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ABSTRACT 

Blockchain smart contracts, increasingly integral to digital assets and decentralized applications, face growing 

threats from security vulnerabilities. Traditional detection techniques, such as static and dynamic analysis, often 

struggle with complex contracts and may overlook logic-based vulnerabilities. While machine learning 

approaches show promise, existing methods like ASSBERT suffer from inefficiency and limited coverage due 

to their reliance on direct masked token training applied to Solidity source code. To address these limitations, 

this study proposes an ELECTRA-based approach using context-aware masking to improve vulnerability 

detection and patch generation for blockchain smart contracts. Preliminary experiments demonstrate consistent 

convergence, with validation losses declining from 0.689 to 0.684 over four epochs. However, initial accuracy 

(50%) and F1 scores (0.333) indicate room for improvement, likely due to the model’s early-stage training or 

dataset constraints. By refining the masking strategy and leveraging ELECTRA’s bidirectional context 

understanding, our approach aims to enhance detection accuracy and generate more effective patches. This 

work offers a potential solution to the ongoing challenge of securing smart contracts, with future iterations 

targeting optimized performance metrics. 

 

Keywords: Context-aware masking, Blockchain Smart contracts, Deep learning, Transformer,  

Vulnerability detection, Electra. 
 

INTRODUCTION 

Blockchain is a decentralized system that integrates 

cryptographic techniques, peer-to-peer (P2P) networks, and 

distributed ledger technology to record transactions across 

multiple nodes. Its ability to ensure data security, 

transparency, and immutability has made it indispensable in 

modern applications, from finance to supply chain 

management (Fei et al., 2023; Mi et al., 2023). The rise of 

blockchain technology (BCT) is largely attributed to its core 

features—decentralization, tamper-proof records, and 

transparency—which have expanded its use beyond 

cryptocurrencies to programmable smart contracts, 

revolutionizing industries(Pham Trong Linh & Minh Thanh, 

2023; Vidal et al., 2024). For instance, Ethereum alone hosts 

over 1.5 million active smart contracts, highlighting their 

growing adoption (Cai et al., 2023). Smart contracts automate 

agreements between untrusted parties through consensus 

protocols, enabling trustless transactions in sectors like voting 

systems, land registries, and logistics (Hyperledger.org). 

Their evolution spans key phases: (Aladhadh et al., 2022) 

Blockchain 2.0 introduced executable contracts, while 3.0 

advanced scalability with directed graph architectures. 

However, their rapid adoption has exposed critical security 

risks(Ivanov et al., 2023) Transformers represent a 

breakthrough in transduction models, processing input and 

output representations exclusively through self-attention 

mechanisms without relying on recurrent or convolutional 

layers(Vaswani et al., 2023) This architecture has become 

foundational in natural language processing (NLP) and 

computer vision, enabling state-of-the-art performance in 

tasks such as machine translation, sentiment analysis, and text 

generation (Galal et al., 2024). Unlike traditional neural 

networks dependent on sequential processing (e.g., RNNs) or 

local feature extraction e.g., CNNs (Arnab et al., 2021; 

Brauwers & Frasincar, 2023), transformers leverage attention 

mechanisms to dynamically weight the relevance of all input 

elements, capturing long-range dependencies and contextual 

relationships more effectively (Singh & Mahmood, 2021).  

The original Transformer architecture employs a six-layer 

encoder-decoder structure (Bu et al., 2025). The encoder 

maps the source sequence into high-dimensional 

representations using self-attention and feed-forward layers, 

while the decoder generates target sequences by attending to 

both the encoder’s output and previous decoder states 

(Vaswani et al., 2019). Self-attention further enhances 

contextual understanding by computing pairwise affinities 

between all input tokens, enabling the model to discern 

hierarchical patterns and syntactic-semantic relationships 

(Yuan et al., 2022). 

Recent adaptations of transformer models have demonstrated 

promise in code-related tasks, including vulnerability 

detection in smart contracts (Bu et al., 2025; Devlin et al., 

2018). However, direct applications of masked language 

modeling (e.g., BERT-style pretraining) to Solidity code often 

underperform due to the unique syntax and structural 

constraints of programming languages (Tang et al., 2023; X. 

Sun et al., 2023). For instance, indiscriminate token masking 

can obscure critical code logic (e.g., function modifiers or 

control flow), leading to noise in learned representations. This 

limitation motivates innovations like context-aware masking, 

which preserves semantic and syntactic integrity during 

training—a gap our ELECTRA-based approach addresses. 

ELECTRA (Clark et al., 2020) improves upon standard 

transformer pretraining by replacing masked language 

modeling with a more sample-efficient discriminative task. 

Instead of predicting masked tokens, ELECTRA trains a 

generator to produce plausible substitutes and a discriminator 

to identify replacements, enabling full-sequence learning with 

reduced computational overhead (Aburass et al., 2024). This 

approach is particularly suited for smart contract analysis, 

where fine-grained token-level discrimination (e.g., detecting 

malicious opcodes) is critical. Prior work has yet to fully 

exploit ELECTRA’s bidirectional context modeling for 

Solidity code, leaving room for gains in vulnerability 

coverage and patch generation proposed by (Usman et al., 

2024). 
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As smart contracts often manage high-value assets, they are 

prime targets for attacks such as reentrancy, integer 

overflows, and transaction-ordering dependencies (Chu et al., 

2023; Ivanov et al., 2023) To mitigate these risks, 

vulnerability detection tools have employed both traditional 

methods (e.g., static/dynamic analysis) and machine learning 

(ML). Traditional approaches, reliant on expert rules, struggle 

with computational inefficiency and complex contract logic 

(Tang et al., 2023). ML-based methods, though promising, 

face limitations. For example, models like ASSBERT (Fei et 

al., 2023; Sun et al., 2023) due to indiscriminate masked token 

training on Solidity code, which ignores syntactic and 

semantic context, reducing detection accuracy (X. Sun et al., 

2023). To address these gaps, this study proposes 

an ELECTRA-based model (Clark et al., 2020) with context-

aware masking for smarter vulnerability detection and patch 

generation. Our approach involves: 

i. Preprocessing: Compiling and labeling vulnerable 

Solidity code datasets. 

ii. Context-aware masking: Strategically masking tokens 

to preserve code semantics during training. 

iii. Fine-tuning: Adapting ELECTRA’s bidirectional 

learning for vulnerability classification. 

Experiments will leverage the Sodifi-benchmark dataset, with 

evaluations conducted on hardware (intel i5, 8GB RAM) and 

software (PyTorch, Python) optimized for deep learning. 

Hyperparameters (e.g., learning rate, dropout) will be tuned to 

maximize performance. By improving detection accuracy—

building on preliminary results showing validation loss 

decline (0.689 → 0.684) but needing higher F1 scores 

(0.333)—this work aims to foster secure smart contract 

development, bolstering trust in blockchain ecosystems. 

 

MATERIALS AND METHODS  

This study utilized a dataset of annotated smart contract 

bytecode to train and evaluate a fine-tuned ELECTRA model, 

with performance benchmarked against baseline detectors 

using precision, recall, and F1-score. 

 

Proposed Model 

The model is divided into four stages. Pre-processed Solidity 

code, collecting and preparing the labeled dataset of Solidity 

code that is vulnerable, includes the first step. Contest-aware 

masking in the second stage; the third stage is the Electra 

model; and the final stage is the fully connected layer for 

vulnerability classification by fine-tuning the ELECTRA 

models and comparing their results shown in figure 1. The 

Sodifi-benchmark dataset is used to evaluate the chosen 

model's efficacy in identifying vulnerabilities. 

 

Preprocessed Source Code 

Preprocessing the source code is necessary to remove sections 

that are unrelated to the contract execution logic and do not 

alter the smart contract's state, while also retaining the 

statements that are most closely linked to the vulnerability. 

Pre-process and clean the data. This may include cleaning up 

irrelevant information, standardize the formatting of the code, 

and fix any inconsistencies. We will enumerate the following 

elements that must be removed from the source file, contract 

level, and function level in accordance with the development 

document for Ethereum's official programming language, 

solidity. 

 

Embedding 

Each token in the pre-processed code is converted into a 

numerical representation (embedding) using a pre-trained 

word embedding model. Tokenization: Tokens are the 

fundamental building blocks of the Solidity code that 

ELECTRA will understand. To do this, the code must be 

divided into function calls, operators, keywords, and 

identifiers. etc.   

As illustrated in Figure 1, the pretraining process consisted of 

a generator and a discriminator, both implemented as 

transformer models. The generator strategically modified a 

portion of the tokens within the input smart contract 

fragments by taking the input from context aware masking 

layer, such as altering opcodes or changing function 

parameters. The discriminator was then tasked with 

identifying these modified tokens. Through this adversarial 

training paradigm, the model illustrated in Figure 2. acquired 

a deep understanding of the nuanced patterns and 

vulnerabilities that characterize smart contract code, 

leveraging a vast, unlabeled dataset of diverse contract 

examples. 

 

 
Figure 1: Pretraining Process Taking In Raw Solidity Source Code As Input 

 

Encoding 

Run the pre-processed code sequence thru the ELECTRA 

model, including any tokens with special tokens and maybe 

tokens that are masked. After that, the model will produce an 

encoding, or vector representation, for the complete code 

sample. This encoding takes into account the context given by 

the surrounding tokens (even when they are hidden) to 

capture the semantic meaning and links between various code 

segments. Figure 1 show Word and Position Embedding 

process. [MASK] as the masking character, [CLS] to mark the 

start of a portion, [SEP] to mark the end of a portion. 

 



IMPROVED DETECTION AND PATCHING…      Ahmed et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 147 – 153 149 

 
Figure 2: Proposed Model 

 

This paper proposes a novel deep learning architecture for 

smart contract vulnerability detection, which integrates 

context-aware masking with an ELECTRA-based feature 

extraction network. The model operates by first preprocessing 

raw source code into a structured format. A specialized 

context-aware masking mechanism then strategically 

obscures key tokens, enabling the model to learn richer 

semantic representations. The ELECTRA generator-

discriminator framework is employed to efficiently pre-train 

on these masked sequences, learning to distinguish between 

original and replaced tokens. Finally, the extracted features 

are passed through a fully connected classification layer to 

produce probability scores for various vulnerability types 

(V1, V2, V3...). This end-to-end approach is designed to 

significantly improve the accuracy of identifying diverse 

security flaws in blockchain smart contracts. 

 

Proposed Experiment 

To evaluate the effectiveness of the proposed ELECTRA-

based model incorporating context-aware masking, a 

comparative experimental study was conducted against the 

baseline model, ASSBert. This section outlines the dataset 

preparation, experimental settings, evaluation metrics, and 

procedures used for model assessment. 

 

Dataset 

The datasets proposed in this study are crucial for both the 

training and evaluation of models aimed at detecting 

vulnerabilities and generating patches for Solidity smart 

contracts. These datasets comprise collections of contracts 

with known vulnerabilities, enabling researchers to train and 

assess their models within a controlled and replicable 

environment. Notable among these are the Solidify 

benchmark dataset (Sun et al., 2023; Tang et al., 2023), 

SmartBugs (Ferreira et al., 2020), the SoliAudit-benchmark, 

SoliAudit vulnerability analyzer dataset, and the SolidiFi-

benchmark repository. Collectively, these resources provide a 

substantial corpus of buggy contracts, including over 9,369 

injected bugs spanning seven critical vulnerability types: 

Reentrancy, Timestamp Dependency, Unhandled Exceptions, 

Transaction-Ordering Dependence (TOD), Unchecked Send, 

Integer Overflow, and Tx.origin Misuse. 

 

Experimental Settings 

All experiments were conducted on a computing environment 

featuring 32 GB of RAM and an NVIDIA GTX 1080 Ti GPU 

hosted on Google Cloud. The proposed method was 

implemented using the Keras and TensorFlow frameworks. 

For evaluation purposes, the dataset was partitioned such that 

80% of the smart contracts were used for training, while the 

remaining 20% constituted the test set. 

 

Evaluation Metrics 

To evaluate the performance of our proposed approach, we 

employed four widely used metrics: 

Accuracy: 

This metric represents the ratio of correctly predicted 

instances to the total number of instances. It provides an 

overall measure of the model's predictive performance across 

the entire dataset. 

Accuracy =
True Positives + True Negetives

True Positives + True Negetive + false positives+False Negetives
  

     (1) 

Precision: 

This metric indicates the proportion of correctly identified 

positive instances out of all instances that the model predicted 

as positive. It reflects the model's accuracy in classifying 

positive samples. 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (2) 

 

Recall: 

This metric measures the proportion of actual positive 

instances that were correctly identified by the model. It 

reflects the model’s ability to detect and retrieve all relevant 

positive samples. 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑒𝑡𝑖𝑣𝑒𝑠
  (3) 

 

F1-Score: 

This is a harmonic mean of precision and recall, providing a 

balanced measure that evaluates the model’s overall 

performance, particularly in scenarios with imbalanced class 

distributions. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 
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RESULTS AND DISCUSSION 

To evaluate the effectiveness of our model in detecting the 

three targeted vulnerability types, we conducted a 

comparative analysis with state-of-the-art deep learning 

approaches, including the ELECTRA transformer-based 

model ASSBERT (Sun et al., 2023). The results of this 

comparison are presented in Table 1. These evaluations enable 

a comprehensive assessment of our model performance in 

vulnerability detection relative to existing deep learning-

based methods. 

The proposed model was trained using a set of carefully 

selected hyperparameters aligned with standard transformer-

based architectures. Specifically, the model utilized a batch 

size of 22 and was trained over 10 epochs. Both the 

embedding size and hidden size were set to 768, with 12 

hidden layers and 12 attention heads to enable robust 

contextual learning. A hidden dropout probability of 0.1 was 

applied to prevent overfitting, while layer normalization 

epsilon was set to 1e-12 to maintain numerical stability during 

training. The maximum input sequence length was limited to 

128 tokens, suitable for processing smart contract source code 

efficiently. In total, the model contained approximately 102 

million parameters, reflecting its high capacity for learning 

complex patterns relevant to vulnerability detection. 

Approximately 102 million parameters, reflecting its high 

capacity for learning complex patterns relevant to 

vulnerability detection. 

 

Table 1: Comprehensive result  

Dataset Label % Model Accuracy Precision Recall F1-Score 

Timestamp 5% ASSBert 0.233 0.254 0.323 0.284374 

Timestamp 5% Proposed Model 0.5 0.25 0.5 0.333333 

Timestamp 10% ASSBert 0.409 0.416 0.545 0.471842 

Timestamp 10% Proposed Model 0.5 0.25 0.5 0.333333 

Timestamp 15% ASSBert 0.461 0.651 0.618 0.634071 

Timestamp 15% Proposed Model 0.5 0.25 0.5 0.333333 

Timestamp 20% ASSBert 0.786 0.574 0.73 0.642669 

Timestamp 20% Proposed Model 0.5 0.25 0.5 0.333333 

CallDepth 5% ASSBert 0.333 0.254 0.223 0.237493 

CallDepth 5% Proposed Model 0.5 0.25 0.5 0.333333 

CallDepth 10% ASSBert 0.433 0.546 0.56 0.552911 

CallDepth 10% Proposed Model 0.5 0.25 0.5 0.333333 

CallDepth 15% ASSBert 0.551 0.651 0.618 0.634071 

CallDepth 15% Proposed Model 0.5 0.25 0.5 0.333333 

CallDepth 20% ASSBert 0.89 0.517 0.73 0.605309 

CallDepth 20% Proposed Model 0.5 0.25 0.5 0.333333 

Reentrancy 5% ASSBert 0.333 0.254 0.223 0.237493 

Reentrancy 5% Proposed Model 0.5 0.25 0.5 0.333333 

Reentrancy 10% ASSBert 0.504 0.43 0.323 0.368898 

Reentrancy 10% Proposed Model 0.5 0.25 0.5 0.333333 

Reentrancy 15% ASSBert 0.677 0.611 0.658 0.63363 

Reentrancy 15% Proposed Model 0.5 0.25 0.5 0.333333 

Reentrancy 20% ASSBert 0.79 0.517 0.73 0.605309 

Reentrancy 20% Proposed Model 0.5 0.25 0.5 0.333333 

TOD 5% ASSBert 0.333 0.254 0.223 0.237493 

TOD 5% Proposed Model 0.5 0.25 0.5 0.333333 

TOD 10% ASSBert 0.523 0.202 0.221 0.211073 

TOD 10% Proposed Model 0.5 0.25 0.5 0.333333 

TOD 15% ASSBert 0.551 0.651 0.618 0.634071 

TOD 15% Proposed Model 0.5 0.25 0.5 0.333333 

TOD 20% ASSBert 0.851 0.622 0.63 0.625974 

TOD 20% Proposed Model 0.5 0.25 0.5 0.333333 

Flow 5% ASSBert 0.306 0.124 0.478 0.196917 

Flow 5% Proposed Model 0.5 0.25 0.5 0.333333 

Flow 10% ASSBert 0.478 0.374 0.329 0.35006 

Flow 10% Proposed Model 0.5 0.25 0.5 0.333333 

Flow 15% ASSBert 0.551 0.651 0.618 0.634071 

Flow 15% Proposed Model 0.5 0.25 0.5 0.333333 

Flow 20% ASSBert 0.857 0.617 0.658 0.636841 

Flow 20% Proposed Model 0.5 0.25 0.5 0.333333 

TxOrigin 5% ASSBert 0.446 0.194 0.148 0.167906 

TxOrigin 5% Proposed Model 0.5 0.25 0.5 0.333333 

TxOrigin 10% ASSBert 0.545 0.546 0.56 0.552911 

TxOrigin 10% Proposed Model 0.5 0.25 0.5 0.333333 

TxOrigin 15% ASSBert 0.551 0.651 0.618 0.634071 
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Dataset Label % Model Accuracy Precision Recall F1-Score 

TxOrigin 15% Proposed Model 0.5 0.25 0.5 0.333333 

TxOrigin 20% ASSBert 0.831 0.602 0.763 0.673005 

TxOrigin 20% Proposed Model 0.5 0.25 0.5 0.333333 

 

 
Figure 3: Comparison between the Proposed Model and ASSBert across various datasets 

 

The comparison between the Proposed Model and ASSBert 

across various datasets and labeling percentages reveals 

important trade-offs in performance, especially in low-

resource learning scenarios. Overall, the Proposed Model 

demonstrates consistent accuracy (0.500) regardless of the 

labeling percentage or dataset. This stability suggests a robust 

generalization capability even with limited supervision. In 

contrast, ASSBert shows progressive improvements in 

accuracy as the labeling percentage increases, with notable 

performance peaks in the 15%–20% range. For instance, 

ASSBert achieves accuracy values as high as 0.851 (TOD) 

and 0.890 (CallDepth) at 20% labeling, surpassing the 

proposed model in those settings. However, at 5% labeling, 

the Proposed Model outperforms ASSBert on several datasets 

such as Timestamp, Flow, and TOD, highlighting its potential 

advantage in low-label or data-scarce environments. 

In terms of precision, ASSBert consistently outperforms the 

Proposed Model across all datasets and labeling levels. The 

Proposed Model maintains a uniform precision of 0.250, 

which is relatively low compared to ASSBert, whose 

precision ranges between 0.254 and 0.651. This indicates that 

the Proposed Model is more prone to false positives, which 

can be a drawback in applications requiring high specificity. 

 

 
Figure 4: Recall comparison 

 
Figure 5: Precision comparison 
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Figure 6: Accuracy comparison 

 
Figure 7: F1-Score comparison 

 

Conversely, the recall performance of the Proposed Model 

(0.500) remains stable and frequently exceeds that of 

ASSBert, particularly at lower labeling percentages. 

ASSBert, in contrast, is initialized with significantly lower 

recall (e.g., 0.223 for CallDepth and Reentrancy at 

5%). However, its performance demonstrates a strong 

positive correlation with labeling percentage, eventually 

rivaling that of the Proposed Model at higher label levels. The 

superior recall of the Proposed Model in low-label settings 

indicates a greater efficacy in identifying true positives even 

when trained on limited data. This characteristic renders it 

particularly suitable for security-critical tasks like smart 

contract vulnerability detection, where maximizing the 

identification of potential vulnerabilities is prioritized over 

minimizing false alarms. In summary, the Proposed Model 

excels in recall and early-stage learning, demonstrating 

significant promise for low-resource scenarios. However, it 

lags in precision and lacks the scalability of ASSBert, which 

more effectively capitalizes on increased label availability. 

These results position the Proposed Model as a robust 

baseline for rapid deployment where annotations are scarce, 

while ASSBert represents a more scalable solution as labeling 

efforts intensify. Enhancing the precision of the Proposed 

Model remains a key direction for increasing its 

competitiveness in real-world applications. 

 

CONCLUSION 

This study presented a novel ELECTRA-based model for 

smart contract vulnerability detection, addressing the 

limitations of traditional static/dynamic analysis and prior 

machine learning approaches such as ASSBERT. The 

proposed model leverages context-aware masking and 

bidirectional transformer-based pretraining to enhance the 

detection of logic-based vulnerabilities in Solidity smart 

contracts. The comparative evaluation against ASSBERT 

across six benchmark datasets and varying labeling 

percentages revealed several key findings. Notably, the 

proposed model demonstrated superior recall and consistent 

accuracy, particularly in low-labeling scenarios (5%–10%), 

where traditional models like ASSBERT underperformed. 

This highlights the model’s potential for practical deployment 

in environments with limited annotated data. While 

ASSBERT showed improved performance at higher labeling 

percentages, especially in terms of precision and overall 

accuracy, the proposed model maintained stable performance 

across all settings. The consistent F1-score (0.333) and recall 

(0.500) suggest a bias toward identifying true positives, which 

is critical in security-sensitive contexts such as smart contract 

auditing. Despite these strengths, the model's lower precision 

(0.250) indicates a higher rate of false positives, which could 

lead to unnecessary interventions or false alerts. Additionally, 

the modest gain in validation loss over four epochs (from 

0.689 to 0.684) suggests that the model is in its early stages 

of optimization and may not yet have reached its full 

potential.  

Future work will focus on several key directions. First, 

enhancing the masking strategy to capture more semantic and 

syntactic contract structures may help reduce false positives 

and improve precision. Second, increasing training epochs 

and expanding the dataset will likely enhance generalization 

and metric convergence. Additionally, integrating graph-

based contract representations, contrastive learning, or 

prompt-based fine-tuning could further enrich the model’s 

contextual understanding. Finally, incorporating automated 

patch suggestion mechanisms in conjunction with detection 

will offer a more comprehensive solution for smart contract 

security. In conclusion, this research provides an effective 

foundation for vulnerability detection in blockchain 

environments using ELECTRA, with promising directions for 

refinement and real-world deployment. 
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