

COMPOSITION AND DIVERSITY OF NON-TIMBER FOREST PRODUCTS (NTFPs) IN BATURIYA WETLAND GAME RESERVE, JIGAWA STATE, NIGERIA

*1Saka, M. G., ²Aujara, Y. I., ³Ilu K. J., ³Salami , K. D. and ⁴Yakubu Mustapha

¹Department of Forestry and Wildlife, Modibbo Adama University of Technology Yola, Adamawa State, Nigeria
 ²Department of Forestry Technology Binyaminu Usman Polytechnic Hadejia, Jigawa State, Nigeria
 ³Department of Forestry and Wildlife Management, Federal University Dutse, Jigawa State, Nigeria
 ⁴Department of Forestry Technology Hussani Adamu Federal Polytechnic Kazaure, Jigawa State, Nigeria

Corresponding Author's email: foristsalam@yahoo.com; yauidrisaujara@gmail.com

ABSTRACT

Inadequate documentation and information of Non-Timber Forest Products (NTFPs) in the study sites call for the assessment of composition and diversity of the concern products. Therefore, the aim of the study is to assess the Composition and Diversity of Non- Timber Forest Products (NTFPs) in Baturiya Wetland Game Reserve, Jigawa State, Nigeria. A four (4) transects of 1km length was laid at an interval of 400 m. Likewise, in each transect, 4 plots of 100 x 100 m was laid alternately along each transect at 200 m interval. Also four (4) quadrants of 1m x1m in size for small non-timber forest products was randomly laid in each 100 x100m plot for each of the habitats in each plot, plant stocks identified were recorded. Data collected were analysed using Simpson index, Sorenson index and descriptive statistic. Results showed that Upland area had the highest species, number of individual and diversity of Non–Timber Forest Product followed by Swampy area and Fadama area with the values of (94, 1464, D-0.981), (63, 842, D-0.970) and (60, 805, D-0.969) respectively. Upland area and Swampy area had the highest similarity index of 78.5%. The results suggest that the documentation, inventory and management of NTFPs should be addressed in operational plan to enhance its diversity.

Keywords: Diversity, floristic composition, Non-timber forest products, Baturiya Game reserve.

INTRODUCTION

Non-Timber Forest Products are useful substances, materials or commodity obtained from forest that do not required the harvesting of trees (FAO, 2018). The term Non- Timber Forest Products (NTFPs) emerged as an umbrella to recognize the products derived from various forest resources as a group. Non-timber forest products are plants and /or forest products that are valued for other purposes beside timber. They have been described as all biological materials of plant and animal origin other than wood that are extracted from the forest for human use and are mainly technological processing (Ibrahim *et al.*, 2016)

Ramsar, (1994) defined wetlands as areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary with water that is static or flowing, fresh, brackish or salt, including areas of marine water, the depth of which at low tide does not exceed six meters Ecological values of wetlands to humans consists of flood control, nutrient absorption and cycling which improve water quality, as well as protection of coastal communities from erosion and wave energy (Barbier et al., 1997). Economics values of wetlands include agriculture, provision of timber, fuel wood, and non-timber products such as cotton, silk and potash (Barbier et al., Non-Timber Forest Products (NTFP) are being 19997). increasingly recognized for their crucial roles in rural livelihoods, biodiversity conservation and export earnings. Wetland resources are used for many purposes and benefits which include soils for agriculture purpose, fishing for food and economy, trees for various purposes and reeds to shelter materials (Kar, 2013). Wetlands also refer to areas with water level very close to soil surface and possess water, plants, and soils. Wetlands have general functions and values

which significantly recognizes the uniqueness of the environment (Nwankwoala, 2012). The importance of wetlands to life is enormous; it is used for recreational activities such as bird watching, sailing, research activities, nutrient decomposition and recycling. Globally, more than two billion people are dwelling in forests, depending on forest resources for subsistence, income and livelihood security (Ahenkan and Boon, 2011). Non timber forest products are considered to be vital for sustaining rural livelihoods, reducing rural poverty, biodiversity conservation and facilitating rural economic growth (Maske et al., 2011). World Health Organization estimated that about 80% of the population of the developing countries uses non-timber forest products to meet their health and nutritional needs (Olaniyi et al., 2013). The study of nontimber forest products has been dealt with by people from varied fields of study such as forestry, ethno-biology, economic botany, social development, natural resource economics, conservation biology, protected area management, agro-forestry, marketing, commercial development, ecological anthropology, cultural geography and human ecology. Therefore, objective of this study is to assess Diversity of Non-Timber Forest Products (NTFP's) in Baturiya Hadejia Wetland Game Reserve, Jigawa State, Nigeria, with a view to ensuring its sustainable management.

MATERIALS AND METHODS

Study area

Baturiya Hadejia- Wetlands is a wide expanse of flood plain wetlands situated in the Northeast Nigeria, the location lies in the sudano-sahelian zone, which is the zone between the Sudano-Savanna in the south and the Sahel in the North. The wetland is found in Yobe state, located in the Northern part of Nigeria, which Ramsar, (1994), Baturiya which is a section of the Hadejia Nguru Longitude 10°10'0"E to 10°30'0"E

include the Nguru Lake (Eaton and Sarch, 1997). According to Wetlands, is located on the Latitude 12°20'0"N to 12°40'0"N and

Source: GIS Laboratory, Geography Department MAUTECH Yola 2017

Sampling technique

Systematic sampling method was adopted for this study, in which the study area was stratified according to existing habitats (Uplands, Fadama and Swamp) in the game reserve. In each habitat, 4 transect of 1km length was laid at an interval of 400 m. Likewise, in each transect, four (4) plots of 100 x100 m was laid alternately along each transect at 200 m interval. Also five (5) quadrants of 1m x 1m in size was randomly laid in each 100 x100 m plot for each of the habitats

Data collection

In each plot, non-timber forest products identified were recorded, while voucher specimen was used for collection of species that could not be identified in the field, and later were taken to the herbarium of Department of Forestry Federal University Dutse (FUD) for identification

Data analysis

(a) Descriptive Statistics was used in presenting the checklist of the non-timber forest products of the study area.

(b) Simpson diversity index was employed in assessing the diversity of Non-Timber Forest Products and is of the form

Where n = total number of organism of a particular species,

N = the total number of organisms of all species

(c) Sorensen's species similarity index between two sites was calculated using equation

$$SI = (\frac{2C}{a+b})X100.\%$$
.....(2)

Where:

C = number of species at sites a , b a, b= number of species at sites a, b

RESULTS AND DISCUSSIONS Floristic composition

A total one hundred and forty (140) species of Non-Timber Forest Products were identified in 101 genera and 46 families in the game reserve. Fadama area is more peculiar with Acanthaceae, Combretaceae, Balantacaea, Cesalpinineae and Ranidae. Mimosaceae had the highest number of individual and plant species in the study area: Acacia hockii, Acacia polyacantha, Acacia atathecantha, Acacia campyiacantha, Acacia erioloba, Acacia karro, Acacia macrostachya, Acacia oerfota, Acacia Senegal, Albizia chevalieri, Parkia biglobosa, Ziziphus abyssinica, Ziziphus mauritiana, Ziziphus microphylla, Ziziphus mucronata and Zizyphus spina. Families like Apiaceae (Centella astiatica), Olacaceae (Ximenia Americana), Tamaraceae (Tamarindus indica), Lamiaceae (Sienna obtusifolia), Polygalceae (Securideae longependilata) and Aracaceae (Pistia stratiotes) had the least number of species.

Table 1: Floristic distribution of Non Timber Forest Products and Diversity index

S/N	Habitat	Number of plant	n (n-1)	Simpson index
1	Upland area	1464	40316	0.981
2	Fadama area	842	21628	0.969
3	Swampy area	805	19360	0.970

Source: Field survey, (2019)

Diversity of Non-Timber Forest Product in Baturiya Game Reserve

Non-timber forest Products species diversity in habitat I (upland), the result indicated that upland habitat comprises of ninety-four (94) species in twenty-six (26) family and sixty-five (65) genera with diversity index of D- 0.981. Non-Timber Forest Products Species Diversity in habitat II (Fadama). Results of non-timber forest products species diversity shows that fadama habitat comprise of sixty (60) species in twenty-five (21) family and forty-three (43) genera with diversity index of D- 0.969. Non-Timber Forest Products Species Diversity in habitat III (swamp). Results of nontimber forest products species diversity shows that swamp habitat comprise of sixty (63) species in twenty-two (23) family and forty four (44) genera with diversity index of D- 0.970. The similarity index between the Upland area and Swampy area sites is 78.5% was proved to be the best.

FJS

Findings on NTFPs diversity indicated that Baturiya Game Reserve contained the greatest diversity in terms of non-timber forest products species diversity. The diversity of non-timber forest products was high across the three major habitats namely upland, fadama and swamp, there were disproportionately distributed among non-timber forest products diversity across the habitats thus upland has the highest Simpson diversity index of D- 0.981 followed by swamp with non-timber forest products with Simpson diversity index of D- 0.970 and fadama with least diversity index of D- 0.969. According to Aramd et al. (2016), the value of D ranges from 0 to 1 with this index, 0 represent high diversity and 1, no diversity thus lowers the value of D, the greater is the species diversity. Finding reveals that the game reserve is diverse in term of NTFPs because the diversity of all the habitats ranges from 0.69 - 0.981. Probably the even distribution of non-timber forest products may have given rise to a uniform habitats structure in the reserve. This is in line with Suraj and Narayan, (2016) who reported that Simpson of diversity index among the three different sites, were 0.988 (Control site 3), 0.328 (Site 1), and 0.213 (Site 2), indicating that (Site 3) has higher diversity values in comparison to the Site1 and 2. The results of plant species similarity index (71.0%, 78.5%, 61.5% between Upland area and Fadama area, Upland area and Swampy area, Swampy area and Fadama area respectively) revealed that tree species in Upland area and Swampy area are more similar than any other site combinations (Table 2). This implies that there is higher number of common tree species in the study sites. However, Onyekwelu et al. (2008), reported moderate similarity index between Queen's and Elephant forest, Queen's and Oluwa forest, Oluwa and Elephant forest with value of 63.4%, 58.3% and 47.4% respectively. Salami (2017), also observed moderate similarity index between Omo Biosphere Reserve and Gambari Forest Reserve with value of 58.33%.

 Table 2: Site characteristics and similarity index

Habitat Combination	Similarity index	No of family	No of species	No of genus
Upland area x Fadama area	71.0	-	-	-
Upland area x Swampy area	78.5	-	-	-
Swampy area x Fadama area	61.5	-	-	-
Habitat				
Upland area	-	94	26	65
Fadama area	-	60	21	43
Swampy area	-	63	23	44
Source: Field survey, (2019)				

CONCLUSION

Baturiya Game Reserve comprises of diverse and abundance plant species especially in the Upland area and Fadama areas which is worth of conserving for ecology, economy and biodiversity values. Still, the study area is under high pressure of unsustainable harvests, intensification of agriculture and sporadic debarking by traditional medical practitioners which may results to the depletion of non timber forest products in the study area. Therefore, there is need for proper inventory, documentation and management of NTFPs in the game reserve planning to enhance its genetic composition and diversity.

CONFLICT OF INTRESTS

The authors have not declared any conflict of interest.

ACKNOWLEDMENT

We thank the entire staff of Baturiya Game Reserve Ministry of Environment Jigawa State, Nigeria for their cooperation rendered during the study, and the field guides for their assistance.

REFERENCES

Ahenkan, A. and Boon, E. (2011). Non-timber forest products (NTFPs): Clearing the confusion in semantics. *Journal of Human Ecology*, 33(1): 1-9.

Aramde Fetene, Tsegaye Bekele and Mulugeta Lemenih, (2017) Diversity of non-timber forest products (ntfps) and their source species in Menageshasuba forest *Ethiopia. Journal. Biological Science.*, 9(1):11-34, 2010.

Barbier, E., Acreman, M. and Knowler, D. (1997). Economic Valuation of Wetlands: A Guide for Policy Makers and Planners, Ramsar Convention Bureau. Gland, Switzerland.

Eaton, D. and Sarch M. T (1997). The economic importance of wild resources in the Hadejia-Nguru Wetlands, Nigeria.

Food and Agricultural Organisation (FAO)., (2018). Non-Timber Forest Products from Restoration to Income Generation, *Forestry Paper* no 112 Rome Italy

Ibrahim. A.O.1, Ampitan.T.A.1, Adeniji.O.A.1, Olayinka, A.P.1,

Babatunde, K.O.1 (2016) utilization of Non-Timber Forest Products (NTFPs) in New Bussa, Nigeria. *International Journal of Research in Agriculture and Forestry* 3(10):1-7 Kar D (2013). Wetlands and Lakes of the World, New Delhi: Springer, India.

Maske, M., Mungole, A., Kamble, R., Chaturvedi, A. and Chaturvedi, A. (2011). Impact of non-timber forest produces (NTFPs) on rural tribes' economy in Gondia district of Maharashtra, India. *Achieves of Applied Science Research*, 3(30): 109-114.

Maske, M., Mungole, A., Kamble, R., Chaturvedi, A. and Chaturvedi, A. (2011).Impact of non-timber forest produces (NTFPs) on rural tribes' economy in Gondia district of Maharashtra, India. *Achieves of Applied Science Research*, 3(30):109-114.

Olaniyi, O.A., Akintonde, J.O. and Adetumbi, S.I. (2013). Contribution of non-timber forest products to household food security among rural women in Iseyin local government area of Oyo state, Nigeria. *Research on Humanities and Social Sciences*, 3(7): 41-50.

Onyekwelu, J.C., Mosandi, R. and Stimm, B. (2008). Tree species diversity and soil status of primary and degraded tropical rainforest ecosystems in South Western Nigeria. *Journal of Tropical of Forest Science*, 20(3):198-204pp

Ramsar, C. (1994). Convention on Wetlands of International Importance Especially as Waterfowl Habitat, United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France.

Salami, K. D. (2017). Tree species Diversity and Soil status of Omo Biosphere and Gambari Forest reserves in Southwestern Nigeria. Ph.D Thesis, Department of Forest Resources Management, University of Ibadan, Nigeria.

Suraj Sharma1; Parthankar Choudhury and Narayan Chetry (2016): Diversity of Non-Timber The Economist (2000). *Poverty and property rights.* 358 (8215): 19-22The effect of wealth and markets on the economic behaviour of Tawahka Amerindians in Honduras.

COMPOSITION AND DIVERSITY...

Saka et al

(PhD Thesis University of Amsterdam). Tropenbos Series 19. Wageningen: Tropenbos International

APPENDIXES

Table 2: Non-timber forest	products Species diversit	y in the upland habitat i	n Baturiya Wetland.
		J	

S/N	Scientific Name	Family	No. of plants	n(n-1)
1	Acacia hockii	Mimosaceae	10	90
2	Acacia polyacantha	Mimosaceae	23	506
3	Acacia atathecantha	Mimosaceae	40	1560
4	Acacia campyiacantha	Mimosaceae	20	380
5	Acacia erioloba	Mimosaceae	21	420
6	Acacia karro	Mimosaceae	16	240
7	Acacia macrostachya	Mimosaceae	50	2450
8	Acacia oerfota	Mimosaceae	13	156
9	Acacia Senegal	Mimosaceae	40	1560
10	Acantho hispidum	Acanthacea	20	380
11	Adansonia digitate	Bombacaceae	8	56
12	Ageratum coyzoides	Compositae	16	240
13	Albizia chevalieri	Mimosaceae	16	240
14	Alysicarpus vaginalis	Grammenia	20	380
15	Androphogan gayanus	Grammenia	40	1560
16	Anogeissas leicarpus	Combretaceae	15	210
17	Anona senegalensis	Annonaceae	30	870
18	Balanites egyptiaca	Balanitaceae	14	182
19	Bombax costatum	Bombacaceae	12	132
20	Borassus aegytinca	Palmea	3	6
21	Borassus aethiopum	Palmea	5	20
22	Carissa edulis	Apocynaceae	3	6
23	Cassia italic	Calsalpiniceae	3	6
24	Cassia singuena	Calsalpiniceae	2	2
25	Cassia arereh	Calsalpiniceae	7	42
26	Cassia tora	Calsalpiniceae	60	3540
27	Celtis infergriflora	Combretaceae	19	342
28	Centella astiatica	Apiaceae	2	2
29	Combretum lamprocarpum	Combretaceae	25	600
30	Combretum micranthum	Combretaceae	2	2
31	Daniellia oliveri	Calsalpiniceae	7	42
32	Detaruim macrocarpum	Calsalpiniceae	2	2
33	Dichrosachys glomerata	Fabaceae	4	12
34	Dichrosachys tcinerea	Fabaceae	6	30
35	Digitaria debilis	Grammenia	30	870
36	Diospyros mespiliformis	Ebenaceae	42	1722
37	Entandra africana	Ebenaceae	16	240
38	Erthrina senegalensis	Fabaceae	9	72

39	Erthropleum suaveolens	Fabaceae	18	306
40	Euphorbia basalefera	Euphorbiacea	9	72
41	Euphorbia lateriflora	Euphorbiacea	2	2
42	Euphorbia poisson	Euphorbiacea	6	30
43	Ficus polita	Moraceae	7	42
44	Ficus sycomorus	Moraceae	18	306
45	Fiscus thonningi	Moraceae	9	72
46	Fiscus iteopyla	Moraceae	10	90
47	Fiscus platyphylla	Moraceae	12	132
48	Gardenia aqualla	Fabaceae	20	380
49	Guiera senegalensis	Combretaceae	18	306
50	Guinea grass	Grammenia	30	870
51	Hymenocardia acida	Euphorbiacea	17	272
52	Hyphaene thebaica	Palmea	90	8010
53	Imperata cylindrical	Grammenia	40	1560
54	Indigofera arrtecta	Fabaceae	10	90
55	Ipomoea muricata	Grammenia	15	210
56	Jatropha chevalieri	Euphorbiacea	9	72
57	Jatropha curcas	Euphorbiacea	29	812
58	Lannea acida	Anacardiaceae	10	90
59	Lantana camara roxb	Verbanaceae	4	12
60	Leptademia hastate	Asclepidaceae	6	30
61	Mangifera indica	Anacardiaceae	24	552
62	Mimosa pigra	Fabaceae	3	6
63	Paninari macropylla	Steculiaceae	17	272
64	Parkia biglobosa	Mimosaceae	30	870
65	Phoenix dactylifera	Palmea	18	306
66	Phoenix llernianus	Palmea	2	2
67	Phoenix mullerrianus	Palmea	10	90
68	Phoenix reclinata	Palmea	3	6
69	Physalis divericata	Solanaceae	25	600
70	Pistia stratiotes	Araceae	13	156
71	Prosopis africana	Mimosaceae	2	2
72	Rauvolfia caffra	Apocynaceae	9	72
73	Saba florida	Apocynaceae	2	2
74	Sclerocarya birrea	Anacardiaceae	2	2
75	Securideae longependilata	Polygalceae	2	2
76	Sienna obtusifolia	Lamiaceae	6	30
77	Solanum nigrum	Steculiaceae	2	2
78	Sphaeranthus angustifolius	Grammenia	10	90
79	Spondia nombin	Steculiaceae	21	420
80	Steculia settigera	Steculiaceae	19	342
81	Steculia tregecantha	Steculiaceae	6	30

FUDMA Journal of Sciences (FJS) Vol. 4 No. 3, September, 2020, pp 416 - 425

82	Steculia virosa	Euphorbiacea	2	2
83	Sterculia setigera	Steculiaceae	6	30
84	Strophanthus gratus	Apocynaceae	4	12
85	Tamarindus indica	Tamaraceae	30	870
86	Tridax procumbens	Grammenia	10	90
87	Vitellaria paradoxa	Mimosaceae	29	812
88	Vitex doniana	Verbanaceae	18	306
89	Ximenia americana	Olaceae	20	380
90	Ziziphus abyssinica	Mimosaceae	10	90
91	Ziziphus mauritiana	Mimosaceae	29	812
92	Ziziphus microphylla	Mimosaceae	6	30
93	Ziziphus mucronata	Mimosaceae	9	72
94	Zizyphus spina	Mimosaceae	5	20
Total			1464	40316

Source: Field survey, 2019

Table 3: Non-timber forest products species diversity of sampled fadama habitat in Baturiya game reserve

S/N	Scientific Name	Family Name	No. plants	n(n-1)
1	Acacia polyacantha	Mimosaceae	10	90
2	Acacia macrostachya	Mimosaceae	19	342
3	Acacia nilotica	Mimosaceae	60	3540
4	Acacia Senegal	Mimosaceae	36	1260
5	Acantho hispidum	Acanthacea	6	30
6	Adansonia digitate	Bombacaceae	23	506
7	Anogeissus leicarpus	Combretaceae	30	870
8	Anona senegalensis	Annonaceae	10	90
9	Balanites egyptiaca	Balanitaceae	14	182
10	Boehavia diffusa	Nyitaginaceae	7	42
11	Bombax costatum	Bombacaceae	18	306
12	Borreria stachydea	Rubiaceae	6	30
13	Borreria verticellata	Rubiaceae	2	2
14	Cassia italic	Calsalpiniceae	10	90
15	Cassia singuena	Calsalpiniceae	9	72
16	Cassia arereh	Calsalpiniceae	4	12
17	Celtis infergriflora	Combretaceae	2	2
18	Centella astiatica	Apiaceae	2	2
19	Combretum lamprocarpum	Combretaceae	7	42
20	Combretum micranthum	Combretaceae	6	30
21	Detaruim macrocarpum	Calsalpiniceae	7	42
22	Dichrostachys cinema	Mimosaceae	2	2
23	Diospyros mespiliformis	Ebenaceae	46	2070
24	Entandra africana	Ebenaceae	5	20
25	Euphorbia basalefera	Euphorbiacea	2	2
26	Euphorbia lateriflora	Euphorbiacea	6	30

27	Euphorbia poisson	Euphorbiacea	3	6
28	Ficus polita	Moraceae	6	30
29	Ficus sycomorus	Moraceae	10	90
30	Fiscus thonningi	Moraceae	18	306
31	Fiscus iteopyla	Moraceae	2	2
32	Fiscus platyphylla	Moraceae	2	2
33	Gardenia aqualla	Fabaceae	14	182
34	Guiera senegalensis	Combretaceae	22	462
35	Hyphaene thebaica	Palmea	22	462
36	Indigofera arrtecta	Fabaceae	9	72
37	Lannea acida	Anacardiaceae	4	12
38	Lantana camara roxb	Verbenacea	10	90
39	Lawsonia inermis	Lythraceae	30	870
40	Mangifera indica	Anacardiaceae	40	1560
41	Mimosa pigra	Fabaceae	2	2
42	Mitrigynia inermis	Rubiaceae	39	1482
43	Moringa oleafera	Moringaceae	40	1560
44	Nymphaea lotus	Nymphaeceae	50	2450
45	Paninari ployandra	Rosaceae	2	2
46	Piliostigma reticulatum	Calsalpiniceae	21	420
47	Pterocarpus erinaceus	Fabaceae	6	30
48	Pterocarpus santalinoides	Fabaceae	2	2
49	Rana clamiton	Ranidae	9	72
50	Rana escukate	Ranidae	18	306
51	Sclerocarya birrea	Anacardiaceae	7	42
52	Senna occidentalis	Fabaceae	12	132
53	Senna singuena	Fabaceae	9	72
54	Sienna obtusifolia	Lamiaceae	5	20
55	Tamarindus indica	Tamaricaceae	12	132
56	Vitex doniana	Verbenacea	21	420
57	Ximenia americana	Olacaceae	19	342
58	Xlopia parviflora	Fabaceae	16	240
59	Ziziphus microphylla	Mimosaceae	6	30
60	Zizyphus spina	Mimosaceae	5	20
Total			842	21628

Source: Field survey, 2019

Table 4: Non-timber forest products diversity of sampled Swamp habitat in Baturiya wetland

S/N	Scientific Name	Family Name	No. of plants	n(n-1)	
1	Acacia hockii	Mimosaceae	17	272	
2	Acacia atathecantha	Mimosaceae	10	90	
3	Acacia erioloba	Mimosaceae	15	210	
4	Acacia karro	Mimosaceae	8	56	
5	Acacia macrostachya	Mimosaceae	9	72	

,			• •	
6	Acacia nilotica	Mimosaceae	30	870
7	Acacia Senegal	Mimosaceae	27	702
8	Agaricus bispore	Ascomycetes	50	2450
9	Agaricus bulbosa	Ascomycetes	40	1560
10	Anogeissus leicarpus	Combretaceae	22	462
11	Balanites egyptiaca	Balanitaceae	16	240
12	Borassus aegytinca	Palmea	8	56
13	Borassus aethiopum	Palmea	4	12
14	Borreria stachydea	Rubiaceae	6	30
15	Borreria verticellata	Rubiaceae	2	2
16	Cassia tora	Calsalpiniceae	2	2
17	Detarium macrocarpum	Fabaceae	18	306
18	Detaruim macrocarpum	Calsalpiniceae	10	90
19	Dichrostachys cinema	Mimosaceae	4	12
20	Diospyros mespiliformis	Ebenaceae	47	2162
21	Entandra Africana	Ebenaceae	7	42
22	Entandra bilbosa	Mimosaceae	9	72
23	Euphorbia basalefera	Euphorbiacea	9	72
24	Euphorbia lateriflora	Euphorbiacea	15	210
25	Euphorbia poisson	Euphorbiacea	6	30
26	Ficus polita	Moraceae	6	30
27	Ficus sycomorus	Moraceae	8	56
28	Fiscus thonningi	Moraceae	4	12
29	Fiscus iteopyla	Moraceae	9	72
30	Fiscus platyphylla	Moraceae	2	2
31	Guiera senegalensis	Combretaceae	18	306
32	Hymenocardia acida	Euphorbiacea	9	72
33	Hyphaene thebaica	Palmea	11	110
34	Jatropha curcas	Euphorbiacea	20	380
35	Lannea acida	Anacardiaceae	6	30
36	Lawsonia inermis	Lythraceae	8	56
37	Leptoptilos crumeniferus	Ciconiidae	2	2
38	Mangifera indica	Anacardiaceae	20	380
39	Mimosa pigra	Fabaceae	2	2
40	Mitrigynia inermis	Rubiaceae	55	2970
41	Moringa oleafera	Moringaceae	6	30
42	Nymphaea lotus	Nymphaeceae	48	2256
43	Paninari macropylla	Sterculiaceae	6	30
44	Paninari plovandra	Rosaceae	6	30
45	Parkia biglobosa	Mimosaceae	4	12
46	Prosopis africana	Mimosaceae	3	6
47	Pterocarpus erinaceus	Fabaceae	21	420
48	Pterocarpus santalinoides	Fabaceae	2	2
		1	-	-

49	Rana clamiton	Ranidae	20	380
50	Rana escukate	Ranidae	31	930
51	Senna occidentalis	Fabaceae	9	72
52	Senna singuena	Fabaceae	6	30
53	Spondia nombin	Sterculiaceae	5	20
54	Stryculia virosa	Euphorbiacea	7	42
55	Tamarindus indica	Tamaricaceae	8	56
56	Vitellaria paradoxa	Mimosaceae	3	6
57	Vitex doniana	Verbenacea	4	12
58	Xerus ruticus	Scuiridae	2	2
59	Ximenia americana	Olacaceae	18	306
60	Xlopia parviflora	Fabaceae	6	30
61	Ziziphus abyssinica	Mimosaceae	6	30
62	Ziziphus microphylla	Mimosaceae	3	6
63	Zizyphus spina	Mimosaceae	10	90
Total			805	19360

Source: Field survey, 2019

©2020 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited

FUDMA Journal of Sciences (FJS) Vol. 4 No. 3, September, 2020, pp 416 - 425