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ABSTRACT 

This study compares the performance of ten training functions in artificial neural networks for predicting the 

higher heating value (HHV) of biomass using ultimate analysis. A 5-10-1 feed-forward back-propagation neural 

network architecture was implemented, with data normalized and divided into 70% training and 30% testing. 

Model accuracy was assessed using the coefficient of determination (R²), mean squared error (MSE), and mean 

absolute error (MAE). Results obtained showed that the Bayesian Regularization algorithm (trainbr, M3) 

outperformed other models, achieving an R² of 0.8358, MSE of 0.001432, and MAE of 0.000321 in the training 

phase, and an R² of 0.9451, MSE of 0.003077, and MAE of 0.001225 in the testing phase. The 

Levenberg-Marquardt algorithm (trainlm, M1) followed closely, while the Gradient Descent algorithms 

(traingd and traingdm) gave the weakest results with low or negative R² values. The findings demonstrate that 

the trainbr function provides superior predictive reliability for biomass HHV. 
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INTRODUCTION 

Fossil fuels (coal, oil, and natural gas) have long dominated 

global energy consumption. However, their finite nature and 

harmful environmental impact make them unsustainable. As 

a result, there has been a progressive shift toward renewable 

energy sources, with biomass evolving as a significant 

substitute due to its abundance and environmental benefits 

(Msheliza & Dodo, 2025). Biomass encompasses products 

from agriculture and forestry, along with waste materials from 

the wood processing sector, and it is commonly used for 

generating electricity, providing heat, and producing fuels for 

transportation (Kujawska et al., 2023).  

An essential element in biomass energy applications is the 

heating value, which defines biomass's energy content and 

practicality in combustion systems. Heating values of fuels 

are typically expressed in two variations: lower (net) heating 

value and higher (gross) heating value (Agha et al., 2025; 

Aghel et al., 2023). HHV, also known as the gross calorific 

value, indicates the total amount of energy released during 

complete combustion, including the latent heat of water vapor 

produced. An accurate estimation of HHV is crucial for 

evaluating the efficiency of biomass fuels and improving their 

utilization in energy production.  

HHV of biomass is experimentally measured using a bomb 

calorimeter, specifically an oxygen bomb calorimeter (Agha 

et al., 2025; Dodo et al., 2022). This method is labor-

intensive, time-consuming, and requires specialized expertise 

for sample preparation. As a result, there is growing interest 

among researchers in fast and cost-effective methods for 

estimating the HHV of biomass in waste-to-energy systems, 

particularly for those with limited or no access to bomb 

calorimeters. This approach leverages machine learning (ML) 

techniques such as ANN, support vector regression (SVR), 

random forest (RF), Gaussian process regression (GPR), and 

adaptive neuro-fuzzy inference system (ANFIS) to evaluate 

the multi-dimensional relationships among biomass 

properties, including proximate analysis, ultimate analysis, 

and physical composition. (Adeleke et al., 2024). Among 

various ML techniques, ANNs have been widely recognized 

for their ability to capture non-linear dependencies and 

complex interactions in data (Abba et al., 2020; Dodo et al., 

2023).  

There are several techniques to implement ML, specifically, 

ANN, for predicting the HHV of biomass using ultimate 

analysis. Thus, they vary based on network architecture, 

training functions, and input-output data processing methods. 

For example, Kujawska et al. (2023)  compared two ML 

models, linear Regression (LR) and Multivariate Adaptive 

Regression Splines (MARS) method, to improve input 

selection of ANN-based biomass Prediction. The best ANN 

models had three input neurons and nine hidden layer 

neurons, which achieved a high accuracy of R = 0.988, RMSE 

= 0.3. Singh et al. (2018) developed an ANN model that 

effectively predicted the calorific value of municipal solid 

waste (MSW) using carbon, hydrogen, oxygen, nitrogen, 

sulfur, phosphorus, potassium, and ash content as input 

parameters, although external factors like seasonal variations, 

waste segregation, and moisture content were not considered, 

potentially affecting the calorific value of the prediction. Liou 

et al. (2024) developed and analyzed an artificial intelligence 

(AI) model, which successfully predicted nitrogen oxide 

(NOₓ) emissions in the Taichung thermal power plant. The 

best results were obtained using eight specific input features. 

Tahir et al. (2023) used ML models to predict the calorific 

value of urban waste-derived fuels; the models surpassed the 

performance of empirical models, with (R²) varied between 

0.78 and 0.80, signifying enhanced predictive accuracy 

compared to prior models. (Jayapal et al., 2025) developed an 

ANN model (9-6-6-1) which successfully predicted biomass 

using proximate and ultimate analysis data and compared its 

performance to empirical data. The model achieved an R² of 

0.81, an MAE of 0.77 MJ/kg, and outperformed 54 

correlations. Brandić et al. (2023) compared ML methods 

(ANN, SVM, RF, Polynomial Regression) for HHV 

prediction using proximate analysis. ANN had the best result 

amongst the 4 with a strong R² of 0.92 and RMSE of 1.33. 

Adeleke et al. (2024) evaluated the performance of Random 

Forest (RF), Decision Tree (DT), Support Vector Machine 

(SVM), and Extreme Gradient Boosting (XGBoost) for the 

prediction of HHV using proximate and ultimate analysis. 

XGBoost outperformed the other models with an R² of 0.968 

in the training phase and an R² of 0.731, and an RMSE of 

0.355 in the testing phase. Balsora et al. (2022) ANN-3 and 

ANN-4 achieved R² of approximately 0.99 and MAE <0. 
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071.bimochemcial inputs contributed about 38% to accuracy. 

Güleç et al. (2022) systematically studied how the ANN 

structure, consisting of activation functions, algorithms, 

dataset composition, and hidden layers. The combined dataset 

had the best predictions with an R² of 0.962 in training and 

0.876 in testing. 

Despite a growing emphasis on ML for biomass HHV 

prediction, persistent limitations remain in the literature, 

particularly concerning the systematic comparison of neural 

network training functions and comprehensive model 

evaluation. ANN models face issues such as data dependency, 

overfitting, and sensitivity to input variables, compromising 

their robustness and accuracy. The lack of standardized 

architectures and limited comparisons of training functions 

within the feedforward backpropagation neural network 

(FBNN) further complicates performance evaluation. 

Although Abdollahi et al. (2024), Brandić et al. (2023), and 

Msheliza & Dodo (2025) have demonstrated that ANN can 

accurately predict HHV, there has been limited attention to 

compare multiple training functions within the ANN model. 

Thus, there is a lack of clear consensus on the most effective 

training function under differing experimental conditions. 

This study aimed to fill this gap by leveraging a 

comprehensive biomass ultimate analysis data for reliable and 

generalizable HHV prediction. To achieve this aim, a suite of 

ten training functions in feedforward neural networks was 

employed for the HHV prediction models development, and 

their performances were compared using statistical indices, 

namely, determination coefficient (R²), mean squared error 

(MSE), and mean absolute error (MAE). The study is 

envisaged to contribute to the understanding of how different 

training functions influence the accuracy of feedforward 

backpropagation neural networks in biomass HHV prediction. 

This also provides a cost-effective alternative to experimental 

procedures, which are costly and labor-intensive, thereby 

supporting sustainable energy generation and reducing 

reliance on fossil fuels. 

 

MATERIALS AND METHODS 

This study compared the performance of 10 different training 

functions in FBNN for biomass HHV prediction using 

ultimate analysis variables (carbon (C), hydrogen (H), 

nitrogen (N), sulphur (S), and oxygen (O) ) The training 

functions considered include, Levenberg–Marquardt 

(trainlm), Scaled Conjugate Gradient (trainscg), Bayesian 

Regularization (trainbr), Gradient Descent (traingd), BFGS 

Quasi-Newton (trainbfg), Conjugate Gradient with Powell–

Beale Restarts (traincgb), Resilient Backpropagation 

(trainrp), One-Step Secant (trainoss), Gradient Descent with 

Momentum (traingdm), and Random Order Weight/Bias Rule 

(trainr). The training functions are algorithms that adjust the 

network’s weights and biases to minimize errors. They figure 

out the network’s training time, final performance, and 

memory usage. The network utilised in this study followed a 

5-10-1 (input-hidden-output layer) topology, shown in Figure 

1. Furthermore, the training functions are designated as 

models M1-M9 as shown in Table 1. 

To improve the ANN model's training efficiency and pattern 

recognition, input and output variables were normalized with 

min-max scaling to a range of 0 to 1 using equation (1).  

minmax

min

XX

XX
X i

norm
−

−
=    (1) 

Xnorm is the normalized experimental data, Xmin is the 

minimum value, while Xmax is the maximum value of the 

experimental datasets.  

 

Table 1: Model Designation 

Model designation Training Functions 

M1 trainlm 

M2 trainscg 

M3 trainbr 

M4 traingd 

M5 trainbfg 

M6 traincgb 

M7 trainrp 

M8 trainoss 

M9 traingdm 

M10 Trainr 

 

 
Figure 1: A 5-10-1 FBNN Topology 
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Training Functions of FBNN  

Additive momentum (Traingdm) 

By responding to the error surface and local gradient, a 

quicker convergence occurs with gradient descent that 

introduces momentum. Together with the thresholds of 

change, an additive value proportionate to the prior weights is 

added, and based on the backpropagation method, a new set 

of weights and a threshold are formed (Dodo et al., 2024). It 

helps the algorithm accelerate in the right direction and 

dampens oscillations. It is mathematically expressed in 

equation (2). 

( )ttt wLvv +−=  1    (2) 

Where Vt is the velocity at time t and γ is the momentum 

coefficient. 

 

Gradient Desent (Traingd) 

It updates the weights in the opposite direction of the gradient 

of the loss function with respect to the weights. It is an 

adaptive learning rate that aims to sustain a high learning step 

size while maintaining stability (Nguyen et al., 2021). It is 

mathematically expressed in equation (3). 

( )WLWW oldnew −=    (3) 

Where 𝑊 represents the weights, 𝑎 is the learning rate, and 

( )WL  is the gradient of the loss function. 

 

Conjugate Gradient (Traincgp) 

Iterations are used in most conjugate gradient 

backpropagations to modify the step size (Dodo et al., 2024). 

They speed up training by using ‘conjugate” search 

directions. These directions are chosen to minimize 

interference with earlier steps, leading to a faster 

convergence. These can be expressed mathematically in 

equations (4) and (5). 

( ) 1−+−= kkkk dWLd     (4) 

( )
( )1

2

−


=

k

k

k
wL

wL


   (5) 

 

Levenberg-Marquart (Trainlm) 

The Levenberg-Marquardt (LM) algorithm, often known as 

the dampened, is an approach of the least squares that is suited 

for problems involving nonlinear least squares (Dodo et al., 

2024). It combines the stability of gradient descent and the 

fast convergence of the Gauss-Newton method. The equation 

describing this algorithm is expressed as: 

  eJIJJW TT 1−+−=    (6) 

Where JT is the Jacobian matrix of the network errors with 

respect to the weights, 𝑒 is the vector of errors, and  is a 

scalar that controls the transition between gradient descent 

and Gauss-Newton. 

 

Quasi-Newton (Trainbfg) 

The advantage of the quasi-Newton method is that it is 

computational and inexpensive because it does not need many 

operations to evaluate the Hessian matrix and calculate the 

corresponding inverse. Each iteration is the approximation of 

the inverse Hessian Matrix. It is computed using only 

information on the first derivatives of the loss function, 

expressed in equation (7) (Nguyen et al., 2021): 

( )kkkk WLHWW −=
−

+

1

1  (7) 

Where Hk approximates the Hessian matrix. 

 

Conjugate Gradient Backpropagation (Traincgb, Traincgp, 

Traincgf, and Trainscg) 

These are search and conjugate gradient algorithms to achieve 

much faster convergence. Iterations are used in most 

conjugate gradient backpropagations to modify the step size 

(Dodo et al., 2024). Trainscg uses a "scaling" factor to decide 

the step size at each iteration. This makes it a very efficient 

algorithm for large-scale problems. 

 

Resilient Backpropagation (Trainrp and Trainscg) 

This training function focuses on the sign of the gradient 

rather than its size. It uses a separate learning rate for each 

weight, and this rate is based on whether the gradient changes 

sign. As shown in equation (8), this method attains the best 

convergence without parameter selection (Nguyen et al., 

2021).  

( ) ( )

















−=

ij

ijij
W

E
signttW    (8) 

Where ηij is the learning rate for a specific weight. 

 

One-step Secant (Trainoss) 

It uses an approximation of the Hessian matrix based on the 

secant method. It is calculated just with the loss function's first 

derivatives' information. The loss function's second partial 

derivatives make up the Hessian matrix (Nguyen et al., 2021). 

 

Bayesian Regularization(Trainbr) 

It generalizes an existing network by reducing the 

combination of squared errors and weights (Dodo et al., 

2024). It trains the network using the Levenberg-Marquardt 

algorithm, but with changes in the performance function that 

include a penalty for large weights. It is described by equation 

(9). 

WD EEF  +=    (9) 

Where ED is the sum-squared error, EW is the sum of squared 

weights, and β and α are parameters that are optimized during 

training. 

 

Transfer Functions 

A logsig (log-sigmoid) transfer function was used in the 

hidden and output layers, respectively layer to evaluate 

activation behavior. It was selected because it introduces non-

linearity, which ensures the outputs remain bounded between 

0 and 1 (Msheliza & Dodo, 2025). Mathematically, it is 

expressed in equation (10). 

( ) ( ) ( ) 1
1log

−−−== xexsigxF   (10) 

 

Performance Evaluation 

To access the predictive performance of the neural network 

models, the dataset was divided into two subsets: 70% for 

training and 30% for testing. This is done to prevent 

overfitting and ensure that the model’s performance reflects 

its true predictive capability rather than memorization of the 

input data. The predictive accuracy of the models was 

assessed using three statistical performance indices 

represented in equations (11) - (13) the coefficient of 

determination (R2); which highlights the overall fit of the 

model, mean absolute error (MAE); indicates the average 

prediction error, and mean squared error (MSE); captures the 

sensitivity of the model to larger deviations. By combining 

these three evaluation metrics, a balanced assessment of 

neural network performance was achieved. 
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HHVp,i, HHVe,i, eHHV , and n denote predicted HHV, 

experimental HHV, the mean of experimental HHV, and the 

number of data instances, respectively. 

 

 

 

RESULTS AND DISCUSSION  

The results of the performance analysis of the models (M-M9) 

using the statistical indices, R2, MSE, and MAE, respectively, 

are presented in Table 2. For an in-depth analysis and 

comparison of prediction model performances, at least two 

evaluation metrics are recommended by researchers. In this 

way, the constraints of a particular metric that can result in 

ineffective judgment can be mitigated (Dodo et al., 2024). As 

such, the evaluation metrics used were R² (coefficient of 

determination), MSE (mean squared error), and MAE (mean 

absolute error) to compare the predicted and experimental 

HHVs. Lower MSE and MAE, and higher R2, respectively, 

indicate a strong relationship between the predicted and 

experimental HHVs, while higher MSE and MAE, and lower 

R2 suggest a significant dispersion between the predicted and 

experimental HHVs.  

 

Table 2: R2, MSE, and MAE Values for Models M1 to M10 

Model Training Phase Testing Phase 

 R2 MSE MAE  R2 MSE MAE 

M1 0.871242 0.001123 0.000447  0.934967 0.003646 0.002584 

M2 0.770048 0.002006 0.001633  0.860208 0.007836 -0.01365 

M3 0.835832 0.001432 0.000321  0.945112 0.003077 0.001225 

M4 -0.35935 0.01186 0.003424  0.578989 0.023601 0.018519 

M5 0.800243 0.001743 -0.00456  0.901124 0.005543 -0.00751 

M6 0.62758 0.003249 -0.00298  0.851586 0.00832 0.001359 

M7 0.60975 0.003405 0.001255  0.865735 0.007527 0.010495 

M8 0.701673 0.002603 -0.00409  0.902218 0.005481 0.004614 

M9 0.055295 0.008242 0.004562  0.680699 0.017899 0.013638 

M10 0.804767 0.001703 0.001871  0.911139 0.004981 -0.00085 

 

As shown in Table 2, the trainbr (M3) and trainlm (M1) show 

the best prediction performances, evidenced by high R² and 

low MSE and MAE values. The lowest performing training 

function is M4 (traingd), M9 (traingdm), with M4 exhibiting 

a negative R² of -0.35935 during the testing phase and M9  

having a very low R² of 0.05529, which was the second lowest 

of all models. Model M3 achieved the best results with R² of 

0.96789, MSE of 0.001432, and 0.000321. Model M1 

(trainlm) performed exceptionally well in the testing phase 

with an R² of 0.934967, MSE of 0.00365, and MAE of 

0.00258. The training function is well-known for its 

efficiency and rapid convergence. M10 (trainrp) followed 

closely, with R² values of 0.80477 (training) and 0.91114 

(testing). The model demonstrated stability across training 

and testing phases, with low mean bias error (MAE) and 

relatively small error variance, making it a reliable training 

function for biomass HHV prediction.  

Models M5 (trainbfg) and M8 (trainoss) produced satisfactory 

results in the testing phase with R² values of 0.90112 and 

0.90222, respectively. Although not as strong as M3, M1, and 

M10, they maintained consistent performance with moderate 

error values and good generalization ability. Models M2 

(trainscg), M6 (traincgb), and M7 (trainrp) produced 

acceptable but less competitive results, with testing R² values 

ranging between 0.85159 and 0.86574. These models had 

higher error magnitudes compared to the top-performing 

ones, but still demonstrated stable predictions without severe 

bias. 

The Scatter plots of predicted HHV values against actual 

values depicted in Figure 2 further illustrate the differences in 

model performance. The comparison between the 

experimental and predicted HHV was visualized using 

scattered plots, illustrating the model’s prediction 

performance and how closely the clustered points were along 

the line of perfect fit (y=x).  
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Figure 2: Scatter Plots for Various Models (a) M1; (b) M2; (c) 

M3; (d) M4; (e) M5; (f) M6; (g) M7; (h) M8; (i) M9; (j) M10 

 

Figure 2 shows M3 with an R² of 0.96789 and M1 with an R² 

of 0.96809, implying strong alignment and low deviations 

from the line of best fit. In contrast, M4, having an  R² of 

0.53866, and M9, having an R² of 0.69392, displayed wide 

scatter from the line of equality, implying poor agreement 

between predicted and experimental HHVs. Neither of these 

models used descent-based training functions, providing the 

visual evidence that supports the statistical results 

highlighting the unsuitability of traingd and traingdm for 

biomass HHV prediction.  

Another method used to visually identify the optimal model 

and algorithm for HHV prediction was Rader plots, where 

MSE and MAE, respectively, in both training and testing 

phases are shown in Figures 3 and 4. The MSE and MAE, 

respectively, measure the average squared and absolute 

average difference between the split predicted and actual 

values. Lower values indicate higher accuracy and are 

represented by smaller areas on the plot. During the training, 

the values for the models ranged from approximately 0-0.014, 

while the testing ranged from 0-0.03. The points on the plot 

remained low, confirming that models generalized well 

without significant degradation in accuracy. The small gap 

between the training and testing MAE values shows that 

models did not overfit and retained stability to unseen data. 

Thus, in the Figure, both the training and testing phases 

indicate that M3 (trainbr) forms the smallest shape, located 

nearest to the center, implying the lowest MAE during the 

training phase (0.0003) and 0.0012 at the testing phase. 

Models M1, M2, and M10 also have very small areas, while 

the plots for M4 and M9 are significantly larger, indicating 

high error rates. 

 

 
Figure 3: Radar Plots Using MSE (a) Training Phase (b) Testing Phase 
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Figure 4: Radar Plots Using MAE (a) Training Phase (b) Testing Phase 

 

Figure 4 shows the radar plot of MAE, which measures the 

average magnitude of the errors in the set of predictions. A 

lower MAE value indicated a more accurate model. The plot 

having a higher MAE is represented by a larger area extending 

farther from the center. Conversely, a smaller area closer to 

the center corresponds to a low MAE. Again, the M4 and M9, 

which use gradient descent with momentum, stand out with a 

more marginal shape deviating from the center, which 

confirms their poor performance and inability to make 

accurate predictions. Overall, the ranking of model 

performance is M3, M1, M10, M8, M5, M7, M2, M6, M9, 

and M4, in descending order of accuracy. 

 

CONCLUSION 

This study focused on the performance comparison of ten 

different training functions in a feedforward backpropagation 

neural network with a topology of 5-10-1 to predict the higher 

heating value of biomass based on ultimate analysis. This was 

achieved by varying the training functions while maintaining 

a consistent FFBN architecture consisting of five inputs, ten 

hidden layers, and the logsig activation function throughout. 

The results highlighted Bayesian regularization (trainbr) and 

Levenberg-Marquardt (trainlm) as the best training 

algorithms with the highest R² and low MSE and MAE, 

respectively.  Thus, the optimal performance was attributed to 

M3 (trainbr), which exhibited the highest R² value of 0.96789, 

along with the lowest MSE of 0.00143 and MAE of 0.000032 

during the training phase. The next best-performing model 

was M1 (trainlm), with an R² of 0.96809 and low MAE and 

MSE values of 0.00112 and 0.00045, respectively, in the 

training phase. On the other hand, the lowest performing 

model, M4, resulted in a negative R² in the training phase of -

0.35935 and exhibited high MAE and MSE values of 0.01186 

and 0.00032. Future research may consider a larger and more 

diverse biomass dataset, comprising proximate and ultimate 

analysis data, to improve prediction.  
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