics, and test on a Ganache test-net with 

TrustManager.sol for scalability and attack resilience. 
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