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ABSTRACT 

This paper seeks to establish if the t- Steiner quintuple system of balanced incomplete block design (BIBD) is 

a group, ring or field algebra. A 2- (11, 5, 2) BIBD was constructed with its blocks, incidence matrix and Cayley 

table shown and the axioms of the algebraic structures of group, ring and field defined. The t- Steiner quintuple 

design represented as 
EG  was tested with the axioms of the algebraic structures. The results showed that a t – 

Steiner quintuple system of balanced incomplete block design satisfied all the axioms of a group under the 

additive binary operation but breaks down under the multiplicative binary operation. Results further showed 

that the t-Steiner quintuple design satisfied all the axioms of a ring algebra, a semi- group, commutative semi-

ring and commutative ring but did not satisfied the axioms of a field algebra. This goes to show that a t- Steiner 

system is a group algebra under addition, a ring but neither a group under multiplication nor a field algebra.   
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INTRODUCTION 

Designs theory is the study of the existence, construction and 

examination of the properties of finite sets whose arrangement 

satisfies some concepts of balance and symmetry (Akra et al, 

2024). A block design is a non-empty N =  1 2 3, , ........ mn n n n

whose elements are varieties or elements and a non-empty 

collection of subsets of b blocks of size p with each of the 

elements replicated or appears r times in the blocks.  

According to Akra et al (2025), a block design is incomplete 

if the number of varieties is greater than the block size, that is 

( )p n .  An incomplete block design is said to be balanced 

when its consist of a set of points N that is divided into b 

subsets in such a way that each point in N is contained in r 

different subsets and the couple of points in N is contained in 

( )b  subsets with ( )p n points in each subset. A Balanced 

Incomplete Block Design (BIBD) is traditionally known by 

the parameters , , , ,n p r b  where n is the varieties or 

elements, p is the block size, r is the number each element is 

replicated in the blocks, b is the total number of blocks and    

is the pair of treatment (Akra et al, 2025). These parameters 

are connected by the formula  bp nr=  and ( 1) ( 1)n r p − = −  

known as the Fisher’s formula (Fisher 1940). Another 

approach for construction of BIBDs is done by (Akra et al 

2021).  

On the other hand, algebraic structures such as group, ring and 

field algebra are mathematical systems that consist of a set of 

elements, S of cardinality S   and one or more operations 

,   defined on that set. These structures follow specific 

rules or axioms depending on the type of structure.   

Algebra structures come into play in the proof of the existence 

and construction of balanced incomplete block design or 

generally, block design because block designs make extensive 

use of discrete mathematics or algebra most especially 

Combinatorics.  Combinatorial designs provides a solid 

foundation in the classical area of design theory as well as in 

many contemporary designs-based applications in a variety of 

fields and they are related to algebraic concepts of group, ring 

and field.  Akra et al (2023) has worked on the algebraic 

structure for BIBD and came out with some useful findings. 

As one of the foundational discrete structures, combinatorial 

design is one of the fastest growing area of modern 

mathematics and has wide range of applications especially in 

design analysis and model fittings (Michael et al 2025, 2017). 

Other areas of usefulness include cryptography and 

information security, mobile and wireless communication, 

DNA screening, software and hardware testing etc.  

The aim of this paper is therefore to ascertain whether a t-

Steiner quintuple system of balanced incomplete block design 

is a group, ring or a field algebra.  The knowledge of it will 

help a great deal in scientific researches. 

Steiner Systems of balanced incomplete block designs are 

special balanced incomplete block designs that is very much 

concerned with the number of elements in the block.  It was 

first proposed and constructed by Sir Jacob Steiner (1853) and 

studied by Plucker (1835), Kirkman (1857), Cayley (1850), 

Bay and de Weck (1935), Bose (1939, 1942), Skolen (1958), 

Hannani (1961, 1975) and reported by the Encyclopedia of 

design theory (2004).   Kirkman (1857) showed that the triple 

(3 elements in each block) system of order p exists and is 

balanced if and only if        n ≡ 1, 3 (mod 6).  Steiner (1853) 

studied the triple system, that is, S (n, 3,  )  and  proposed 

the problem of arranging ‘n’ objects in triplets such that every 

pair of objects appears in precisely one triplet. That 

arrangement is a balanced incomplete block design and 

because his work was more broadly disseminated 

mathematical circles, the triple system was named after him.  

The study of Steiner triple systems started with STS(n, p  ) 

for  n = 7 and 9,  p or block size or cardinality as 3 and   = 1. 

By extending the work further, STS (n) of other orders such 

as 19, 21 etc. and   increased from one to two were proved 

of their existences and subsequently constructed. 

Nevertheless, in all the extended and constructed designs, p 

was a constant 3.  

Moore (1896) posed the problem of the existence of a Steiner 

quadruple systems, S (v, p,  ) in which  p = 4.  Barrau (1908) 

worked on it and established the uniqueness and existence of 

the p = 4 family of BIBDs. He equally constructed S (8, 4, 3) 

and S (10, 4, 3) which is a 6k + 2 and 6k + 4 for k = 1 

respectively as was later shown by Hannani (1954).  Fitting 

(1915) made an in roads and constructed S (26, 4, 3) and S 
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(34, 4, 3) using the cyclic approach.   Bays and de Weck 

(1935) followed the work of Moore and proved the existence 

of at least one (14, 4, 3). The greatest breakthrough in the 

study of the Steiner quadruple systems came, when Hanani 

(1960) gave the necessary and sufficient conditions for the 

existence of such a system to be n   2 or 4 (mod 6) which can 

be interpreted as n = 6k + 2 or 6k + 4.  

A Steiner System, S (n, p,  )- BIBDs in which p or cardinality 

or block size is 5 is called a Steiner quintuple system and there 

are quite a few literature in the quintuple systems of balanced 

incomplete design. The man behind the introduction of the p 

=5 Steiner systems is Hanani (1972) and because it follows 

the Steiner systems, it was called the Steiner quintuple 

systems written as S (n, 5, )-. He gave the necessary (not 

sufficient) condition for the existence of such a system as 

n  5 (mod 6) which comes from considerations that applies 

to all the classical Steiner systems.  An additional necessary 

condition is that n   4 (mod 5), which comes from the fact 

that the number of blocks must be an integer.  Hannai (1972) 

also proved that for balanced incomplete block designs with 

blocks having five elements each (p = 5), the known necessary 

existence condition is also sufficient, with the exception of the 

non-existing design S (15, 5, 2).  Nevertheless, the sufficient 

condition for the quintuple family of Steiner systems is still 

under investigation.  This is so because there is a quintuple of 

order 11, that is, n = 6k + 5 for k = 1 but there is no quintuple 

of order 17, that is, n = 6k + 5 for k = 2.  There are quintuple 

for order 23, that is for k = 3, but no quintuple for order 29, 

that is, k = 4, there is a quintuple for order 35, that is, for k = 

5, but there is no quintuple for order 41, that is , k = 6 etc. 

Unlike the triple and quadruple systems where at least   and 

n have been varied, work on the quintuple only revolves 

around the order n. 

It has been established that in a BIBD, every pair {x, y} 

appears together   times. This pair is what is referred to as t.  

Though initially, this pair was equal to two in the early 

designs like in Kirkman (7,3,1) , Bose (9,3,1) , Steiner (7, 3,1) 

,  Kirkman  (7, 3, 2)  and Denniston (15, 3, 2) designs, yet, 

since it was not regarded as an important parameter, it was not 

attached to other BIBD parameters.  While the parameters of 

all BIBDs including the Steiner systems BIBDs are supposed 

to incorporate t so that BIBD would be written as t- ( , , )n p 

-BIB designs, yet, that was never the case. In those early 

designs, the parameters of interest were,  , , , ,n p b r  .  

The study of t- designs is of recent.  Authors like Earl Krasmer 

and Dale Menser (1976), Wilson (1973) , Ho Y. S and 

Mendelsohn (1974) and Hananni (1972) attempted to link the 

parameters of the BIBD with t and mentioned it passively but 

did not do an in-depth study on it.  The most useful result on 

t- design was given by Peter Keevash (2014) when he 

proposed the natural divisibility conditions for a t- (n, p,  )-

BIBD and gave it to be   
/

p i n i

t i t i


− −   
   
− −   

  .  

This is largely reported by Joy Moris (2021) in her book, 

Combinatorics where he posited that the divisibility theorem 

is a necessary condition for the existence of t- systems of 

designs.  He further argued that the designs that do not obey 

the divisibility theorem does not exist.  The relationship 

between t, b, p, r and   was proposed by Keevash (2014) and 

is stated thus;  

p i

t i

− 
 
− 

 is a divisor of n i

t i


− 
 
− 

 for every 0 1i t  −  (1) 

Therefore a  t-design or t –Steiner systems of balanced 

incomplete block design written as  ( , , )t n p − -BIB design, is 

a pair 
( , )X B

,  where X is an n-set  of elements and B  is a 

system of  p-sets (called blocks) from X such that each t -set 

is in exactly  . 

 

MATERIALS AND METHODS 

Methodology 

The first thing is the construction a t-Steiner quintuple design 

and in this work, our design is a 2-(11, 5, 2) BIBD.  

 0,1,2,3,4,5,6,7,8,9,10EX = .  

The initial block is (02348)  and blocks are generated 

cyclically, thus, the 11 blocks are;   

(13459) (245610)  356( 70 ) (46781) (57892 ) (689103)

0791( 04 ) (081015) (90126) 1012( 37 )  

And is put into block as; l 

 

Table 1: Design Block 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 

0 1 2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 0 1 

3 4 5 6 7 8 9 10 0 1 2 

4 5 6 7 8 9 10 0 1 2 3 

8 9 10 0 1 2 3 4 5 6 7 

 

Its incidence matrix, the design is thus constructed and shown; 
1 0 0 1 0 0 0 1 1 1 0

0 1 0 0 1 0 0 0 1 1 1

1 0 1 0 0 1 0 0 0 1 1

1 1 0 1 0 0 1 0 0 0 1

1 1 1 0 1 0 0 1 0 0 0

0 1 1 1 0 1 0 0 1 0 0

0 0 1 1 1 0 1 0 0 1 0

0 0 0 1 1 1 0 1 0 0 1

1 0 0 0 1 1 1 0 1 0 0

0 1 0 0 0 1 1 1 0 1 0

0 0 1 0 0 0 1 1 1 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From the incidence matrix above, we see that

2 1 3 2 4 5 5 4 10 9( , ), ( , ), ( , ), ( , )......... ( , ),p t t p t t p t t p t t p t t  2= = , p = 

5,  r = 5, and n = 11 which satisfies both the conditions for a 

BIBD and all the axioms of a  t – Steiner quintuple Design.  

Thus, we have successfully constructed a 2 - STS (11,5,2) 

 

Definitions of Algebraic Structures of Group, Ring and 

Field 

Definition and Axioms of a Group Algebra 

According to Akra et al (2023), a group is a single system of 

,G   or ,G  where G is a non–empty set and  or 

is a multiplicative and additive binary operation on G. In other 

words, a group of finite number of elements is called a finite 

group. The order of a group, G, denoted by 0(G) and 
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expressed mathematically as G , is the number of distinct 

elements in G. The followings are the axioms of a Group 

algebra; 

G1: Closure:  ,, Gyx   then x y G    and ,, Gyx   

then x y G   

G2: Associativity: ,,, Gzyx  ; 

( ) ( )x y z x y z =   and ( ) ( )x y z x y z =   

G3: Existence of identity: There is an element, ,Ge  called 

an identity s.t  ,x e x e x x G = =       and  

,x e x e x x G = =     

G4: Existence of inverse: For each ,Gx  there is an 

element ,1 Gx − called an inverse of x s.t 

1 1x x e x x− − = =   and  1 1x x e x x− − = =   

G5: Commutative law:   , ;x y G x y y x  =   and 

, ;x y G x y y x  =     (abelian or 

commutative group). 

i. A group ,G   or  ,G  for which the postulate G5 

does not hold is called a non – abelian group.  

ii. If G is finite, then ,G   or ,G  is called a finite 

group, otherwise, it is called an infinite group. 

iii. A system ,G   consisting of a non –empty set 

G and a binary composition   on G is called a semi-

group if it satisfies the associativity axiom. 

 

Definition and Axioms of a Ring Algebra 

A  Ring algebra is a double system, , ,R   , where R  is a 

non – empty set, and , are two binary operations 

defined on the set R   (Akra et al, 2023).  A Ring have the 

following axioms;  

 

R1: Closure:  , ,x y R   then x y R    and 

, ,x y R   then x y R   

R2: Commutative law:   , ;x y G x y y x  =   and 

, ;x y R x y y x  =   and (abelian or 

commutative group). 

R3: Associativity:  ,,, Gzyx  ; ( ) ( )x y z x y z =   

and ( ) ( )x y z x y z =   

R4: Distributivity:  ( ) ( ) ( )x y z x y x z  =         (left 

distributive law) 

( ) ( ) ( )y z x y x z x  =      (right distributive law) 

R5: Existence of identity: There is an element, ,e R  

called an identity s.t  ,x e x e x x R = =       and  

,x e x e x x R = =     

G6: Existence of inverse: For each ,x R there is an 

element 1 ,x R−  called an inverse of x s.t 

1 1x x e x x− − = =   and 1 1x x e x x− − = =   

 R1 – R4 show that a ring is an abelian additive group ,R  .   

A ring obeys associative law under semigroup ,R  .   

A ring in which yxxy =  for every x, y is a commutative 

ring.  In other words, a ring , ,R    is commutative if 

,R  is a commutative semi-group.  

An element e of a Ring is called unity (or an identity) of R if 

xexxe == for every Rx .  

A non - empty subset S of a ring , ,R   is called a sub 

ring of , ,R    if , ,S    is also a ring.   

A ring may or may not have a unity, however it can be easily 

shown that if a ring R  has an element,

Rxxexxetse ==. , then e  is unique and this 

e  is called the unity or the identity of R . The unity of a ring 

R  is denoted by I .  

An element x  of a ring is said to be idempotent if xx =2 . A 

ring R  in which every element is idempotent is known as 

boolean ring. 

 

Definition and Axioms of a Field Algebra 

A field , ,F   is a set defined by two binary 

compositions   and , .  It is otherwise called a commutative 

division ring.  A ring with unity in which all non – zero 

elements form a group under multiplication is called a 

division ring.  The followings are the axioms of a Field 

algebra;  

F1: ,F  is an abelian (additive) group 

F2: ,F  is an abelian (multiplicative) group 

F3: , , , ( ) ( ) ( )x y z F x y z x y x z    =     

(distributive law) 

A non – empty subset S of a field F is said to be a sub – field 

of F  if; 

(i) , ,x S y S x y S x y S        

(ii) S  is a field under the induced ,  operations 

Any subset S of a field F , containing at least two elements 

is a subfield of F iff; 

(i) SyxSySx − ,  

(ii) SxyySySx  −1)(0,,  

 

RESULTS AND DISCUSSION  

To obtain the results, we test t- (11, 5, 2)- BIBD with the 

axioms of the algebraic structures.  

Testing 2- (11, 5, 2)- BIBD with axioms of Group Algebra 

1. Multiplicative Operation: The Cayley table for of 

Group multiplicative operation is given thus; 
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Table 2: Caley Table for Multiplicative Binary Operation ( , )EG   Group 

  0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 10 

2 0 2 4 5 6 10 1 3 5 7 10 

3 0 3 6 9 1 4 7 10 2 5 8 

4 0 4 8 1 5 9 2 5 10 3 7 

5 0 5 10 4 9 3 8 3 7 1 6 

6 0 6 1 7 2 8 3 9 4 10 5 

7 0 7 3 10 6 2 9 5 1 8 4 

8 0 8 5 2 10 7 4 1 9 6 3 

9 0 9 7 5 3 1 10 3 6 4 2 

10 0 10 9 8 7 6 5 4 3 2 1 

 

Let 
1x , 

2x  and 3x  be 
EG   and  let 1x = 3, 2x = 5 and  

3x  = 7 , then X’s  n   

G1: Closure:  ,, Gyx   then x y G     

1 2 Ex x G  ;  
1 2 11,x x    

3 5  = 15 mod 11 = 4 
EG  (satisfied) 

G2: Associativity: ,,, Gzyx  ; 

( ) ( )x y z x y z =    

1 2 3 1 2 3( ) ( )x x x x x x  =   ;  

1 2 11,x x    

= (3 5) 7 3 (5 7)  =    

= 15 7 3 (35) =   

= 105 = 105 = 105 mod 11 = 6 EG (satisfied) 

G3: Commutative law:   , ;x y G x y y x  =    

1 2 2 1x x x x =  ;   
1 2 11,x x    

3 5 5 3 =   = 15 mod 11 = 4  (satisfied) 

We can observe from the Cayley table that 3 by 5 = 5 by 3 = 

4.  

G3: Existence of identity: There is an element, ,Ge  called 

an identity s.t  ,x e x e x x G = =     

let 0 be the identity; 3 0 0 =  and 0 3 0 ,x G =    

G4: Existence of inverse: For each ,Gx  there is an 

element ,1 Gx − called an inverse of x s.t 

1 1x x e x x− − = =     

3 3 0−   and 3 3 0−    (not satisfied) 

From the table above and result of G4, it is shown that 

elements do not have identity and inverse element. Hence, 

( )ED G , that is, t –Steiner Quintuple Designs does not satisfy 

all the axioms of a Group under multiplicative binary 

operation hence, not a Group under the multiplicative 

operation.  

2. Additive Binary Operation: The Cayley table for of Group 

multiplicative operation is given thus;    

 

Table 3:  Caley Table for Additive Binary Operation ( , )EG   

  0 1 2 3 4 5 6 7 8 9 10 

0 0 1 2 3 4 5 6 7 8 9 10 

1 1 2 3 4 5 6 7 8 9 10 0 

2 2 3 4 5 6 7 8 9 10 0 1 

3 3 4 5 6 7 8 9 10 0 1 2 

4 4 5 6 7 8 9 10 0 1 2 3 

5 5 6 7 8 9 10 0 1 2 3 4 

6 6 7 8 9 10 0 1 2 3 4 5 

7 7 8 9 10 0 1 2 3 4 5 6 

8 8 9 10 0 1 2 3 4 5 6 7 

9 9 10 0 1 2 3 4 5 6 7 8 

10 10 0 1 2 3 4 5 6 7 8 9 

 

Let 
1x , 

2x  and 3x  be 
EG   and  let 

1x = 3, 2x = 5  and  

3x  = 7 , then X’s  n   

G1: Closure:  ,, Gyx   then ,, Gyx   then 

x y G   

1 2 Ex x G  ;  1 2 11,x x    

3 5  =  8 mod 11 = 8 
EG  (satisfied) 

G2: Associativity: ,,, Gzyx  ; then  

( ) ( )x y z x y z =   

1 2 3 1 2 3( ) ( )x x x x x x  =   ;  

1 2 11,x x    

=  (3 5) 7 3 (5 7)  =    

=  8 7 3 12 =   

= 15 = 15 mod 11 = 4 EG (satisfied) 
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G3: Commutative law:   and 

, ;x y G x y y x  =    

1 2 2 1x x x x =  ;   
1 2 11,x x    

3 5 5 3 =   = 8 mod 11 = 8 (satisfied) 

We can observe from the Cayley table that 3 by 5 = 5 by 3 = 

4.  

G3: Existence of identity: There is an element, ,Ge  called 

an identity   

s.t   ,x e x e x x G = =     

let 0 be the identity; 

3 0 3 =  and 0 3 3 ,x G =    

G4: Existence of inverse: For each ,Gx  there is an 

element ,1 Gx − called an inverse of x s.t  

1 1x x e x x− − = =   

3 3 0− =  and 3 3 0−  =  (satisfied) 

From the table above and result of G4, it is shown that 

elements have identity and inverse element. Hence, ( )ED G , 

that is, t –Steiner Quintuple Designs satisfies all the axioms 

of a Group under additive binary operation hence, a Group 

under the additive operation.  

 Testing 2- (11, 5, 2)- BIBD with axioms of a Ring Algebra 

For 
EG  to be a ring, the design must be abelian additive group 

and semi-group defined on ( , , )EG   .  Also, the two 

distributive laws must be satisfied.  

Let 1 2 3, ,x x x  be any three real number in 
EG , say 

1 3x = ,  

2 5x =  and 
3 7x =  for any  'sx x  

1 2 2 1x x x x =   = 8 (mod 11) = 8  

 

1 2 3 1 2 3( ) ( )x x x x x x  =     

    = 4 (mod 11) = 4 

 

There exists o x  s.t  
1 10 0x x =   = 3 

 

 1 1,x x x x −   s.t  

1 1( ) 0x x − =  

 

1 2 3 1 2 3( ) ( )x x x x x x  =    


1 2 3, ,x x x x  

= 6 mod 11 = 6  

1 2 3 1 2 1 3( ) ( ) ( )x x x x x x x  =     


1 2 3, ,x x x X  

= 3 mod 11 = 3  

2 3 1 2 1 3 1( ) ( ) ( )x x x x x x x  =     

  
1 2 3, ,x x x X  

  4 mod 11 =  4  

 
  

1 2 2 1( )x x x x =   

  4 mod 11   =  4 X  

Testing 2- (11, 5, 2)- BIBD with axioms of a Field Algebra 

Let a system be , ,EG    be a field, where EG  is a 2- (11,5, 

2) , then  we test all the axioms of a field on ( ), ,EG   .  

Let 1 2 3, , Ex x x G , then ,EG  is closed under 

addition and ,EG  is closed under multiplication.   Given  

1x  = 2,  
2x  = 4 and 

3x  = 6, then  

i.  
1 2 3x x x X    and 

1 2 3 Ex x x G    are 

closed  

12 (mod 11) and 48 (mod 11) 

1 X    and 4 EG  

ii.  
1 2 3 1 2 3( ) ( )x x x x x x  =     and  

1 2 3 1 2 3( ) ( )x x x x x x  =     

1 X   and 4   
EG , 

EG  is associative under ( , )x   

iii. 
1 2 2 1x x x x =    =  6 mod 11    6 EG  

1 2 2 1x x x x =   =  8 mod 11   8 EG  

  X is commutative under ( , )x   

iv. There exists 0 X , s.t  

0 0 ,i i i Ex x x G =  =   

    2 X  

There exists1 X ; s.t  
1 1 11 1x x x =  = ; 

1x X   

From table 4.3, at least 1  X  s. t 

1 1 11 1x x x =   ; 
1 Ex G   

v. There exists
1 Ex G−  ; s.t  

1 1 1 1( ) 0x x x x − = −  = ;  
1 Ex G   

1 0x X   ,   
1

1x X−  , s.t  

1 1

1 1 1 1 1x x x x− − =  =  

vi. 
1 2 3 1 2 1 3( ) ( ) ( )x x x x x x x  =      

(holds) 

  9 mod 11 = 9 X  

Therefore, ,X  is an abelian group but in ( ), (0),X 

, some of the axioms of a field are not satisfied. To this end, 

2- (11, 5, 2) does not form a field. 

 

Discussion 

A t- Steiner quintuple designs 2-(11, 5, 2) ) represented as EG  

was tested with the axioms of Group, Ring and Field algebra 

respectively in order to ascertain its algebraic structure. The 

results showed that the design did not satisfy all the axioms of 

the multiplicative binary operation but satisfied that of the 

additive binary operation. Furthermore, result showed that the 

t-Steiner quintuple design satisfied all the axioms of a ring 

algebra but failed to satisfy all the axioms of a field algebra.   

 

CONCLUSION 

The algebraic structure of a t- Steiner quintuple system of 

balanced incomplete block design can be summarized thus;  

i. It is a group algebra under the additive binary operation 

ii. It is not a group algebra under the multiplicative binary 

operation 
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iii. It is a ring and hence a semi- group, commutative semi-

ring and commutative ring.  

iv. It is not a field algebra.   

In conclusion, a t-Steiner quintuple design of BIBD is a Group 

algebra under the additive group binary operation and a Ring 

algebra. It is neither a Group under the multiplicative 

operation nor a Field algebra.   
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