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ABSTRACT

This paper seeks to establish if the t- Steiner quintuple system of balanced incomplete block design (BIBD) is

agroup, ring or field algebra. A 2- (11, 5, 2) BIBD was
table shown and the axioms of the algebraic structures

constructed with its blocks, incidence matrix and Cayley
of group, ring and field defined. The t- Steiner quintuple

design represented as G, was tested with the axioms of the algebraic structures. The results showed that a t —
Steiner quintuple system of balanced incomplete block design satisfied all the axioms of a group under the

additive binary operation but breaks down under the

multiplicative binary operation. Results further showed

that the t-Steiner quintuple design satisfied all the axioms of a ring algebra, a semi- group, commutative semi-
ring and commutative ring but did not satisfied the axioms of a field algebra. This goes to show that a t- Steiner
system is a group algebra under addition, a ring but neither a group under multiplication nor a field algebra.
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INTRODUCTION

Designs theory is the study of the existence, construction and
examination of the properties of finite sets whose arrangement
satisfies some concepts of balance and symmetry (Akra et al,
2024). A block design is a non-empty N = N, Ny, Ny Nyt

whose elements are varieties or elements and a non-empty
collection of subsets of b blocks of size p with each of the
elements replicated or appears r times in the blocks.
According to Akra et al (2025), a block design is incomplete
if the number of varieties is greater than the block size, that is
(p<n). An incomplete block design is said to be balanced

when its consist of a set of points N that is divided into b
subsets in such a way that each point in N is contained in r
different subsets and the couple of points in N is contained in
(4 <b) subsets with (p <n) points in each subset. A Balanced

Incomplete Block Design (BIBD) is traditionally known by
the parameters n, p,r,b,Awhere n is the varieties or

elements, p is the block size, r is the number each element is

replicated in the blocks, b is the total number of blocks and yi
is the pair of treatment (Akra et al, 2025). These parameters
are connected by the formula bp=nr and A(n-1)=r(p-1)

known as the Fisher’s formula (Fisher 1940). Another
approach for construction of BIBDs is done by (Akra et al
2021).

On the other hand, algebraic structures such as group, ring and
field algebra are mathematical systems that consist of a set of
elements, S of cardinality \S\ and one or more operations

(®,®) defined on that set. These structures follow specific

rules or axioms depending on the type of structure.

Algebra structures come into play in the proof of the existence
and construction of balanced incomplete block design or
generally, block design because block designs make extensive
use of discrete mathematics or algebra most especially
Combinatorics. Combinatorial designs provides a solid
foundation in the classical area of design theory as well as in
many contemporary designs-based applications in a variety of
fields and they are related to algebraic concepts of group, ring
and field. Akra et al (2023) has worked on the algebraic
structure for BIBD and came out with some useful findings.
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As one of the foundational discrete structures, combinatorial
design is one of the fastest growing area of modern
mathematics and has wide range of applications especially in
design analysis and model fittings (Michael et al 2025, 2017).
Other areas of usefulness include cryptography and
information security, mobile and wireless communication,
DNA screening, software and hardware testing etc.

The aim of this paper is therefore to ascertain whether a t-
Steiner quintuple system of balanced incomplete block design
is a group, ring or a field algebra. The knowledge of it will
help a great deal in scientific researches.

Steiner Systems of balanced incomplete block designs are
special balanced incomplete block designs that is very much
concerned with the number of elements in the block. It was
first proposed and constructed by Sir Jacob Steiner (1853) and
studied by Plucker (1835), Kirkman (1857), Cayley (1850),
Bay and de Weck (1935), Bose (1939, 1942), Skolen (1958),
Hannani (1961, 1975) and reported by the Encyclopedia of
design theory (2004). Kirkman (1857) showed that the triple
(3 elements in each block) system of order p exists and is
balanced if and only if n=1, 3 (mod 6). Steiner (1853)
studied the triple system, that is, S (n, 3, ;) and proposed
the problem of arranging ‘n’ objects in triplets such that every
pair of objects appears in precisely one triplet. That
arrangement is a balanced incomplete block design and
because his work was more broadly disseminated
mathematical circles, the triple system was named after him.

The study of Steiner triple systems started with STS(n, p /1)

for n=7and 9, p or block size or cardinality as 3and 1 = 1.
By extending the work further, STS (n) of other orders such

as 19, 21 etc. and A increased from one to two were proved
of their existences and subsequently constructed.
Nevertheless, in all the extended and constructed designs, p
was a constant 3.

Moore (1896) posed the problem of the existence of a Steiner
quadruple systems, S (v, p, 4) in which p =4. Barrau (1908)
worked on it and established the uniqueness and existence of
the p = 4 family of BIBDs. He equally constructed S (8, 4, 3)
and S (10, 4, 3) which is a 6k + 2 and 6k + 4 for k = 1
respectively as was later shown by Hannani (1954). Fitting
(1915) made an in roads and constructed S (26, 4, 3) and S
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(34, 4, 3) using the cyclic approach. Bays and de Weck
(1935) followed the work of Moore and proved the existence
of at least one (14, 4, 3). The greatest breakthrough in the
study of the Steiner quadruple systems came, when Hanani
(1960) gave the necessary and sufficient conditions for the
existence of such a system to be n = 2 or 4 (mod 6) which can
be interpreted as n = 6k + 2 or 6k + 4.

A Steiner System, S (n, p, 4)- BIBDs in which p or cardinality
or block size is 5 is called a Steiner quintuple system and there
are quite a few literature in the quintuple systems of balanced
incomplete design. The man behind the introduction of the p
=5 Steiner systems is Hanani (1972) and because it follows
the Steiner systems, it was called the Steiner quintuple

systems written as S (n, 5,4)-. He gave the necessary (not
sufficient) condition for the existence of such a system as
n = 5 (mod 6) which comes from considerations that applies
to all the classical Steiner systems. An additional necessary
condition is that N1 # 4 (mod 5), which comes from the fact
that the number of blocks must be an integer. Hannai (1972)
also proved that for balanced incomplete block designs with
blocks having five elements each (p = 5), the known necessary
existence condition is also sufficient, with the exception of the
non-existing design S (15, 5, 2). Nevertheless, the sufficient
condition for the quintuple family of Steiner systems is still
under investigation. This is so because there is a quintuple of
order 11, that is, n = 6k + 5 for k = 1 but there is no quintuple
of order 17, that is, n = 6k + 5 for k = 2. There are quintuple
for order 23, that is for k = 3, but no quintuple for order 29,
that is, k = 4, there is a quintuple for order 35, that is, for k =
5, but there is no quintuple for order 41, that is , k = 6 etc.

Unlike the triple and quadruple systems where at least A and
n have been varied, work on the quintuple only revolves
around the order n.

It has been established that in a BIBD, every pair {x, y}

appears together A times. This pair is what is referred to as t.
Though initially, this pair was equal to two in the early
designs like in Kirkman (7,3,1) , Bose (9,3,1) , Steiner (7, 3,1)
, Kirkman (7, 3, 2) and Denniston (15, 3, 2) designs, yet,
since it was not regarded as an important parameter, it was not
attached to other BIBD parameters. While the parameters of
all BIBDs including the Steiner systems BIBDs are supposed

Table 1: Design Block
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to incorporate t so that BIBD would be written as t- (n, p, 1)

-BIB designs, yet, that was never the case. In those early
designs, the parameters of interest were, n, p,b,r, 4.
The study of t- designs is of recent. Authors like Earl Krasmer
and Dale Menser (1976), Wilson (1973) , Ho Y. S and
Mendelsohn (1974) and Hananni (1972) attempted to link the
parameters of the BIBD with t and mentioned it passively but
did not do an in-depth study on it. The most useful result on
t- design was given by Peter Keevash (2014) when he
proposed the natural divisibility conditions for a t- (n, p, 4)-
BIBD and gave it to be [p—iJM[n—ij .
t-i t-i

This is largely reported by Joy Moris (2021) in her book,
Combinatorics where he posited that the divisibility theorem
is a necessary condition for the existence of t- systems of
designs. He further argued that the designs that do not obey
the divisibility theorem does not exist. The relationship
between t, b, p, r and A was proposed by Keevash (2014) and
is stated thus;
(p__'j is a divisor of A(”‘_'J for every g<i<i_1 (1)

t—1 t—I
Therefore a t-design or t —Steiner systems of balanced
incomplete block design written as t-(n, p,1)-BIB design, is

apair ., gy, where Xisann-set of elements and B isa

system of p-sets (called blocks) from X such that each t -set
isin exactly ;.

MATERIALS AND METHODS

Methodology

The first thing is the construction a t-Steiner quintuple design
and in this work, our design is a 2-(11, 5, 2) BIBD.

X ={01,2,3,4,5,6,7,8,9,10} -
The initial block is (02348) and blocks are generated

cyclically, thus, the 11 blocks are;
(13459) (245610) (35670 ) (46781) (57892 ) (689103)

(079104 ) (081015) (90126) (101237 )
And is put into block as; |

B1 B2 B3 Bs Bs Bs Bz Bs Bo Bio Bu
0 1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 0 1

3 4 5 6 7 8 9 10 0 1 2

4 5 6 7 8 9 10 0 1 2 3

8 9 10 0 1 2 3 4 5 6 7

Its incidence matrix, the design is thus constructed and shown;

1 o o1 O O O 1 1 1 O
O 1 O o1 O o O 1 1 1
1 o1 O O 1 O O O 1 1
1 1 o 1 O O 1 O O O 1
1 1 1. o 1 O O 1 O O O
O 1 1 1 o 1 O O 1 O O
O o1 1 1 0o 1 O O 1 o
O o o1 1 1 o 1 O o 1
1 o o o 1 1 1 O 1 O O
O 1 O o o 1 1 1 O 1 o
lO o 1. o o O 1 1 1 O 1 |
From the incidence matrix above, we see that

P(t, 1), P(t, L), Pty ts), Plts,by)err Pl ty), =A=2,P =

5, r=5, and n = 11 which satisfies both the conditions for a
BIBD and all the axioms of a t — Steiner quintuple Design.
Thus, we have successfully constructed a 2 - STS (11,5,2)

Definitions of Algebraic Structures of Group, Ring and
Field

Definition and Axioms of a Group Algebra

According to Akra et al (2023), a group is a single system of

(,®) Or (G,@)Wwhere G is a non-empty set and R or D
is a multiplicative and additive binary operation on G. In other

words, a group of finite number of elements is called a finite
group. The order of a group, G, denoted by 0(G) and
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expressed mathematically as|G|, is the number of distinct

elements in G. The followings are the axioms of a Group
algebra;
G1:Closure: VX, y €G, then x®yeG and VX, y € G,

then x®ye G

G2: Associativity: VX, Y, 2€G,;
X(y®2z2)=(Xx®y)z and x(y®z) = (x®Yy)z
G3: Existence of identity: There is an element, € € G, called
an identity s.t X®e=x=e®x VxeG,
XPe=x=edx VxeG,

G4: Existence of inverse: For each X e G,there is an

and

element xt e G, called an inverse of xS.t
Xx@x'=e=x"®x and x®x'=e=x"DX

G5: Commutative law: v X, y € G; X®Yy = y®X and
X, yeG, x®y=y®dX (abelian or

commutative group).
i. Agroup (G,®) or (G,®) for which the postulate G5

does not hold is called a non — abelian group.
i. 1f G is finite, then (G, ®) or (G, @) is called a finite

group, otherwise, it is called an infinite group.
iii. A system (G,®) consisting of a non —empty set

G and a binary composition  on G is called a semi-
group if it satisfies the associativity axiom.

Definition and Axioms of a Ring Algebra
A Ring algebra is a double system, (R,®,®) where Rr is a
non — empty set, and €@ , @ are two binary operations

defined on the set R (Akra et al, 2023). A Ring have the
following axioms;

R1: Closure: VX, y eR, then x®yeR and
VX, Yy € R, then Xx®@yeR

R2: Commutative law: v X, y € G; X®y = y®x and
X, YeR, X®@y=y®x and (abelian or

commutative group).

R3: Associativity: VX, y,2€G,; x(y®1z) =(x®Yy)z
and X(y®z) = (x®y)z

R4: Distributivity: X®(y®2) = (x®y)®(x®2z)
distributive law)

(Yy®2)®x =(y®x)® (z®Xx) (right distributive law)
RS5: Existence of identity: There is an element, e € R,
called an identity st X®e=X=e®X VXxe R,
XxPe=x=e®dx VxeR,

(left

and
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G6: Existence of inverse: For each X  R,there is an

element x* ¢ R,called an inverse of

X®x'T=e=x"®x and x®x'=e=x"DX
R1 — R4 show that a ring is an abelian additive group(Ry@>.

x S.t

A ring obeys associative law under semigroup<R, ®> .
Aring in which ., — v, forevery x, y is a commutative
ring. In other words, a ring<R,@,®> is commutative if
(R, ®) is a commutative semi-group.

An element e of a Ring is called unity (or an identity) of R if
e — ex — xforeveryXeR.

A non - empty subset S of a ring (R, ®, ®) is called a sub

ring of (R,®,®) if (s,®,®) is also a ring.

A ring may or may not have a unity, however it can be easily
shown that if a ring R has an element,
e st xe=ex =XV XxeR,then ¢ is unique and this

e is called the unity or the identity of r. The unity of a ring
R isdenoted by .
An element x of aring is said to be idempotent if x? = x. A

ring r in which every element is idempotent is known as
boolean ring.

Definition and Axioms of a Field Algebra
A field (F,®,®) is a set defined by two binary
compositions @ and, ® . It is otherwise called a commutative

division ring. A ring with unity in which all non — zero
elements form a group under multiplication is called a
division ring. The followings are the axioms of a Field
algebra;

F1: (F,®) is an abelian (additive) group

F2: <|:,®> is an abelian (multiplicative) group
F3:VX,y,2eF, x®(y®z) = (x®Yy)D(x®12)
(distributive law)

A non —empty subset Sofafield (F) is said to be a sub — field
of (F) if;

(i) xeS,yeS = xPyeS, x®yeS

(i) S is a field under the induced <@7®> operations

Any subset Sofafield < F > , containing at least two elements
is a subfield of (F) iff;

(i) xeS,yeS = x-yeS$S

(i) xeS,yeS, y=0=(xy) ‘€S

RESULTS AND DISCUSSION
To obtain the results, we test t- (11, 5, 2)- BIBD with the
axioms of the algebraic structures.
Testing 2- (11, 5, 2)- BIBD with axioms of Group Algebra
1. Multiplicative Operation: The Cayley table for of
Group multiplicative operation is given thus;
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Table 2: Caley Table for Multiplicative Binary Operation (G_,®) Group
) 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10
2 0 2 4 5 6 10 1 3 5 7 10
3 0 3 6 9 1 4 7 10 2 5 8
4 0 4 8 1 5 9 2 5 10 3 7
5 0 5 10 4 9 3 8 3 7 1 6
6 0 6 1 7 2 8 3 9 4 10 5
7 0 7 3 10 6 2 9 5 1 8 4
8 0 8 5 2 10 7 4 1 9 6 3
9 0 9 7 5 3 1 10 3 6 4 2
10 0 10 9 8 7 6 5 4 3 2 1

Let x, x, and X5 be eG, and let X =3, X,=5and

X4 =7, then X’s el n

G1: Closure: VX, y € G, then x®yeG

X @, e G VX, X, el
35 =15md11=4 = G_ (satisfied)
G2: Associativity: VX, Y, 2€G,;
xX(y®z2) =(x®vy)z

(X1®X2)®X3 :X1®(X2®X3);
VX, X €0 gy

= BREHX®7T=3x0B:®7)
=15® 7 =3®(35)

=105 = 105 = 105 mod 11 = 6 € G (satisfied)

G3: Commutative law: v X, y € G; X®Yy = y® X

X1®X2:X2®X1; VX, X, €,

3®5=5®3 =15mod 11 = 4 (satisfied)
We can observe from the Cayley table that 3 by 5 =5by 3 =
4.

G3: Existence of identity: There is an element, € € G, called
anidentityst Xx®e=Xx=e®x Vxe G,

let 0 be the identity; 3®0 =0 and 0®3=0 V xe G,
G4: Existence of inverse: For each X e G, there is an
x ! e G, called of
X®x'=e=x"®x

3®-3%0 and —3®3# 0 (not satisfied)

From the table above and result of G4, it is shown that
elements do not have identity and inverse element. Hence,
D(G), that is, t —Steiner Quintuple Designs does not satisfy

element an  inverse xS.t

all the axioms of a Group under multiplicative binary
operation hence, not a Group under the multiplicative
operation.

2. Additive Binary Operation: The Cayley table for of Group
multiplicative operation is given thus;

Table 3: Caley Table for Additive Binary Operation (G_,®)

@ 0 1 2 4 5 6 7 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10 0
2 2 3 4 5 6 7 8 9 10 0 1
3 3 4 5 6 7 8 9 10 0 1 2
4 4 5 6 7 8 9 10 0 1 2 3
5 5 6 7 8 9 10 0 1 2 3 4
6 6 7 8 9 10 0 1 2 3 4 5
7 7 8 9 10 0 1 2 3 4 5 6
8 8 9 10 0 1 2 3 4 5 6 7
9 9 10 0 1 2 3 4 5 6 7 8
10 10 0 1 2 3 4 5 6 7 8 9
G2: Associativity: VX, y,2eG,; then

Let x , x, and X3 be eG,. and let x=3, X2:5 and

X3 =7,then X’s ell n
Gl: Closure: VX, y e€G,
xeyeG

then VX, y €G, then

X D x, =G VX, X €Uy
3PS5 =8mdll=8 = G_ (satisfied)

X(y®@z)=(x®y)z
(X1®X2)®X3:X1®(X2®X3);
VX, X, el 4,

= B®5)D7=3D(5B>d7)

= 8d@7=3®d12

=15=15mod 11 = 4 € G (satisfied)
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G3: Commutative and
X, yeiG, x®y=y®Xx

X PX, =X, DPX: VX,X, €],
3@5=5@3 =8mod 11 = 8 (satisfied)

We can observe from the Cayley table that 3by 5 =5by 3 =
4

G3: Existence of identity: There is an element, ¢ € G, called

an identity
st XxPe=x=e®d®x Vxe G,

let O be the identity;
3®d0=3and 0®3=3VxeG,

G4: Existence of inverse: For each X e G,there is an
x7* e G,called an

law: v

element inverse of  xsit
XExt=e=x"®x

3®-3=0 and -3®3=0 (satisfied)

From the table above and result of G4, it is shown that
elements have identity and inverse element. Hence, D(Gg):

that is, t —Steiner Quintuple Designs satisfies all the axioms
of a Group under additive binary operation hence, a Group
under the additive operation.

Testing 2- (11, 5, 2)- BIBD with axioms of a Ring Algebra
For G, tobearing, the design must be abelian additive group

and semi-group defined on (G, ®,®)- Also, the two

distributive laws must be satisfied.

Let X1,X2,X3 be any three real number in G_, say x =3,

x, =5 and x, =7 forany XISEX
X, DX, =X, D x, =8(mod11)=8

()<1®X2)®X3:X1®(X2®X3)
=4 (mod 11) =4

Thereexists 0 € X'st x @0 =0 x, =3

X1€X,3—X1€X st
X, @(—x)=0
(X ®X,) DX, =X D (X, ®X;)

v X, Xy, Xg = X
=6mod11=6
X D (X, D X;3) = (X D X;,) D (X D X3)

vxl,xz,x3 = X
=3mod11=3
(X, D X)) DX = (X, D X)) D(X; D %)

v X, X5, Xz € X
— 4mod11= 4

(X ®x) =% ®x

— 4mod11 = 4 X
Testing 2- (11, 5, 2)- BIBD with axioms of a Field Algebra
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Let a system be <GE ,®, ®> be a field, where GE isa2- (11,5,
2) , then we test all the axioms of a field on (Ge, ®,®)-

Let X, X5, X5 € GE, then (G, ,@)is closed under
addition and (G, ®) is closed under multiplication. Given
X, =2, X, =4 and X, =6, then

L X ®X, Dx,eX and x DX, dxX, € G, are

closed
12 (mod 11) and 48 (mod 11)

—=1le X adde GE
i (X, ®X) DX =% D (X, DX,)
(X1®X2)®X3 :X1®(X2®X3)
=leX and 4 € G, . G, isassociative under (X, ®)

and

. x ®x, =%, DX, = 6mod 11 = 6<G,
X ®X, =X, ®X = 8mod 11 = 8eG,
= X is commutative under (X, ®)

iv. There exists 0eX, st
X, PO=0DP X, =%,V G,
:> 2e X
There existsie x; St X ®1=1® % =X,
vx e X
From table 4.3, at least 1 gX st
X ®1=1® X # X VX € G,
v. There exis,ts,_x1 eG;; s.t
X D(=%)=—XDx =0, VX =G
-1
vx, #0e X, 3 X eX, s.t

X ®x =% ®x=1

Vi X @ (X, ®X,) = (% ®X,) D (X D X;)

(holds)

= 9mod11=9 € X
Therefore, <X,69> is an abelian group but in (X, (0),®)

, some of the axioms of a field are not satisfied. To this end,
2- (11, 5, 2) does not form a field.

Discussion
A t- Steiner quintuple designs 2-(11, 5, 2) ) represented as GE

was tested with the axioms of Group, Ring and Field algebra
respectively in order to ascertain its algebraic structure. The
results showed that the design did not satisfy all the axioms of
the multiplicative binary operation but satisfied that of the
additive binary operation. Furthermore, result showed that the
t-Steiner quintuple design satisfied all the axioms of a ring
algebra but failed to satisfy all the axioms of a field algebra.

CONCLUSION
The algebraic structure of a t- Steiner quintuple system of
balanced incomplete block design can be summarized thus;
i. Itisagroup algebra under the additive binary operation
ii. Itisnota group algebra under the multiplicative binary
operation
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iii. Itisaring and hence a semi- group, commutative semi-
ring and commutative ring.

iv. Itisnotafield algebra.

In conclusion, a t-Steiner quintuple design of BIBD is a Group

algebra under the additive group binary operation and a Ring

algebra. It is neither a Group under the multiplicative

operation nor a Field algebra.
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