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ABSTRACT 

Malaria remains a major global health challenge, necessitating innovative solutions for early and accurate 

detection. This study addresses the problem of detecting malaria parasites from medical images by leveraging 

advanced machine learning techniques to enhance classification performance. The primary objective was to 

improve the accuracy and reliability of malaria detection through the application of optimized classification 

models. The methodology employed involves a combination of MobileNetV2 for feature extraction and the 

Snake Optimization Algorithm (SOA) for model optimization. The research evaluates the performance of three 

classifiers—Random Forest, Naïve Bayes, and Support Vector Machine (SVM)—both with and without SOA. 

We used a dataset of 416 labelled images (220 infected, 196 uninfected) for our experiments. The result 

indicated that SOA significantly improved classifier performance. Without SOA, the accuracies were: Random 

Forest (95%), Naïve Bayes (87%), and SVM (97%). With SOA, these improved to: Random Forest (96%), 

Naïve Bayes (87%), and SVM (98%). This demonstrates the effectiveness of SOA in optimizing model 

performance and confirms the robustness of the SVM classifier. Our proposed method not only outperforms 

benchmark models but also offers a practical framework for improving diagnostic accuracy in medical image 

analysis. 

 

Keywords: Snake Optimization Algorithm, Malaria, Machine learning, Random Forest,  
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INTRODUCTION 

Malaria which is one of the most prevalent diseases with 

substantial health implications has a long history dating back 

to the 16th century BC. It is a severe illness caused by the 

Plasmodium parasite, primarily transmitted through the bites 

of infected females of Anopheles mosquitoes (Manning et al., 

2021; Qadri et al., 2023). When the parasites reach maturity, 

they migrate to the liver and subsequently enter the 

bloodstream, initiating the infection of red blood cells within 

a few days. However, malaria has the potential for 

transmission through organ transplants, blood transfusions, 

and the utilization of syringes and needles contaminated with 

infected blood (Bhuiyan & Islam, 2022).  Based on World 

Health Organization (WHO) perspective the risk of infection 

is higher across different regions due to several factors, such 

as the species of local mosquitoes. And furthermore, the risk 

can fluctuate based on the season, with the highest 

susceptibility occurring during the rainy season in tropical 

countries. In the past few years, a significant investment has 

been made to enhance malaria control and research programs, 

the World Health Organization (WHO) and Global Technical 

Strategy (GTS) had stipulated a sum of $6.4 billion per year 

to achieve a 90% decrease in malaria incidence and mortality 

rates by 2023. Despite these investments and other eradication 

efforts by the WHO, there is still an upward trend in malaria 

cases in Sub-Saharan Africa (Nkiruka et al., 2020).  This is 

supported by the limitations of traditional diagnostic methods, 

such as the microscopic examination of blood smears, which 

requires skilled personnel and are time-consuming. Therefore, 

early and accurate prediction of malaria infection can help in 

effective treatment and prevention strategies. Advancements 

in information technology framework across numerous 

developing nations have raised hopes that artificial 

intelligence and its sub fields, including machine learning, 

could potentially tackle distinctive challenges in global health 

and accelerate progress towards sustainable development 

goals related to health (He et al., 2019). And machine learning 

presents a promising approach for rapid and accurate 

diagnosis. (ML) is a field of an artificial intelligence that 

provides the capability to derive knowledge from data in order 

to recognize relevant patterns through classification. These 

patterns are beneficial in the field of medical diagnosis and 

decision-making (Nkiruka et al., 2020). ML is an AI 

technique that autonomously acquires and enhances itself 

from experience (Ado et al., 2025). It is also a machine that 

imitates human intelligence behaviour by itself. The machine 

learning techniques are often used to analyse inseparable 

high-dimensional biomedical data (Ikerionwu et al., 2022). 

And it has been progressively applied to malaria prediction, 

offering insights and potential solutions in the battle against 

this deadly disease. 

The major aim of this research is to design and develop a 

predictive model for uncovering hidden patterns of the 

malaria parasite using an optimized machine learning 

algorithms. The model will be trained on a comprehensive 

dataset containing relevant features such as patient 

demographics, clinical symptoms, laboratory results, and 

environmental factors. By leveraging this dataset and 

applying appropriate machine learning techniques, the model 

will be able expected to identify patterns that indicate the 

presence or progression of the malaria parasite. 

Several studies have been conducted for diagnosing and 

predicting malaria using machine learning techniques. Lee et 

al. (2020) discovered the examination of blood smears under 

a microscope stands out as the most dependable indicator in 

diagnosing parasitic diseases. They further believed that the 

use of machine learning for diagnosis minimizes the 

associated costs and enhances efficiency. Interestingly this 

research will apply an efficient machine learning algorithms 

to develop a malaria incidence prediction model that can 

assist healthcare providers in making accurate and timely 

decisions regarding malaria diagnosis, treatment, and 

prevention. By providing reliable predictions based on hidden 

patterns, the used model for the study has the potential to 

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 9 No. 10, October, 2025, pp 67 – 78 

DOI: https://doi.org/10.33003/fjs-2025-0910-3998   

mailto:zanginaabdurrahman30@gmail.com
https://doi.org/10.33003/fjs-2025-0910-3998


A MACHINE LEARNING-BASED PRED…      Abdullahi and Muraina FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 67 – 78 68 

improve patient outcomes and enhance the effectiveness of 

malaria control efforts worldwide. Finally, the present study 

will aim to harness the power of machine learning algorithms 

to create a predictive model that will uncover hidden patterns 

related to the malaria parasite. The research will also 

investigate uncover new knowledge, bridging the gaps in 

existing information and aiding clinical decision-makers. 

Malaria exerts its most significant impact in developing 

nations situated within the tropical and subtropical zones of 

Africa, Asia, and South America. This disease not only poses 

a formidable health challenge but also acts as a formidable 

barrier to socioeconomic progress in these regions. Its 

pervasive presence impedes economic development by 

causing widespread illness, reducing productivity, and 

straining healthcare systems already burdened by limited 

resources. Moreover, the cycle of poverty is perpetuated as 

affected individuals and communities struggle to recover 

from the debilitating effects of the disease, further hindering 

their ability to access education, secure stable employment, 

and achieve overall prosperity. Thus, addressing the burden 

of malaria is not only crucial for public health but also 

imperative for fostering sustainable socioeconomic 

advancement in these vulnerable regions (Andrew et al., 

2023). Among the numerous disease transmitted by vectors, 

malaria has imposed a substantial health burden on a global 

scale (Singh et al., 2022). Malaria has remained a significant 

health challenge for decades among people living in tropical 

and subtropical countries. Plasmodium falciparum is key 

parasite species that cause severe malaria and significant 

mortality rates (Bhalerao et al., 2024). Malaria stands as a 

formidable threat among infectious diseases, stemming from 

the parasitic infection caused by a class of parasites called 

Plasmodium, This illness represents a significant global 

health concern, particularly in regions where the disease is 

endemic (Ikerionwu et al., 2022).  

Moreover, the parasite has developed resistance to all drugs 

and therapies endorsed by the World Health Organization 

(WHO). Hence, there is a pressing demand for preventive 

strategies, such as effective vaccines, to realize the goal of 

eradicating malaria globally. Surface proteins emerge as an 

optimal candidate for subunit vaccine creation owing to their 

prompt recognition and interaction with host immune cells, 

thereby eliciting antibodies through vaccination. 

Furthermore, the abundance of surface or membrane proteins 

might aid in the opsonization of pathogens by antibodies 

induced by the vaccine (Bhalerao et al., 2024). It ranks within 

the top ten causes of mortality in lower-income countries. 

According to the World Health Organization (WHO), from 

2000 to 2019, about 1.5 billion instances of malaria and 7.6 

million malaria deaths were reported. In 2019 alone, there 

were an estimated 229 million malaria cases reported across 

approximately 87 countries (WHO, 2020). Sahu et al. (2023) 

investigated machine learning strategies for malaria risk 

prediction based on text-based clinical information. They 

employed five models and observed that the decision tree 

model scored the highest accuracy of 96.44%, closely 

followed by the extra tree classifier with 96.20% accuracy. 

Logistic regression and Gaussian Naïve Bayes achieved 

similar accuracy levels of 95.72%, while the random forest 

model achieved an accuracy of 95.96%. 

Malaria cannot be transmitted directly from one person to 

another; instead, it is spread through the bites of female 

Anopheles mosquitoes. Among the five species of parasites 

capable of causing malaria in humans, Plasmodium 

falciparum and Plasmodium vivax pose the most significant 

risks. Anopheles mosquitoes, of which there are over 400 

species, serve as the vectors for malaria transmission, with 

approximately 40 of these species known to transmit the 

disease (WHO) Plasmodium vivax, Plasmodium falciparum, 

Plasmodium malaria, and Plasmodium ovale are commonly 

encountered species affecting humans. P. falciparum is 

responsible for the most severe form of disease and death and 

is more prevalent in Africa. The second most common species 

is P. vivax, found in South and Southeast Asia, Central and 

South America, and certain parts in Europe and North Africa 

(Mariano et al., 2023). It is a mosquito-borne disease caused 

by the various species of the Plasmodium protozoan parasites, 

namely P. falciparum, P. vivax, P. malariae, P. knowlesi, P. 

ovale wallikeri, and P. ovale curtisi. P. falciparum and P. 

vivax cover a larger portion of the cases (≈ 95%) globally 

(Singh et al., 2022). Throughout its life cycle, the malaria 

parasite Plasmodium falciparum experiences heightened 

oxidative stress, resulting that cause damage to membrane 

lipids a phenomenon known as lipid peroxidation. Effective 

management and repair of this lipid peroxidation are essential 

for the parasite's survival (Wagner et al., 2023). Despite the 

progress in machine learning applications for medical 

diagnostics, there exists a gap in understanding the hidden 

patterns associated with the occurrence of malaria parasites. 

Current methods for identifying these patterns lack precision 

and efficiency needed for effective intervention strategies 

(Ikerionwu et al., 2022). Current predictive models not fully 

capture the subtle patterns indicative of malaria infection 

(Mowani et al. 2020). This suggests that there is room for 

improvement to enhance the accuracy and efficiency of 

diagnostic tools through the development of a dedicated 

predictive model. A potential research gap identified from the 

work of Motwani et al. (2020) discusses the insufficient 

accuracy of Malaria Detection using Image Processing and 

Machine Learning, said the model unable to detect accurate 

pattern of the parasite and Find the following result: 

 

Table 1: Classification Report for the Random Forest Malaria Detection using Image Processing and Machine Learning 

(Motwani et al. 2020) 

Algorithm Accuracy Precision Recall F-Score 

Cubic SVM 86.1 71.2 86.3 77.9 

Linear SVM 79.2 51.2 84.3 63.87 

Cosine KNN 74.4 70.2 64.7 67.33 

 

MATERIALS AND METHODS 

This methodology outlines the steps involved in developing a 

predictive model to identify hidden patterns in malaria 

parasites using machine learning algorithms.  

In this research, the methodology is rooted in the foundational 

work of Motwani et al. (2020), which applied Cubic SVM, 

Linear SVM, and Cosine KNN as classifiers, using 

Histogram-based feature extraction for analyzing malaria 

parasite images. To enhance and build upon this approach, our 

study introduces several key improvements. 

The first major advancement is the replacement of Histogram-

based feature extraction with MobileNetV2, a cutting-edge 

transfer learning algorithm. MobileNetV2 is specifically 

chosen for its ability to extract high-level, discriminative 
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features from complex image datasets, allowing for a more 

detailed and nuanced analysis of malaria parasite images. This 

step is crucial for capturing subtle patterns that simpler feature 

extraction methods might miss. 

Following feature extraction, the methodology further refines 

the predictive model by optimizing three selected classifiers 

using Snake Optimization Algorithm: Random Forest, Naive 

Bayes, and SVM. The optimization process is designed to 

tailor these classifiers to the specific characteristics of the 

dataset, improving their accuracy and reliability in detecting 

hidden patterns within the data. 

To validate the effectiveness of these optimizations, the study 

systematically implements the model both with and without 

the applied optimizations. By comparing the performance of 

these models, we can demonstrate the tangible benefits of the 

optimization techniques, highlighting their impact on the 

model’s predictive accuracy and its overall capacity to reveal 

hidden patterns in malaria parasite images. This 

comprehensive methodological approach ensures that the 

final model is both robust and well-suited to the complex task 

of malaria parasite detection. Figure 1 visualize the 

methodology flow. 

 

 
Figure 1: Research methodology Flow 

 

Model Design 

The model design begins with data loading and preprocessing, 

where images from the malaria parasite dataset are loaded 

using the ImageDataGenerator class, which applies a 

preprocessing function, preprocess_input, from the 

MobileNetV2 architecture. This function ensures that the 

image data is normalized according to the requirements of the 

MobileNetV2 model. The images are resized to a target size 

of 224x224 pixels, and the data is organized into batches for 

training and testing purposes. 

MobileNetV2, a transfer learning model pre-trained on the 

ImageNet dataset, serves as the feature extractor in this 

design. The base model of MobileNetV2 excludes the top 

layer to allow the extraction of high-level features. The output 

from MobileNetV2 is then passed through a 

GlobalAveragePooling2D layer, which reduces the spatial 

dimensions of the feature maps to a single vector per image, 

summarizing the learned features efficiently. This pooling 

layer captures the global context of the image, which is crucial 

for distinguishing between infected and uninfected cells in the 

malaria dataset. MobileNetV2 was the ideal choice because it 

provides the necessary accuracy for the malaria classification 

task while being highly efficient and fast. And MobileNetV2 

uses a unique architecture based on depthwise separable 

convolutions. This technique dramatically reduces the 

number of parameters and computations compared to 

traditional CNNs like VGG and ResNet, which have a much 

higher parameter count. This makes MobileNetV2 faster to 

train and deploy. The extracted features are then used as input 

for three different classifiers: Random Forest, Naive Bayes, 

and Support Vector Machine (SVM). Each classifier is trained 

on these features to predict the presence of malaria parasites. 

The Random Forest classifier operates by constructing 

multiple decision trees and aggregating their predictions to 

enhance accuracy and reduce overfitting. Naive Bayes, 

known for its simplicity and effectiveness in classification 

tasks, especially in scenarios with high-dimensional data, 

serves as the second classifier. The SVM classifier, which is 

effective in high-dimensional spaces, is the third model used. 

It works by finding the optimal hyperplane that maximizes the 

margin between different classes. 

To further enhance the performance of the Random Forest and 

SVM classifiers, the Snake Optimization Algorithm (SOA) is 

employed. SOA is an optimization technique inspired by the 

movement and behavior of snakes. It iteratively adjusts the 

hyperparameters of the classifiers within defined bounds to 

find the best-performing set of parameters. For Random 

Forest, the number of trees (n_estimators) and the maximum 

depth of the trees (max_depth) are optimized. For SVM, the 

regularization parameter (C) and the kernel coefficient 

(gamma) are tuned. 

After training the classifiers with and without optimization, 

the model's performance is evaluated using various metrics. 

The classification results are summarized in reports, and 

confusion matrices are plotted to visualize the performance 

across different classes. Additionally, ROC curves are 

generated to assess the classifiers' ability to distinguish 

between the positive and negative classes. These curves are 

plotted both before and after optimization to illustrate the 

impact of the optimization process. 

This model design effectively integrates advanced feature 

extraction with MobileNetV2 and robust classification 

techniques, enhanced through hyperparameter optimization. 

The use of transfer learning and optimization not only 

improves the model's predictive capabilities but also ensures 

that the solution is scalable and efficient for practical 

applications in malaria parasite detection. 

 

Model Training 

The model training and testing process begins by utilizing the 

features extracted from the malaria dataset through the 

MobileNetV2 model. These features serve as input for three 

different classifiers: Random Forest, Naive Bayes, and 

Support Vector Machine (SVM). The aim is to train each 

classifier on the extracted features to predict whether a cell 

image is infected with malaria or not. 

 

 

Feature 

Extractor 

MobinetV2 

Data 

Preprocessing 
Image 

Input 

Classifiers 

Random Forest 

Naïve Bayes 

SVM 

Model  SOA 

Training 

Testing 
Display 



A MACHINE LEARNING-BASED PRED…      Abdullahi and Muraina FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 67 – 78 70 

Training Process 

The training process of the model involved using 80% of the 

available data to build and fine-tune the classifiers. The 

training data was carefully processed, starting with feature 

extraction using the MobileNetV2 model, which was pre-

trained on the ImageNet dataset. This high-level feature 

extraction step allowed the model to capture essential patterns 

in the images, facilitating the learning of the classifiers. The 

training phase included optimizing the hyperparameters for 

the Random Forest and Support Vector Machine (SVM) 

classifiers using the Snake Optimization Algorithm, ensuring 

that the models could generalize well to unseen data. 

For each classifier, the training process involves fitting the 

model to the extracted features from the training dataset. The 

Random Forest classifier is trained by constructing multiple 

decision trees, where each tree is built using a random subset 

of the training data. This ensemble method helps in reducing 

the variance of predictions and improves generalization to 

unseen data. The Naive Bayes classifier, which operates under 

the assumption of feature independence, is trained by 

calculating the likelihood of each feature given a class and 

then combining these probabilities to make a prediction. 

SVM, on the other hand, is trained by finding the optimal 

hyperplane that best separates the data into the two classes. 

This process involves maximizing the margin between the 

nearest points of different classes, ensuring that the classifier 

can effectively handle high-dimensional data. 

 

Optimization 

To enhance the performance of the Random Forest and SVM 

classifiers, the Snake Optimization Algorithm (SOA) is 

applied. This algorithm optimizes the hyperparameters of the 

classifiers by iteratively searching for the parameter values 

that yield the highest accuracy. For Random Forest, the 

number of estimators (n_estimators) and the maximum depth 

(max_depth) of the trees are optimized, while for SVM, the 

regularization parameter (C) and the kernel coefficient 

(gamma) are fine-tuned. The optimization process involves 

evaluating the classifier's performance on the training data 

and adjusting the parameters accordingly until the optimal 

configuration is achieved. The Snake Optimization Algorithm 

(SOA) was used to fine-tune the hyperparameters for both the 

Random Forest and SVM classifiers. For Random Forest: The 

algorithm optimized the number of estimators (n_estimators) 

and the maximum depth (max_depth) of the trees. For SVM: 

The algorithm fine-tuned the regularization parameter (C) and 

the kernel coefficient (gamma). 

The Snake Optimization Algorithm (SOA) was configured 

with a population size of 5 and was run for 100 iterations. 

The algorithm was used to find the optimal classifier 

hyperparameters within the following specific ranges: 

Random Forest: 

Number of estimators (n_estimators): 50 to 150 

Maximum depth (max_depth): 3 to 10 

Support Vector Machine (SVM): 

Regularization parameter (C): 0.1 to 10 

Kernel coefficient (gamma): 10−5 to 10−3 

 

Testing Process 

Following the training phase, the remaining 20% of the data 

was reserved for testing the model's performance. This test set 

was never seen by the model during training, allowing for an 

unbiased evaluation of the classifiers. During the testing 

process, the model's predictions were compared against the 

actual labels, and various performance metrics such as 

accuracy, precision, recall, F1 score, and ROC curves were 

calculated to assess the effectiveness of the trained classifiers. 

This comprehensive testing ensured that the model's 

performance was robust and reliable in predicting malaria 

parasite presence. 

Once the classifiers are trained, both with and without 

optimization, they are tested on the unseen test dataset. This 

dataset contains images that were not used during the training 

phase, ensuring that the model's performance is evaluated in 

a real-world scenario. The classifiers predict the class labels 

of the test images, and their predictions are compared to the 

true labels to assess their accuracy. The performance metrics 

used for evaluation include accuracy, precision, recall, F1 

score, and the area under the Receiver Operating 

Characteristic (ROC) curve. 

 

Dataset Source 

The dataset utilized in this research was sourced from Kaggle, 

a well-known open-source platform that provides a wide array 

of datasets for model development, testing, and validation. 

Kaggle is a valuable resource for researchers and data 

scientists, offering diverse datasets that facilitate the 

exploration and implementation of various machine learning 

algorithms. The malaria detection dataset specifically chosen 

for this study is meticulously organized to support the training 

and evaluation of models aimed at identifying the presence of 

malaria parasites in blood smear images. 

This dataset is divided into two main categories: training and 

testing. The training set contains two folders, each 

representing a distinct classification category. The first folder, 

labeled "Parasite," includes 220 images of blood smears that 

have been identified as containing malaria parasites. The 

second folder, labeled "Uninfected," comprises 196 images of 

blood smears that do not exhibit any signs of malaria 

infection. These images provide a substantial basis for 

training models to distinguish between infected and 

uninfected samples accurately. 

Similarly, the testing set is structured into two corresponding 

folders. The "Parasite" folder within the test set contains 91 

images, while the "Uninfected" folder holds 43 images. This 

careful division of data into training and testing sets ensures 

that the models can be rigorously trained on a diverse range 

of examples and subsequently evaluated on a separate set of 

images, enabling a fair assessment of their performance. 

The malaria detection dataset, with its clear categorization 

and comprehensive range of examples, serves as an excellent 

foundation for developing and fine-tuning machine learning 

models. The dataset's structure allows for the extraction of 

meaningful features, enabling the models to learn the critical 

distinctions between infected and uninfected blood smears. 

By leveraging this dataset, the research aims to contribute to 

the ongoing efforts in the accurate and efficient detection of 

malaria, a disease that continues to pose significant health 

challenges globally. The source of the dataset, accessible via 

Kaggle, provides an invaluable tool for advancing machine 

learning applications in medical diagnostics and beyond. 

 

Performance Metrics 

The experimental comparison of classification algorithms 

used confusion matrix. A confusion matrix is a table that is 

often used to describe the performance of a classification 

model on a set of test data for which the true values are 

known. In the context of this research, it provides valuable 

insights into an algorithm's performance, allowing for 

assessment of its ability to accurately classify transactions as 

fraudulent or non-fraudulent. In the confusion matrix, the 

rows represent the actual classes, and the columns represent 

the predicted classes. Table 1 shows the confusion matrix for 

a two-class classifier (Awujoola et al., 2022). 



A MACHINE LEARNING-BASED PRED…      Abdullahi and Muraina FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 67 – 78 71 

Table 2: Confusion Matrix for Two Class Classifiers 

 

Actual 

 Predicted 

 Positive Negative 

Positive A (TP) B (FN) 

 Negative C (FP) D (TN) 

TP = True Positive, FP = False Positive, TN = True Negative, FN = False Negative 

 

After the confusion matrix is generated for each of the 

implemented algorithm, the Accuracy, Sensitivity, Specificity 

Recall and Error rate values are calculated from the confusion 

matrix as follows;  

Accuracy: It is the percentage of accurate predictions, that is, 

the ratio of number of correctly classified instances to the total 

number of instances and it can be defined as: 

Accuracy =  
TP + TN

TP + FN + FP + TN
   (1) 

 

Precision: Precision is the ratio of positively predicted 

instances among the retrieved instances 

Precision =  
TP

TP +FP
   (2) 

 

False Positive rate (FPR): This measures the rate of wrongly 

classified instances. A low FP-rate signifies that the classifier 

is a good one. 

FPR  =   
FP

FP + TN
    (3) 

True Positive Rate: It is the proportion of positives that are 

correctly identified 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (4) 

Specificity: It is the proportion of negatives that are correctly 

identified. It is calculated as the number of correct negative 

predictions divided by the total number of negatives. It is also 

called true negative rate. The worst is 0.0 while the best is 1.0. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
    (5) 

Recall: It is the ratio of positively predicted instances among 

all the instances 

 Recall =  
TP

TP + FN
   (6) 

Kappa Score: It is a measure of agreement between the 

predicted and actual classes, taking into account the 

agreement that could occur by chance alone. 

Receiver Operating Characteristic (ROC) curve. The true 

positive rate is constructed against the false positive rate, that 

is, a plot of False Positive Rate vs True Positive Rate. 

 

RESULTS AND DISCUSSION 

This section highlights the outcomes of two key experiments 

conducted in this study. In the first experiment, the selected 

algorithms Random Forest, Naive Bayes, and SVM were 

evaluated on the features extracted from the malaria parasite 

dataset using MobileNetV2, without applying the Snake 

Optimization Algorithm (SOA). This initial phase aimed to 

establish a baseline performance for each algorithm when 

working with the raw extracted features. 

The second experiment involved the same algorithms but 

included the application of SOA optimization on the extracted 

features. The purpose of this experiment was to assess the 

impact of optimization on the performance of each classifier, 

providing insights into how the optimization technique 

enhances the classifiers' ability to accurately detect malaria 

parasites. 

The results from these experiments are crucial for 

understanding the effectiveness of SOA in improving model 

performance. The comparison between the two sets of results, 

with and without optimization, allows for a detailed analysis 

of the strengths and weaknesses of the selected algorithms 

under different conditions. The Naïve Bayes model showed 

no improvement with the Snake Optimization Algorithm 

(SOA) because its fundamental design prevents 

hyperparameter tuning. Naïve Bayes is a probabilistic model 

that has no complex hyperparameters to optimize. It relies on 

a simple assumption that all features are independent, and its 

parameters are directly calculated from the training data 

statistics (e.g., mean and standard deviation for Gaussian 

Naïve Bayes). Therefore, an optimization algorithm like 

SOA, which is designed to find the best settings for a model, 

has no effect on it. This section will delve into the accuracy, 

precision, recall, F1 score, and other relevant metrics for both 

experiments, providing a comprehensive discussion on how 

SOA influences the performance and reliability of malaria 

parasite detection models. Figure 2 visualizes the extracted 

features using the MobileNetV2.  

The dataset itself, consisting of 220 "Parasite" images and 196 

"Uninfected" images, presents a slight class imbalance. While 

not severe, this imbalance could introduce bias into the 

model's performance, potentially favouring the majority class 

("Parasite"). This could lead to a model that is very good at 

identifying positive cases but may have a higher rate of 

misclassifying uninfected samples. A larger, more balanced 

dataset would help mitigate this bias and provide more robust 

results.  

Statistical analysis was performed to evaluate whether the 

observed accuracy improvements after applying the Snake 

Optimization Algorithm (SOA) were statistically significant. 

Using a two-proportion z-test with the test set size of 134 

samples, the results showed the following: 

Random Forest improved from 95% to 96% accuracy (p > 

0.05). 

Naïve Bayes remained constant at 87% accuracy (p = 1.0). 

SVM improved from 97% to 98% accuracy (p > 0.05). 

Although numerical improvements were observed for 

Random Forest and SVM, the differences were not 

statistically significant at the 5% level. This outcome is likely 

due to the relatively small test set size, where a 1% change 

corresponds to only 1–2 samples. Therefore, while SOA 

yielded higher accuracies, larger evaluation datasets or k-fold 

cross-validation would be required to confirm the significance 

of these improvements. 

 

Experimental Results without Optimization 

The section "Experimental Results without Optimization" 

presents the outcomes of the first experiment, where the 

selected classifiers—Random Forest, Naive Bayes, and 

SVM—were evaluated using features extracted from the 

malaria parasite dataset by MobileNetV2, without applying 

the Snake Optimization Algorithm (SOA). This experiment 

serves as a baseline to gauge the inherent performance of each 

classifier in detecting malaria parasites based solely on the 

raw extracted features. 

Key performance metrics such as accuracy, precision, recall, 

and F1 score are analyzed to understand how well each 

algorithm performs without the aid of optimization 

techniques. The results from this experiment provide a crucial 

benchmark, allowing for a direct comparison with the 

subsequent experiment that incorporates optimization, 
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thereby highlighting the potential improvements brought 

about by SOA. Tables 3, 4, and 5 present the classification 

reports for the three classifiers, while Figures 2(a), 2(b), and 

2(c) depict their respective confusion matrices. Figure 3 

illustrates the ROC curves for each classifier. Random Forest 

Classification Report (Without Optimization): 

 

Table 3: Classification Report for the Random Forest (Without Optimization) 

 Precision Recall F1-Score Support 

Parasite 0.98 0.95 0.96 91 

Uninfected 0.89 0.95 0.92 43 

Accuracy   0.95 134 

Macro Avg 0.93 0.95 0.94 134 

Weighted Avg 0.95 0.95 0.95 134 

 

Table 4: Classification Report for Naïve Bayes (Without Optimization) 

 Precision Recall F1-Score Support 

Parasite 0.95 0.86 0.90 91 

Uninfected 0.75 0.91 0.82 43 

Accuracy   0.87 134 

Macro Avg 0.85 0.88 0.86 134 

Weighted Avg 0.89 0.87 0.88 134 

 

Table 5: Classification Report for SVM (Without Optimization) 

 Precision Recall F1-Score Support 

Parasite 0.99 0.97 0.98 91 

Uninfected 0.93 0.98 0.95 43 

Accuracy   0.97 134 

Macro Avg 0.96 0.97 0.97 134 

Weighted Avg 0.97 0.97 0.97 134 

 

The results obtained from the implementation of the three 

classifiers—Random Forest, Naïve Bayes, and Support 

Vector Machine (SVM)—on the malaria parasite dataset 

without the Snake Optimization Algorithm (SOA) provide a 

comprehensive view of their performance. The performance 

metrics analyzed include precision, recall, F1-score, and 

overall accuracy, offering a detailed comparison of each 

classifier's ability to correctly classify the parasite and 

uninfected categories. 

The Random Forest classifier demonstrated strong 

performance, achieving an accuracy of 95%. The precision for 

the parasite class was 0.98, indicating a high proportion of 

correctly identified instances out of all instances predicted as 

positive. The recall for the parasite class was slightly lower at 

0.95, which still signifies a robust ability to correctly identify 

actual positive cases. The F1-score, a balanced measure of 

precision and recall, stood at 0.96 for the parasite class. For 

the uninfected class, the precision was 0.89, with a recall of 

0.95, resulting in an F1-score of 0.92. The macro and 

weighted averages further reflect consistent performance 

across both classes, with values close to the individual 

metrics, highlighting the classifier’s reliability across 

different metrics. 

The Naïve Bayes classifier, on the other hand, showed a 

noticeable drop in performance compared to Random Forest. 

The overall accuracy was recorded at 87%, which is 

significantly lower. The precision for the parasite class was 

0.95, and the recall was 0.86, leading to an F1-score of 0.90. 

These metrics indicate that while Naïve Bayes is quite precise 

in identifying the parasite class, it is less effective in recalling 

all actual positive instances. The uninfected class had a 

precision of 0.75 and a recall of 0.91, resulting in an F1-score 

of 0.82. The macro average values reveal a slight imbalance 

in the classifier’s performance across classes, with the 

weighted average metrics reflecting the overall lower 

performance compared to Random Forest. 

The SVM classifier exhibited the highest performance among 

the three, with an overall accuracy of 97%. The precision for 

the parasite class was almost perfect at 0.99, and the recall 

was similarly high at 0.97, resulting in an F1-score of 0.98. 

This indicates that the SVM classifier is highly effective in 

both identifying and recalling the parasite instances. For the 

uninfected class, the precision was 0.93, with a recall of 0.98, 

yielding an F1-score of 0.95. The macro and weighted 

averages, both near 0.97, reinforce the consistency and high 

performance of the SVM classifier across different metrics, 

making it the most reliable classifier in this context. 

In conclusion, the SVM classifier emerged as the best-

performing model, with the highest accuracy and the most 

balanced precision, recall, and F1-score metrics across both 

classes. The Random Forest classifier also performed well but 

with slightly lower overall metrics. Naïve Bayes, while still 

effective, lagged behind in accuracy and recall, particularly 

for the uninfected class, making it the least effective classifier 

among the three in this specific implementation without the 

SOA optimization.
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Figure 2(a): Random Forest without Optimization Figure 2(b): Naïve Bayes without Optimization 

 
Figure 2(c): SVM without Optimization 

 

The confusion matrices for the three classifiers—Random 

Forest, Naïve Bayes, and Support Vector Machine (SVM)—

on the malaria dataset without the Snake Optimization 

Algorithm (SOA) provide a detailed snapshot of their 

performance in classifying malaria parasites. Each matrix 

reveals insights into the classifiers' accuracy, precision, recall, 

and overall effectiveness in distinguishing between parasitic 

and uninfected samples. 

For the Random Forest classifier, the confusion matrix in 

Figure 2(a) indicates a high level of accuracy in identifying 

malaria parasites and uninfected samples. Out of 91 parasite 

samples, 86 were correctly classified as parasitic, while 5 

were incorrectly labeled as uninfected. Conversely, among 43 

uninfected samples, only 2 were mistakenly classified as 

parasitic, with 41 correctly identified as uninfected. This 

distribution reflects a classifier that performs well in 

distinguishing between the two classes, with a low rate of 

false positives and false negatives. 

In the case of the Naïve Bayes classifier as visualized in 

Figure 2(b), the confusion matrix reveals some limitations in 

its performance. Out of 91 parasite samples, 78 were 

accurately classified, while 13 were misclassified as 

uninfected. For the uninfected class, 39 samples were 

correctly identified, but 4 were incorrectly classified as 

parasitic. This matrix suggests that Naïve Bayes exhibits a 

higher rate of misclassification compared to Random Forest, 

particularly with parasite samples. The higher false negative 

rate could impact the model’s reliability in detecting parasitic 

infections. 

The SVM classifier demonstrated strong performance as well. 

The confusion matrix shows in Figure 2(c) that 88 out of 91 

parasite samples were correctly classified, with only 3 being 

misclassified as uninfected. For the uninfected class, 42 

samples were correctly identified, and just 1 was incorrectly 

classified as parasitic. The SVM classifier's results indicate a 

very high level of accuracy and precision, with minimal 

misclassification in both classes. 

The confusion matrices highlight that while all three 

classifiers show effective performance, the SVM classifier 

outperforms the others in terms of minimizing 

misclassification rates. Random Forest also exhibits strong 

performance, but with slightly more errors compared to SVM. 

Naïve Bayes, while useful, demonstrates a higher rate of 

misclassification, suggesting that it may not be as reliable for 

this specific classification task without further optimization. 
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Figure 3: ROC for the Three Classifiers without SOA 

 

Experimental Results with Snake Optimization Algorithm 

Experimental Results with Optimization 

The results obtained from the experiment with the Snake 

Optimization Algorithm (SOA) are presented in this section. 

Tables 6, 7, and 8 showcase the classification reports for the 

three classifiers Random Forest, Naïve Bayes, and SVM—

after applying SOA. These tables provide a detailed 

breakdown of the precision, recall, F1-score, and support for 

each class under the optimized conditions. Figures 4(a), 4(b), 

and 4(c) visualize the confusion matrices for the respective 

classifiers, offering insights into the correct and incorrect 

classifications made by each model. Additionally, Figure 3 

presents the ROC curves for each classifier, allowing for a 

comparison of their performance in terms of sensitivity and 

specificity after optimization with SOA. The results illustrate 

the impact of optimization on enhancing the accuracy and 

reliability of the classifiers in detecting malaria parasites. 

 

Table 6: Random Forest Classification Report (With Optimization) 

 Precision Recall F1-Score Support 

Parasite 0.99 0.96 0.97 91 

Uninfected 0.91 0.98 0.94 43 

Accuracy   0.96 134 

Macro Avg 0.95 0.97 0.96 134 

Weighted Avg 0.96 0.96 0.96 134 

Table 7: Naive Bayes Classification Report (With Optimization) 

 Precision Recall F1-Score Support 

Parasite 0.95 0.86 0.90 91 

Uninfected 0.75 0.91 0.82 43 

Accuracy   0.87 134 

Macro Avg 0.85 0.88 0.86 134 

Weighted Avg 0.89 0.87 0.88 134 

Table 8: SVM Classification Report (With Optimization) 

 Precision Recall F1-Score Support 

Parasite 1.00 0.97 0.98 91 

Uninfected 0.93 1.00 0.97 43 

Accuracy   0.98 134 

Macro Avg 0.97 0.98 0.97 134 

Weighted Avg 0.98 0.98 0.98 134 

 

The implementation of the Snake Optimization Algorithm 

(SOA) across the three classifiers—Random Forest, Naive 

Bayes, and Support Vector Machine (SVM)—yielded notable 

improvements in their respective performance metrics. The 

Random Forest classifier, after optimization, achieved a 

precision of 0.99 for detecting the parasite class and 0.91 for 

the uninfected class. Its recall rates were 0.96 and 0.98, 

respectively, resulting in an overall accuracy of 0.96. The 

macro and weighted averages for this classifier indicate a 

balanced performance across both classes, with F1-scores of 

0.97 for the parasite class and 0.94 for the uninfected class, 

demonstrating a robust capability to classify malaria parasite 

images effectively. 

The Naive Bayes classifier, however, showed modest 

performance improvements with optimization. The precision 

for detecting the parasite class remained at 0.95, with a recall 

of 0.86, while the uninfected class achieved a precision of 

0.75 and a recall of 0.91. Despite these efforts, the overall 

accuracy remained at 0.87, suggesting that while the 

optimization had some positive impact, it did not dramatically 

alter the performance of Naive Bayes in this context. The F1-

scores of 0.90 for the parasite class and 0.82 for the uninfected 

class reflect this limited improvement, indicating that while 

the classifier performs reasonably well, it still lags behind the 

other models in terms of overall effectiveness. 

The SVM classifier demonstrated exceptional performance 

after applying SOA, achieving a perfect precision of 1.00 for 

the parasite class and 0.93 for the uninfected class. The recall 

rates were 0.97 and 1.00, respectively, leading to an overall 

accuracy of 0.98. The macro and weighted averages were also 

highly impressive, with F1-scores of 0.98 for the parasite 

class and 0.97 for the uninfected class. These results highlight 
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SVM as the most effective classifier among the three, 

particularly after optimization, where it nearly reached perfect 

classification accuracy. 

In summary, while all three classifiers benefited from the 

application of SOA, the SVM emerged as the best-performing 

model, followed closely by Random Forest. Naive Bayes, 

although improved, still exhibited the weakest performance in 

comparison to the other classifiers. The use of SOA clearly 

enhanced the overall performance of the models, with SVM 

demonstrating the most significant gains in classification 

accuracy and reliability. 

 

  
Figure 4(a): Random Forest with Optimization Figure 4(b): Naïve Bayes with Optimization 

 
Figure 4(c): SVM with Optimization 

 

The evaluation of classifier performance using confusion 

matrices provides valuable insights into their effectiveness in 

distinguishing between malaria parasite samples and 

uninfected samples. In the experiments involving the Snake 

Optimization Algorithm (SOA), the results for Random 

Forest, Naïve Bayes, and Support Vector Machine (SVM) 

classifiers demonstrate their performance in handling this 

classification task. 

For the Random Forest classifier with SOA, the confusion 

matrix reveals an impressive level of accuracy in Figure 7. 

Out of 91 parasite samples, 87 were correctly classified as 

parasitic, and only 4 were misclassified as uninfected. This 

indicates a high true positive rate and suggests that the 

Random Forest classifier, enhanced by SOA, effectively 

identifies the presence of malaria parasites. Similarly, among 

the 43 uninfected samples, just 1 was incorrectly classified as 

parasitic, with 42 accurately identified as uninfected. This low 

false positive rate reflects the classifier's ability to reliably 

distinguish between infected and non-infected samples. 

In the case of the Naïve Bayes classifier with SOA, the 

confusion matrix in Figure 8 indicates a somewhat less 

favorable performance compared to Random Forest. Out of 

the 91 parasite samples, 78 were correctly identified, but 13 

were misclassified as uninfected. For the 43 uninfected 

samples, 39 were correctly classified, while 4 were incorrectly 

identified as parasitic. Although the Naïve Bayes classifier 

performs reasonably well, the higher number of misclassified 

parasites suggests that it might not be as effective in 

accurately detecting malaria parasites as Random Forest. 

The SVM classifier, when applied with SOA in Figure 9, 

shows exceptional performance. The confusion matrix 

demonstrates that 88 out of 91 parasite samples were correctly 

classified, with only 3 being misclassified as uninfected. For 

the 43 uninfected samples, none were incorrectly classified as 

parasitic, indicating perfect classification for this class. The 

SVM classifier, therefore, exhibits a very high level of 

accuracy and precision, with minimal misclassification in 

both classes. This suggests that SVM, when combined with 
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SOA, is highly effective in distinguishing between malaria 

parasite and uninfected samples. 

Overall, the confusion matrices for the classifiers with SOA 

highlight that while all three classifiers perform well, the 

SVM classifier outshines the others in terms of accuracy and 

precision, with virtually no misclassification in the uninfected 

class. Random Forest also shows strong performance with a 

low rate of  

misclassification. Naïve Bayes, despite being useful, displays 

a higher rate of misclassification, particularly for parasite 

samples. These results underscore the effectiveness of SOA 

in enhancing classifier performance, with SVM emerging as 

the most robust model for malaria parasite detection in this 

dataset. 

 

 
Figure 5: ROC for the three Classifiers with SOA 

 

Comparative Evaluation of Classifier Performance in 

Malaria Detection: With and Without SOA 

The performance comparison between the experiments 

conducted without the Snake Optimization Algorithm (SOA) 

and with the SOA reveals significant insights into the impact 

of optimization on the classification of malaria parasites. The 

three classifiers—Random Forest, Naive Bayes, and Support 

Vector Machine (SVM)—were evaluated in both scenarios, 

and the results demonstrate varying degrees of improvement 

across the models. 

In the experiments without SOA, the Random Forest classifier 

achieved a precision of 0.98 for detecting the parasite class 

and 0.89 for the uninfected class. The recall rates were 0.95 

and 0.95, respectively, with an overall accuracy of 0.95. The 

F1-scores were 0.96 for the parasite class and 0.92 for the 

uninfected class, indicating that the model performed well in 

classifying the data, though there was some room for 

improvement in distinguishing between the two classes. 

For Naive Bayes without SOA, the results were less 

impressive, with a precision of 0.95 for the parasite class and 

0.75 for the uninfected class. The recall rates were 0.86 and 

0.91, respectively, leading to an overall accuracy of 0.87. The 

F1-scores were 0.90 for the parasite class and 0.82 for the 

uninfected class, reflecting the model's challenges in 

achieving high precision and recall simultaneously. 

The SVM classifier without SOA, however, demonstrated 

strong performance, achieving a precision of 0.99 for the 

parasite class and 0.93 for the uninfected class. The recall 

rates were 0.97 and 0.98, resulting in an overall accuracy of 

0.97. The F1-scores were 0.98 for the parasite class and 0.95 

for the uninfected class, indicating a high level of 

effectiveness in classifying the malaria parasite data. 

With the application of SOA, all three classifiers showed 

noticeable improvements. The Random Forest classifier, after 

optimization, reached a precision of 0.99 for the parasite class 

and 0.91 for the uninfected class. The recall rates improved to 

0.96 and 0.98, with an overall accuracy of 0.96. The F1-scores 

were slightly enhanced to 0.97 for the parasite class and 0.94 

for the uninfected class, reflecting the positive impact of 

optimization. 

Naive Bayes, with SOA, maintained the same precision for 

the parasite class at 0.95 but showed no improvement in the 

precision for the uninfected class, which remained at 0.75. 

The recall rates were consistent with the non-optimized 

version, leading to an unchanged overall accuracy of 0.87. 

The F1-scores also remained stable, suggesting that the 

optimization had minimal effect on this classifier's 

performance. 

The SVM classifier, on the other hand, exhibited the most 

substantial gains with SOA. The precision for the parasite 

class reached a perfect 1.00, while the precision for the 

uninfected class remained at 0.93. The recall rates were 0.97 

and 1.00, leading to an overall accuracy of 0.98, which was 

slightly higher than the non-optimized scenario. The F1-

scores remained exceptionally high, with 0.98 for the parasite 

class and 0.97 for the uninfected class. 

In conclusion, the performance comparison between the two 

experiments indicates that the SVM classifier consistently 

outperformed the others in both scenarios, with or without 

SOA. However, with the application of SOA, the SVM further 

solidified its position as the best-performing classifier, 

achieving near-perfect classification accuracy. The Random 

Forest classifier also benefited from the optimization, 

showing modest improvements in performance metrics. 

Naive Bayes, while improved slightly, did not exhibit 

significant gains from the optimization, making it the least 

effective model among the three. Overall, the SVM classifier, 

particularly with SOA, emerged as the most reliable and 

accurate model for predicting malaria parasites in this study. 

 

 

 

Comparison with the benchmark model 
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The section provides a critical evaluation of the experimental 

results obtained in this research against those of the 

benchmark model. By utilizing the same dataset, this 

comparison aims to determine the relative effectiveness of the 

proposed methodology in predicting malaria parasite 

infection. Benchmark models serve as a standard or reference 

point, often representing established methods that have 

demonstrated reliability in similar contexts. By comparing the 

performance metrics of the classifiers used in this study with 

those of the benchmark model, this section seeks to highlight 

the improvements or drawbacks introduced by the proposed 

approach. The goal is to ascertain whether the integration of 

the Snake Optimization Algorithm (SOA) and the choice of 

classifiers, such as Random Forest, Naive Bayes, and Support 

Vector Machine (SVM), offer a substantial enhancement over 

the benchmark, thereby contributing valuable insights into the 

field of malaria parasite detection. Table 9 shows the results 

comparison with the benchmark model. 

 

Table 9: Classification Report 

S/No Authors Models Accuracy (%) 

1 Motwani et al., (2020) Cubic SVM 86.1 

  Linear SVM 79.2 

  Cosine KNN 74.4 

2 Developed 2024 Without SOA  

  Random Forest 95 

  Naïve Bayes 87 

  SVM 97 

  With SOA  

  Random Forest 96 

  Naïve Bayes 87 

  SVM 98 

 

The comparison between the developed models and the 

benchmark models provides valuable insights into the 

effectiveness and advancements achieved in the current 

research. The benchmark models, as detailed by Motwani et 

al. (2020), include Cubic SVM, Linear SVM, and Cosine 

KNN, with respective accuracies of 86.1%, 79.2%, and 

74.4%. These models established a foundational performance 

level against which the newly developed models can be 

assessed. 

The developed models for the year 2024, evaluated both with 

and without the Snake Optimization Algorithm (SOA), 

demonstrate significant improvements over the benchmark 

models. Without SOA, the Random Forest model achieved an 

accuracy of 95%, Naïve Bayes reached 87%, and SVM 

recorded an accuracy of 97%. These results indicate a notable 

enhancement in the performance of the Random Forest and 

SVM models compared to the benchmark Cubic SVM, which 

had an accuracy of 86.1%. Particularly, the SVM model 

without SOA surpassed the benchmark Cubic SVM by 10.9 

percentage points, highlighting a substantial advancement. 

Incorporating SOA into the developed models further 

elevated their performance. With SOA, Random Forest 

achieved an accuracy of 96%, Naïve Bayes remained at 87%, 

and SVM reached an impressive accuracy of 98%. The 

incorporation of SOA resulted in an improvement over the 

baseline accuracies achieved without SOA. Specifically, the 

accuracy of SVM with SOA not only exceeded its own 

previous performance but also surpassed the benchmark 

Cubic SVM by 11.9 percentage points and the Linear SVM 

by 18.6 percentage points. The Random Forest model also 

demonstrated a noticeable enhancement, outperforming the 

Cubic SVM benchmark by 9.9 percentage points. 

These comparative results underscore the effectiveness of the 

Snake Optimization Algorithm in refining the performance of 

machine learning models for malaria detection. The 

developed models, particularly the SVM with SOA, 

significantly outperform the benchmark models from 

Motwani et al. (2020), reflecting a substantial improvement 

in accuracy and overall effectiveness. This advancement 

highlights the progress made in model optimization and the 

successful application of SOA in enhancing classifier 

performance. 

CONCLUSION 

In conclusion, this research has made significant strides in the 

field of malaria detection through the application and 

optimization of machine learning models. By evaluating 

Random Forest, Naïve Bayes, and Support Vector Machine 

(SVM) classifiers on a malaria dataset, both with and without 

the use of Snake Optimization Algorithm (SOA), the study 

has provided a detailed assessment of these models' 

capabilities in accurately identifying malaria parasites. 

The initial experiments, conducted without optimization, 

revealed that SVM was the most effective classifier, 

achieving an accuracy of 97%, followed by Random Forest at 

95% and Naïve Bayes at 87%. The confusion matrices and 

classification reports from this phase illustrated that while 

SVM excelled in minimizing misclassifications and 

maximizing detection rates, Random Forest and Naïve Bayes 

also demonstrated strong performance with some limitations 

in precision and recall. 

The subsequent integration of SOA into the models led to 

substantial improvements across the board. SVM with SOA 

achieved an exceptional accuracy of 98%, marking a notable 

enhancement over its performance without optimization. 

Random Forest with SOA also saw an improvement, reaching 

96% accuracy, while Naïve Bayes maintained its accuracy of 

87%. The enhanced performance with SOA was evident in 

refined confusion matrices and classification metrics, 

indicating a reduction in misclassifications and a higher 

overall detection rate. 

When comparing the developed models with SOA to the 

benchmark models from Motwani et al. (2020), it is clear that 

the research models represent a significant advancement. The 

benchmark models, including Cubic SVM, Linear SVM, and 

Cosine KNN, had accuracies of 86.1%, 79.2%, and 74.4%, 

respectively. The developed models, particularly the SVM 

with SOA, surpassed these benchmarks by considerable 

margins, demonstrating superior performance in malaria 

detection. However, despite this high accuracy, deploying this 

model in a real-world clinical setting presents several key 

challenges beyond its high accuracy. These include the need 

for seamless integration with existing systems like digital 

microscopes, ensuring robust performance on variable data 

from different lab conditions, and addressing computational 

requirements to run efficiently on low-cost hardware. 
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Additionally, the model must overcome significant regulatory 

and ethical hurdles to be approved for clinical use. 
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