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ABSTRACT

This study compares the performance of ten training functions in artificial neural networks for predicting the
higher heating value (HHV) of biomass using ultimate analysis. A 5-10-1 feed-forward back-propagation neural
network architecture was implemented, with data normalized and divided into 70% training and 30% testing.
Model accuracy was assessed using the coefficient of determination (R2), mean squared error (MSE), and mean
absolute error (MAE). Results obtained showed that the Bayesian Regularization algorithm (trainbr, M3)

outperformed other models, achieving an R2 of 0.8358,

phase, and an Rz of 0.9451, MSE of 0.003077,

MSE of 0.001432, and MAE of 0.000321 in the training
and MAE of 0.001225 in the testing phase. The

Levenberg-Marquardt algorithm (trainlm, M1) followed closely, while the Gradient Descent algorithms
(traingd and traingdm) gave the weakest results with low or negative R2 values. The findings demonstrate that
the trainbr function provides superior predictive reliability for biomass HHV.
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INTRODUCTION

Fossil fuels (coal, oil, and natural gas) have long dominated
global energy consumption. However, their finite nature and
harmful environmental impact make them unsustainable. As
a result, there has been a progressive shift toward renewable
energy sources, with biomass evolving as a significant
substitute due to its abundance and environmental benefits
(Msheliza & Dodo, 2025). Biomass encompasses products
from agriculture and forestry, along with waste materials from
the wood processing sector, and it is commonly used for
generating electricity, providing heat, and producing fuels for
transportation (Kujawska et al., 2023).

An essential element in biomass energy applications is the
heating value, which defines biomass's energy content and
practicality in combustion systems. Heating values of fuels
are typically expressed in two variations: lower (net) heating
value and higher (gross) heating value (Agha et al., 2025;
Aghel et al., 2023). HHV, also known as the gross calorific
value, indicates the total amount of energy released during
complete combustion, including the latent heat of water vapor
produced. An accurate estimation of HHV is crucial for
evaluating the efficiency of biomass fuels and improving their
utilization in energy production.

HHV of biomass is experimentally measured using a bomb
calorimeter, specifically an oxygen bomb calorimeter (Agha
et al., 2025; Dodo et al., 2022). This method is labor-
intensive, time-consuming, and requires specialized expertise
for sample preparation. As a result, there is growing interest
among researchers in fast and cost-effective methods for
estimating the HHV of biomass in waste-to-energy systems,
particularly for those with limited or no access to bomb
calorimeters. This approach leverages machine learning (ML)
techniques such as ANN, support vector regression (SVR),
random forest (RF), Gaussian process regression (GPR), and
adaptive neuro-fuzzy inference system (ANFIS) to evaluate
the multi-dimensional relationships among biomass
properties, including proximate analysis, ultimate analysis,
and physical composition. (Adeleke et al., 2024). Among
various ML techniques, ANNs have been widely recognized
for their ability to capture non-linear dependencies and
complex interactions in data (Abba et al., 2020; Dodo et al.,
2023).
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There are several techniques to implement ML, specifically,
ANN, for predicting the HHV of biomass using ultimate
analysis. Thus, they vary based on network architecture,
training functions, and input-output data processing methods.
For example, Kujawska et al. (2023) compared two ML
models, linear Regression (LR) and Multivariate Adaptive
Regression Splines (MARS) method, to improve input
selection of ANN-based biomass Prediction. The best ANN
models had three input neurons and nine hidden layer
neurons, which achieved a high accuracy of R = 0.988, RMSE
= 0.3. Singh et al. (2018) developed an ANN model that
effectively predicted the calorific value of municipal solid
waste (MSW) using carbon, hydrogen, oxygen, nitrogen,
sulfur, phosphorus, potassium, and ash content as input
parameters, although external factors like seasonal variations,
waste segregation, and moisture content were not considered,
potentially affecting the calorific value of the prediction. Liou
et al. (2024) developed and analyzed an artificial intelligence
(Al) model, which successfully predicted nitrogen oxide
(NOx) emissions in the Taichung thermal power plant. The
best results were obtained using eight specific input features.
Tahir et al. (2023) used ML models to predict the calorific
value of urban waste-derived fuels; the models surpassed the
performance of empirical models, with (R?) varied between
0.78 and 0.80, signifying enhanced predictive accuracy
compared to prior models. (Jayapal et al., 2025) developed an
ANN model (9-6-6-1) which successfully predicted biomass
using proximate and ultimate analysis data and compared its
performance to empirical data. The model achieved an R? of
0.81, an MAE of 0.77 MJ/kg, and outperformed 54
correlations. Brandi¢ et al. (2023) compared ML methods
(ANN, SVM, RF, Polynomial Regression) for HHV
prediction using proximate analysis. ANN had the best result
amongst the 4 with a strong R2 of 0.92 and RMSE of 1.33.
Adeleke et al. (2024) evaluated the performance of Random
Forest (RF), Decision Tree (DT), Support Vector Machine
(SVM), and Extreme Gradient Boosting (XGBoost) for the
prediction of HHV using proximate and ultimate analysis.
XGBoost outperformed the other models with an R? of 0.968
in the training phase and an R2 of 0.731, and an RMSE of
0.355 in the testing phase. Balsora et al. (2022) ANN-3 and
ANN-4 achieved R? of approximately 0.99 and MAE <O0.
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071.bimochemcial inputs contributed about 38% to accuracy.
Giile¢ et al. (2022) systematically studied how the ANN
structure, consisting of activation functions, algorithms,
dataset composition, and hidden layers. The combined dataset
had the best predictions with an R2 of 0.962 in training and
0.876 in testing.

Despite a growing emphasis on ML for biomass HHV
prediction, persistent limitations remain in the literature,
particularly concerning the systematic comparison of neural
network training functions and comprehensive model
evaluation. ANN models face issues such as data dependency,
overfitting, and sensitivity to input variables, compromising
their robustness and accuracy. The lack of standardized
architectures and limited comparisons of training functions
within the feedforward backpropagation neural network
(FBNN) further complicates performance evaluation.
Although Abdollahi et al. (2024), Brandi¢ et al. (2023), and
Msheliza & Dodo (2025) have demonstrated that ANN can
accurately predict HHV, there has been limited attention to
compare multiple training functions within the ANN model.
Thus, there is a lack of clear consensus on the most effective
training function under differing experimental conditions.
This study aimed to fill this gap by leveraging a
comprehensive biomass ultimate analysis data for reliable and
generalizable HHV prediction. To achieve this aim, a suite of
ten training functions in feedforward neural networks was
employed for the HHV prediction models development, and
their performances were compared using statistical indices,
namely, determination coefficient (R?), mean squared error
(MSE), and mean absolute error (MAE). The study is
envisaged to contribute to the understanding of how different
training functions influence the accuracy of feedforward
backpropagation neural networks in biomass HHV prediction.

Table 1: Model Designation

Bello and Dodo

FJS

This also provides a cost-effective alternative to experimental
procedures, which are costly and labor-intensive, thereby
supporting sustainable energy generation and reducing
reliance on fossil fuels.

MATERIALS AND METHODS
This study compared the performance of 10 different training
functions in FBNN for biomass HHV prediction using
ultimate analysis variables (carbon (C), hydrogen (H),
nitrogen (N), sulphur (S), and oxygen (O) ) The training
functions  considered include, Levenberg—Marquardt
(trainlm), Scaled Conjugate Gradient (trainscg), Bayesian
Regularization (trainbr), Gradient Descent (traingd), BFGS
Quasi-Newton (trainbfg), Conjugate Gradient with Powell-
Beale Restarts (traincgb), Resilient Backpropagation
(trainrp), One-Step Secant (trainoss), Gradient Descent with
Momentum (traingdm), and Random Order Weight/Bias Rule
(trainr). The training functions are algorithms that adjust the
network’s weights and biases to minimize errors. They figure
out the network’s training time, final performance, and
memory usage. The network utilised in this study followed a
5-10-1 (input-hidden-output layer) topology, shown in Figure
1. Furthermore, the training functions are designated as
models M1-M9 as shown in Table 1.
To improve the ANN model's training efficiency and pattern
recognition, input and output variables were normalized with
min-max scaling to a range of 0 to 1 using equation (1).

><i — Xmin (1)
Xmax -X
Xnorm is the normalized experimental data, Xmin is the
minimum value, while Xmax is the maximum value of the
experimental datasets.

norm —
min

Model designation

Training Functions

M1 trainlm
M2 trainscg
M3 trainbr
M4 traingd
M5 trainbfg
M6 traincgh
M7 trainrp
M8 trainoss
M9 traingdm
M10 Trainr
Input layer ' Hidden Layer
/

CARBON (C)

HYDROGEN (H)

NITROGEN (N)

SULPHUR (S)

OXYGEN (0)

Figure 1: A 5-10-1 FBNN Topology
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Training Functions of FBNN

Additive momentum (Traingdm)

By responding to the error surface and local gradient, a
quicker convergence occurs with gradient descent that
introduces momentum. Together with the thresholds of
change, an additive value proportionate to the prior weights is
added, and based on the backpropagation method, a new set
of weights and a threshold are formed (Dodo et al., 2024). It
helps the algorithm accelerate in the right direction and
dampens oscillations. It is mathematically expressed in
equation (2).

v, = ¥, —1+aVL(w,) @

Where Vi is the velocity at time t and vy is the momentum
coefficient.

Gradient Desent (Traingd)

It updates the weights in the opposite direction of the gradient
of the loss function with respect to the weights. It is an
adaptive learning rate that aims to sustain a high learning step
size while maintaining stability (Nguyen et al., 2021). It is
mathematically expressed in equation (3).

Wnew :Wold - OZVL(W) ©)

Where W represents the weights, a is the learning rate, and
VL(W ) is the gradient of the loss function.

Conjugate Gradient (Traincgp)

Iterations are used in  most conjugate gradient
backpropagations to modify the step size (Dodo et al., 2024).
They speed up training by using ‘conjugate” search
directions. These directions are chosen to minimize
interference with earlier steps, leading to a faster
convergence. These can be expressed mathematically in
equations (4) and (5).

d, = _VL(Wk)"'IBkdk -1 &)
L _ VL)l ®
O vi(w, =)

Levenberg-Marquart (Trainlm)

The Levenberg-Marquardt (LM) algorithm, often known as
the dampened, is an approach of the least squares that is suited
for problems involving nonlinear least squares (Dodo et al.,
2024). It combines the stability of gradient descent and the
fast convergence of the Gauss-Newton method. The equation
describing this algorithm is expressed as:

VW =373 + 4 |-13Te ©®)
Where JT is the Jacobian matrix of the network errors with
respect to the weights, e is the vector of errors, and [ is a

scalar that controls the transition between gradient descent
and Gauss-Newton.

Quasi-Newton (Trainbfg)

The advantage of the quasi-Newton method is that it is
computational and inexpensive because it does not need many
operations to evaluate the Hessian matrix and calculate the
corresponding inverse. Each iteration is the approximation of
the inverse Hessian Matrix. It is computed using only
information on the first derivatives of the loss function,
expressed in equation (7) (Nguyen et al., 2021):

W, =W, — HkilVL(Wk) (M

Where Hk approximates the Hessian matrix.
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Conjugate Gradient Backpropagation (Traincgb, Traincgp,
Traincgf, and Trainscg)

These are search and conjugate gradient algorithms to achieve
much faster convergence. lterations are used in most
conjugate gradient backpropagations to modify the step size
(Dodo et al., 2024). Trainscg uses a "scaling" factor to decide
the step size at each iteration. This makes it a very efficient
algorithm for large-scale problems.

Resilient Backpropagation (Trainrp and Trainscg)

This training function focuses on the sign of the gradient
rather than its size. It uses a separate learning rate for each
weight, and this rate is based on whether the gradient changes
sign. As shown in equation (8), this method attains the best
convergence without parameter selection (Nguyen et al.,
2021).

. oE
AW, (t)= -7, (t)x sign| —— ®)
u() UIJ() g (6Wu]
Where #ij is the learning rate for a specific weight.

One-step Secant (Trainoss)

It uses an approximation of the Hessian matrix based on the
secant method. It is calculated just with the loss function's first
derivatives' information. The loss function's second partial
derivatives make up the Hessian matrix (Nguyen et al., 2021).

Bayesian Regularization(Trainbr)

It generalizes an existing network by reducing the
combination of squared errors and weights (Dodo et al.,
2024). It trains the network using the Levenberg-Marquardt
algorithm, but with changes in the performance function that
include a penalty for large weights. It is described by equation

9).
F = pE, + 0ok, 9)

Where Ep is the sum-squared error, Ew is the sum of squared
weights, and f and « are parameters that are optimized during
training.

Transfer Functions

A logsig (log-sigmoid) transfer function was used in the
hidden and output layers, respectively layer to evaluate
activation behavior. It was selected because it introduces non-
linearity, which ensures the outputs remain bounded between
0 and 1 (Msheliza & Dodo, 2025). Mathematically, it is
expressed in equation (10).

F(x)=log iglx)-ft-&

Performance Evaluation

To access the predictive performance of the neural network
models, the dataset was divided into two subsets: 70% for
training and 30% for testing. This is done to prevent
overfitting and ensure that the model’s performance reflects
its true predictive capability rather than memorization of the
input data. The predictive accuracy of the models was
assessed using three statistical performance indices
represented in equations (11) - (13) the coefficient of
determination (R?); which highlights the overall fit of the
model, mean absolute error (MAE); indicates the average
prediction error, and mean squared error (MSE); captures the
sensitivity of the model to larger deviations. By combining
these three evaluation metrics, a balanced assessment of
neural network performance was achieved.

(10)

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 441 — 448



PERFORMANCE EVALUATION OF TRA...

1 n
MSE = HZ(HHve,i —HHV,,

= (11)

3 (HHY,, —HHV,, F (12)
R2—=1_ i:nl .
> (HHV,, ~ HAV.)

MAE =13 13)

=Y |HHY, —HHV
N ' '
HHVp,i, HHVei, HHV e, and n denote predicted HHV,
experimental HHV, the mean of experimental HHV, and the
number of data instances, respectively.

Table 2: R2, MSE, and MAE Values for Models M1 to M10
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RESULTS AND DISCUSSION

The results of the performance analysis of the models (M-M9)
using the statistical indices, R?, MSE, and MAE, respectively,
are presented in Table 2. For an in-depth analysis and
comparison of prediction model performances, at least two
evaluation metrics are recommended by researchers. In this
way, the constraints of a particular metric that can result in
ineffective judgment can be mitigated (Dodo et al., 2024). As
such, the evaluation metrics used were R2 (coefficient of
determination), MSE (mean squared error), and MAE (mean
absolute error) to compare the predicted and experimental
HHVs. Lower MSE and MAE, and higher R?, respectively,
indicate a strong relationship between the predicted and
experimental HHVs, while higher MSE and MAE, and lower
R? suggest a significant dispersion between the predicted and
experimental HHVSs.

Model Training Phase Testing Phase
R? MSE MAE R? MSE MAE

M1 0.871242 0.001123 0.000447 0.934967 0.003646 0.002584
M2 0.770048 0.002006 0.001633 0.860208 0.007836 -0.01365
M3 0.835832 0.001432 0.000321 0.945112 0.003077 0.001225
M4 -0.35935 0.01186 0.003424 0.578989 0.023601 0.018519
M5 0.800243 0.001743 -0.00456 0.901124 0.005543 -0.00751
M6 0.62758 0.003249 -0.00298 0.851586 0.00832 0.001359
M7 0.60975 0.003405 0.001255 0.865735 0.007527 0.010495
M8 0.701673 0.002603 -0.00409 0.902218 0.005481 0.004614
M9 0.055295 0.008242 0.004562 0.680699 0.017899 0.013638
M10 0.804767 0.001703 0.001871 0.911139 0.004981 -0.00085

As shown in Table 2, the trainbr (M3) and trainlm (M1) show
the best prediction performances, evidenced by high R2 and
low MSE and MAE values. The lowest performing training
function is M4 (traingd), M9 (traingdm), with M4 exhibiting
a negative R2 of -0.35935 during the testing phase and M9
having a very low R2 of 0.05529, which was the second lowest
of all models. Model M3 achieved the best results with R? of
0.96789, MSE of 0.001432, and 0.000321. Model M1
(trainlm) performed exceptionally well in the testing phase
with an R2 of 0.934967, MSE of 0.00365, and MAE of
0.00258. The training function is well-known for its
efficiency and rapid convergence. M10 (trainrp) followed
closely, with R? values of 0.80477 (training) and 0.91114
(testing). The model demonstrated stability across training
and testing phases, with low mean bias error (MAE) and
relatively small error variance, making it a reliable training
function for biomass HHV prediction.

R?=0.96788

Predicted HHV (MJ/kg)

0.04

04 O‘G 08 10
Observed HHV (MJ/kg)

Predicted HHV (MJ/kg)

Models M5 (trainbfg) and M8 (trainoss) produced satisfactory
results in the testing phase with R? values of 0.90112 and
0.90222, respectively. Although not as strong as M3, M1, and
M10, they maintained consistent performance with moderate
error values and good generalization ability. Models M2
(trainscg), M6 (traincgb), and M7 (trainrp) produced
acceptable but less competitive results, with testing R2 values
ranging between 0.85159 and 0.86574. These models had
higher error magnitudes compared to the top-performing
ones, but still demonstrated stable predictions without severe
bias.

The Scatter plots of predicted HHV values against actual
values depicted in Figure 2 further illustrate the differences in
model performance. The comparison between the
experimental and predicted HHV was visualized using
scattered plots, illustrating the model’s prediction
performance and how closely the clustered points were along
the line of perfect fit (y=x).

R*=0.53866

@)

0.24

00 T T T T T T
06

Observed HHV (MJkg)
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Figure 2: Scatter Plots for Various Models (a) M1; (b) M2; (c)
M3; (d) M4; (e) M5; (f) M6; (9) M7; (h) M8; (i) M9; (j) M10

Figure 2 shows M3 with an R2 of 0.96789 and M1 with an R?
of 0.96809, implying strong alignment and low deviations
from the line of best fit. In contrast, M4, having an R? of
0.53866, and M9, having an R2 of 0.69392, displayed wide
scatter from the line of equality, implying poor agreement
between predicted and experimental HHVs. Neither of these
models used descent-based training functions, providing the
visual evidence that supports the statistical results
highlighting the unsuitability of traingd and traingdm for
biomass HHV prediction.

Another method used to visually identify the optimal model
and algorithm for HHV prediction was Rader plots, where
MSE and MAE, respectively, in both training and testing
phases are shown in Figures 3 and 4. The MSE and MAE,
respectively, measure the average squared and absolute
average difference between the split predicted and actual

M1

M10 W M2

0.004

0.002

M

M7 M§
ME

values. Lower values indicate higher accuracy and are
represented by smaller areas on the plot. During the training,
the values for the models ranged from approximately 0-0.014,
while the testing ranged from 0-0.03. The points on the plot
remained low, confirming that models generalized well
without significant degradation in accuracy. The small gap
between the training and testing MAE values shows that
models did not overfit and retained stability to unseen data.
Thus, in the Figure, both the training and testing phases
indicate that M3 (trainbr) forms the smallest shape, located
nearest to the center, implying the lowest MAE during the
training phase (0.0003) and 0.0012 at the testing phase.
Models M1, M2, and M10 also have very small areas, while
the plots for M4 and M9 are significantly larger, indicating
high error rates.

T

M7 ' M5

M6

Figure 3: Radar Plots Using MSE (a) Training Phase (b) Testing Phase
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Figure 4: Radar Plots Using MAE (a) Training Phase (b) Testing Phase

Figure 4 shows the radar plot of MAE, which measures the
average magnitude of the errors in the set of predictions. A
lower MAE value indicated a more accurate model. The plot
having a higher MAE is represented by a larger area extending
farther from the center. Conversely, a smaller area closer to
the center corresponds to a low MAE. Again, the M4 and M9,
which use gradient descent with momentum, stand out with a
more marginal shape deviating from the center, which
confirms their poor performance and inability to make
accurate predictions. Overall, the ranking of model
performance is M3, M1, M10, M8, M5, M7, M2, M6, M9,
and M4, in descending order of accuracy.

CONCLUSION

This study focused on the performance comparison of ten
different training functions in a feedforward backpropagation
neural network with a topology of 5-10-1 to predict the higher
heating value of biomass based on ultimate analysis. This was
achieved by varying the training functions while maintaining
a consistent FFBN architecture consisting of five inputs, ten
hidden layers, and the logsig activation function throughout.
The results highlighted Bayesian regularization (trainbr) and
Levenberg-Marquardt (trainlm) as the best training
algorithms with the highest R2 and low MSE and MAE,
respectively. Thus, the optimal performance was attributed to
M3 (trainbr), which exhibited the highest R? value of 0.96789,
along with the lowest MSE of 0.00143 and MAE of 0.000032
during the training phase. The next best-performing model
was M1 (trainlm), with an R2 of 0.96809 and low MAE and
MSE values of 0.00112 and 0.00045, respectively, in the
training phase. On the other hand, the lowest performing
model, M4, resulted in a negative R2 in the training phase of -
0.35935 and exhibited high MAE and MSE values of 0.01186
and 0.00032. Future research may consider a larger and more
diverse biomass dataset, comprising proximate and ultimate
analysis data, to improve prediction.

REFERENCES

Abba, S. I, Linh, N. T. T., Abdullahi, J., Ali, S. I. A., Pham,
Q. B., Abdulkadir, R. A., Costache, R., Nam, V. T., & Anh,
D. T. (2020). Hybrid machine learning ensemble techniques
for modeling dissolved oxygen concentration. IEEE Access,
8(September), 157218-157237.
https://doi.org/10.1109/ACCESS.2020.3017743

Abdollahi, S. A., Basem, A., Alizadeh, A., Jasim, D. J.,
Ahmed, M., Sultan, A. J., Ranjbar, S. F., & Maleki, H. (2024).
Combining artificial intelligence and computational fluid
dynamics for optimal design of laterally perforated finned
heat sinks. Results in Engineering, 21(March), 102002.
https://doi.org/10.1016/j.rineng.2024.102002

Adeleke, A. A., Adedigba, A., Adeshina, S. A., Ikubanni, P.
P., Lawal, M. S., Olosho, A. I., Yakubu, H. S., Ogedengbe, T.
S., Nzerem, P., & Okolie, J. A. (2024). Comparative studies
of machine learning models for predicting higher heating
values of biomass. Digital Chemical Engineering,
12(100159), 10. https://doi.org/10.1016/j.dche.2024.100159

Agha, D. C., Dodo, U. A., & Hussein, M. A. (2025). Analysis
of the Electricity Generation Potentials of Plastic Wastes on a
University Campus. Journal of Science Technology and
Education, 13(1), 7-15.

Aghel, B., Yahya, S. |., Rezaei, A., & Alobaid, F. (2023). A
Dynamic Recurrent Neural Network for Predicting Higher
Heating Value of Biomass. International Journal of
Molecular Sciences, 24(6), 1-13.
https://doi.org/10.3390/ijms24065780

Balsora, H. K., Kartik, A., Dua, V., Joshi, J. B., Kataria, G.,
Sharma, A., & Chakinala, A. G. (2022). Machine learning
approach for the prediction of biomass pyrolysis kinetics from
preliminary analysis. Journal of Environmental Chemical
Engineering, 10(3), 108025.
https://doi.org/10.1016/j.jece.2022.108025

Brandi¢, 1., Antonovié¢, A., Pezo, L., Matin, B., Kricka, T.,
Jurigié, V., Speli¢, K., Kontek, M., Kukuruzovi¢, I., Grubor,
M., & Matin, A. (2023). Energy Potentials of Agricultural
Biomass and the Possibility of Modelling Using RFR and
SVM Models. Energies. https://doi.org/10.3390/en16020690

Brandi¢, 1., Pezo, L., BilandzZija, N., Peter, A., Surié, I., &
Voca, N. (2023). Comparison of Different Machine Learning
Models for Modelling the Higher Heating Value of Biomass.
Mathematics, 11(9), 2098.
https://doi.org/10.3390/MATH11092098/S1

Dodo, U. A, Dodo, M. A., Shehu, A. F., & Badamasi, Y. A.
(2023). Performance Analysis of Intelligent Computational

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 441 — 448

447


https://doi.org/10.1109/ACCESS.2020.3017743
https://doi.org/10.1016/j.rineng.2024.102002
https://doi.org/10.1016/j.dche.2024.100159
https://doi.org/10.3390/ijms24065780
https://doi.org/10.1016/j.jece.2022.108025
https://doi.org/10.3390/en16020690
https://doi.org/10.3390/MATH11092098/S1

PERFORMANCE EVALUATION OF TRA...

Algorithms for Biomass Higher Heating Value Prediction.
Nigerian Journal of Technological Development, 20(4), 44—
52.

Dodo, U. A., Ashigwuike, E. C., & Emechebe, J. N. (2022).
Optimization of Standalone Hybrid Power System
Incorporating Waste-to-electricity Plant: A Case Study in
Nigeria. 2022 IEEE Nigeria 4th International Conference on
Disruptive Technologies for Sustainable Development
(NIGERCON), 1-5.
https://doi.org/10.1109/NIGERCON54645.2022.9803081

Dodo, U. A., Dodo, M. A., Belgore, A. T., Husein, M. A,,
Ashigwuike, E. C., Mohammed, A. S., & Abba, S. I. (2024).
Comparative study of different training algorithms in
backpropagation neural networks for generalized biomass
higher heating value prediction. Green Energy and
Resources, 2(1), 100060.
https://doi.org/10.1016/j.gerr.2024.100060

Giileg, F., Pekaslan, D., Williams, O., & Lester, E. (2022).
Predictability of higher heating value of biomass feedstocks
via proximate and ultimate analyses — A comprehensive study
of artificial neural network applications. Fuel, 320(123944),
1-16. https://doi.org/10.1016/j.fuel.2022.123944

Jayapal, A., Ordonez Morales, F., Ishtiag, M., Kim, S. Y., &
Reddy, N. G. S. (2025). Modeling the Higher Heating Value
of Spanish Biomass via Neural Networks and Analytical
Equations. Energies, 18(15), 4067.
https://doi.org/10.3390/EN18154067/S1

Kujawska, J., Kulisz, M., Oleszczuk, P., & Cel, W. (2023).
Improved Prediction of the Higher Heating Value of Biomass

@0l

Bello and Dodo

FJS

Using an Artificial Neural Network Model Based on the
Selection of Input Parameters. Energies, 16(10), 1-16.
https://doi.org/10.3390/en16104162

Liou, J. L., Liao, K. C., Wen, H. T., & Wu, H. Y. (2024). A
study on nitrogen oxide emission prediction in the Taichung
thermal power plant using an artificial intelligence (Al)
model. International Journal of Hydrogen Energy.
https://doi.org/10.1016/j.ijhydene.2024.03.120

Msheliza, S. A., & Dodo, U. A. (2025). Performance
Comparison of Different Activation Functions in Neural
Networks for Biomass Energy Content Prediction. FUDMA
Journal of Sciences, 9(4), 285 - 294,
https://doi.org/https://doi.org/10.33003/fjs-2025-0904-3493

Nguyen, T. A, Ly, H.B.,Mai, H. V. T., & Tran, V. Q. (2021).
On the Training Algorithms for Artificial Neural Networks in
Predicting the Shear Strength of Deep Beams. Complexity,
2021. https://doi.org/10.1155/2021/5548988

Singh, D., Satija, A., & Hussain, A. (2018). Predicting the
calorific value of municipal solid waste of Ghaziabad City,
Uttar Pradesh, India, using an artificial neural network
approach. In Advances in Intelligent Systems and Computing
(\Vol. 584, pp. 495-503). https://doi.org/10.1007/978-981-10-
5699-4 46

Tahir, J.,, Ahmad, R., & Tian, Z. (2023). Calorific value
prediction models of processed refuse-derived fuel 3 using
ultimate analysis. Biofuels.
https://doi.org/10.1080/17597269.2022.2116771

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 441 — 448

©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

448


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/NIGERCON54645.2022.9803081
https://doi.org/10.1016/j.gerr.2024.100060
https://doi.org/10.1016/j.fuel.2022.123944
https://doi.org/10.3390/EN18154067/S
https://doi.org/10.3390/en16104162
https://doi.org/10.1016/j.ijhydene.2024.03.120
https://doi.org/https:/doi.org/10.33003/fjs-2025-0904-3493
https://doi.org/10.1155/2021/5548988
https://doi.org/10.1007/978-981-10-5699-4_46
https://doi.org/10.1007/978-981-10-5699-4_46
https://doi.org/10.1080/17597269.2022.2116771

