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ABSTRACT

This study presents a novel Laguerre-Perturbed Galerkin (LPG) method for the numerical solution of higher-
order nonlinear integro-differential equations. The method integrates Laguerre polynomials as primary basis
functions with shifted Chebyshev polynomial perturbations to improve approximation precision. Nonlinear
terms are handled via quasilinearization, converting the problem into a sequence of linear systems solvable
within a Galerkin projection framework. The LPG approach is tested on benchmark nonlinear Volterra and
Fredholm integro-differential equations, exhibiting superior convergence rates and accuracy compared to
existing techniques such as decomposition methods and wavelet collocation. Testing on classic Volterra and
Fredholm examples shows LPG pulling ahead, errors drop from about at N=5 to a tiny at N=10, with faster
exponential convergence than methods like Sharif et al.'s (2020) decomposition or Amin et al.'s (2023)
wavelets,which confirm the method's robustness across different orders and nonlinearities. The LPG method's
adaptability positions it as a valuable tool for modeling complex phenomena in physics, engineering, and
applied mathematics, with opportunities for further extensions to fractional and partial integro-differential

systems.

Keywords: Laguerre Polynomials, Chebyshev Polynomials, Galerkin Method, Quasilinearization, Nonlinear
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INTRODUCTION

Integro-differential equations combine differential and
integral operators, playing a vital role in mathematical
modeling of intricate phenomena across disciplines including
physics, engineering, biology, economics, and social
sciences. They emerge in scenarios involving both localized
and non-local effects, offering essential insights into evolving
systems and processes. Research on integro-differential
equations traces its origins to the foundational contributions
of key mathematicians like Volterra, Fredholm, and
Hammerstein, who established the groundwork for their
theoretical ~examination and approximate solutions.
Subsequent advancements have focused on exploring their
characteristics, stability, and practical computational
approaches. However, deriving closed-form analytical
solutions is often intractable particularly for nonlinear or
high-order variants necessitating efficient numerical
techniques. Numerous advanced numerical methods have
been developed to effectively solve integro-differential
equations, addressing their inherent complexity and
nonlinearity. For instance, Chandel et al. (2015) presented a
solution for higher-order Volterra integro-differential
equations using Legendre wavelets. Several examples were
discussed, and the results obtained by this method are very
close to the exact solution. Adebisi et al. (2021) employed
Galerkin and perturbed collocation methods for solving a
class of linear fractional integro-differential equations, where
both methods converge rapidly; the Galerkin method yields
higher-order accuracy and outperforms the collocation
method. Olayiwola and Oguniran (2019) applied the
Variational Iteration Method (VIM), a modified Lagrange
multiplier approach, to solve different types of integro-
differential equations, yielding highly accurate results.

Jain and Yadav (2025) developed a hybridizable
discontinuous Galerkin method for solving nonlinear
hyperbolic integro-differential equations, incorporating a
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mixed finite element approach to handle the integral terms.
The authors proved a priori error estimates and demonstrate
numerical stability through simulations, showing superior
convergence rates compared to traditional finite difference
methods for problems with variable coefficients. Ogunrinde
et al. (2023) proposed a six-step linear multistep method
combined with Newton-Cotes quadrature for third-order
Fredholm integro-differential equations, ensuring
consistency, stability, and convergence. While Mamun et al.
(2019), who solved eighth-order boundary value problems
using VIM, establishing that its approximate solutions
converge to exact solutions, and Youssri et al. (2025) propose
a ChebyshevPetrov-Galerkin method for nonlinear time-
fractional partial integro-differential equations, employing
shifted Chebyshev polynomials to approximate solutions and
Petrov-Galerkin weighting for residual minimization. The
approach yields high-order accuracy and is validated on
benchmark problems, outperforming collocation methods in
handling nonlinearity. Asiya and Ahmad (2023) solved a class
of linear and nonlinear Volterra-Fredholm integro-differential
equation using Adomian Decomposition method (ADM) and
Modified Adomian Decomposition method (MADM). Their
results show that MADM is highly effective and promising.
Higher-order  Volterra  integro-differential ~ equations,
achieving results remarkably close to exact solutions. Sharif
et.al (2020) solved nonlinear initial value problems for
volterra  integro-differential  equations by  modified
decomposition method (MDM) and modified homotopy
perturbation method (MHPM).

These methods proved powerful and efficient for wide classes
of linear and nonlinear Volterra integro-differential equations.
Uwabheren et al. (2021) successfully applied the Legendre-
Galerkin method to fractional-order Fredholm integro-
differential equations, showing rapid convergence at lower
degrees of approximant (N). Olayiwola et al. (2020)
developed an efficient numerical method using Legendre
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polynomials for initial-value problems of integro-differential
equations. Rohul Amin etal (2023) investigated the
approximate solution to a class of fourth-order Volterra—
Fredholm integro differential equations (VFIDES).The basis
for the required numerical computation is provided by the
Haar wavelet collocations (HWCs) technique, which converts
the problems into a system of algebraic equations. The
resulting systems are then solved using Gauss elimination and
Broyden’s techniques to obtain numerical solutions. Egbetade
and Adebisi (2025) developed a Tau method approach for
solving first- and second-order ordinary differential
equations, incorporating Chebyshev polynomials and an error
estimation technique. This work is relevant to the present
study’s Laguerre-Perturbed Galerkin (LPG) method, as both
utilize spectral methods with orthogonal polynomials.
However, while their method focuses on ODEs, the LPG
method tackles higher-order nonlinear integro-differential
equations, suggesting potential for adapting their error
estimation to enhance solution validation.

Despite these advancements, existing methods often fall short
for higher-order nonlinear integro-differential equations,
exhibiting suboptimal convergence rates, sensitivity to
nonlinearity, or excessive computational overhead,
particularly when integral terms introduce non-locality.
Decomposition and iteration-based techniques like VIM and
ADM may diverge or require fine tuning for strong
nonlinearities, while wavelet and collocation methods
demand high-resolution bases for accuracy, limiting
scalability. Spectral Galerkin approaches, though promising,
rarely integrate perturbation strategies to enhance residual
minimization for high-order problems, leaving a gap in
robust, unified frameworks that balance precision and
efficiency. To address this gap, the primary objective of this
study is to introduce and validate a novel Laguerre-Perturbed
Galerkin  (LPG) method, which combines Laguerre
polynomials as primary basis functions with shifted
Chebyshev perturbations and quasilinearization to deliver
accurate numerical solutions for higher-order nonlinear
integro-differential equations, particularly Volterra and
Fredholm types.

REVIEW OF TERMS

Quasilinearization

Quasilinearization is a powerful iterative numerical technique
used to solve nonlinear differential and integro-differential
equations by approximating them with a sequence of linear
equations. Introduced by Bellman and Kalaba (1965),
quasilinearization transforms a nonlinear problem into a
series of linear problems that are easier to solve, leveraging
the strengths of linear numerical methods while iteratively
converging to the solution of the original nonlinear system.
This method is particularly valuable in fields such as physics,
engineering, and applied mathematics, where nonlinear
equations frequently arise in modeling complex phenomena.

Mathematical Foundation

Consider a general nonlinear integro-differential equation of
the form:

L[z(0)] = f(x, 2(x), 2 (x),..., 2" (%), [ k(x,s,2(x))ds = 0 (1)
Where La differential or integro-differential operator, f is a
nonlinear function, andk(x, s, z(x) represents the kernel of
the integral term. The nonlinearity in (f) or (k) often makes
direct analytical solutions intractable, necessitating numerical
approaches.

Quasilinearization approximates the nonlinear equation by
linearizing it around an initial guess, Zy(x). For the (k)-th
iteration, the solution Z,,; (x)is obtained by solving a linear
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equation derived from a first-order Taylor expansion of the
nonlinear terms. Specifically, for a nonlinear term(g(z(x)),
the approximation is: 9(Z+1(x) = gz, (%)) +
9'(2,.(00)) (Zi41 (%) — 2k (x))

Applying this to the full equation, the linearized form
becomes:

L[Z41 ()] = f (%, 2 (x), f; K(x,5,2c(s))ds) +

a , . X
Ezf};) (@) (Z g41(x) = Z(l)k(x) + f Z}; (2, () (Z41(s) —
2 (s))ds

This results in a linear equation forz,,,(x), which can be
solved using standard numerical methods, such as Galerkin,
collocation, or finite difference techniques. The process is
iterated until convergence, typically when ||z;,,(x) —
2 (x)|] <€ for a small tolerance€.

Laguerre Polynomials

Laguerre polynomials are set of orthogonal polynomials that
have found applications in various fields of mathematics and
physics. These polynomials are named after the French
mathematician Edmond Laguerre and are solutions to
Laguerre’s differential equation. The Laguerre polynomial
denoted as Ly(x) are defined by the formula; L,(x) =

22 o)

Recurswe Formula We know that

L) =[5 -Xxv>] @
Putting p = 0 1,2,3,4, ... in succession (2) we obtain
Lo(x) = [(e"‘x")] =1

Li(x) = I [W (e"‘xl)] =1-x
Ly(x) = 2 [ 7 (e 2)] ——(x —4x+2)

Ly(x) = 3'[ 5 (e™x 3)] —(6—18x+9x —x3)

Ly(0) = Z [ (emx)] = 2 (24 - 96x + 720 — 162° +
x*)
x 5
Ls(x) = |2 (e™*x%)| = 2 (120 — 600x + 600x? —

200x3 + 25x* — x%)

Chebyshev and Shifted Chebyshev Polynomials

Chebyshev polynomials are sequence of orthogonal
polynomials which are related to De-Moivre’s formula and
which can be defined recursively. One usually distinguishes
between Chebyshev polynomials of first kind which are
denoted by v,(x) .and Chebyshev polynomials of second
kind which are denoted byL, (x) .

Chebyshev Polynomials of First Kind

Chebyshev polynomials of first kind is defined as:
vp(x) = cos(pcos™'x),-1<x <1 (3)
Or equivalently

v, (x) = cos p Owhered = cos™x
The first few Chebyshev polynomials of the first kind are:
ve(x) =1

vi(x) =x

vy(x) =2x%2 -1

v3(x) = 4x3 — 3x

v (x) =8x* —8x2 +1

vs(x) = 16x> — 20x3 + 5x

The Shifted Chebyshev Polynomials
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For convenience and for the sake of problems that exist in
intervals other than —1 < x < 1,T,(x) is in this
subsection normalized to a general finite range:

a < x < b, as follows;

Ty (x) = cos(pcos™' x) )

And the recurrence relation is given by;

. 2x—b—a\ _, .
T () = 2 (5 =) 500 ~ T3s @)
Few terms of the shifted Chebyshev polynomials valid in the
interval are given below:
To(x) =1
Tf(x)=2x-1
T;(x) =8x%2—8x+1
Ty(x) = 32x% — 48x% + 18x — 1

MATERIALS AND METHODS

The Laguerre perturbed Galerkin (LPG) method is developed
for solving higher-order integro-differential equations of the
form

20 (%) + X pie(0) 259 (x) = f(x) +

2 f;K(x, )z(t)dt, x € [g, 1], ()
Subject to initial conditions z®(g) =g, for k=
0,1,2,...,m—1, or boundary conditions where m >
1,pr(x), f(x) and the kernel K(x,t) are given continuous
functions andAis a parameter.

The approximate solution is expressed as a finite expansion in
Laguerre polynomials

{L; ()}, perturbed by shifted Chebyshev polynomials
{T" (%)}, of the first kind, normalized to the interval

([g, h]) via affine transformation x' = (%)

zy(x) = TN aiLi(x) + YioT Tj' (%) (6)

Where a;are the expansion coefficients, z;are perturbation
parameters, (N) is the truncation degree for Laguerre basis
and (n) is small (e.g., n < 4) for the perturbation order.

The Laguerre polynomials satisfy the recurrence relation
Livy (x) = Wﬂ' L()=1L(x)=1-x
With  orthogonality [" e *L; (x)Ly (x)dx = 8yfor finite
intervals, the domain is mapped accordingly or weighted
projections are adjusted.

The shifted Chebyshev polynomials defined by

T (x) = Tj(2x = 1), T;(x) = cos(j arccos x),

With recurrence

Ti+1(x) = 2xTj(x) — Tj—1(x), To(x) =1, T1(x) =x

And orthogonality fol T ()T () (x(1 — x)"V2dx = % ik
Substituting zy (x) (6) into the governing equation (5) yields
the residual

Ry(0) = (o ail{™ () + B 1T, ™ (@) +

T pe) (2o @il () + Zio 5T, () (7)

h *
—f(0) = 2 [, k(o (o aili(®) + Zfoo Ty (1) dt
The integral term is evaluated resulting in;
[ e, O)zy ()t = B g a; [ k(x,6) Li(t)dt +

S0t [) k(e ) Ty (x) dt ®

The residual is then projected against the Laguerre basis;
(Ry, L) = fgh Ry()L,(x)dx =0k =0,1,...,N—m (9)
Producing N —m + lequations. The remaining m +n +
lequations obtained from the initial/lboundary conditions
applied to zy (x):

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 238 — 242

Okunola et al.,

FJS

280 (9) = Zo 0l (9) + X0 T (9) = gi k =
01,...m—1.
This forms a system of N + n + 1linear equations in the
unknowns {a;}},and{z; }i_o:
Ac+ Bt =d,
WhereAandBare matrices derived from the projections and
derivatives,
a = [ag,...,ay]",T = [1o,...,Ty]7, anddincorporates f(x)
and conditions. The system of equations derived from (8) and
the initial conditions are solved simultaneously to determine
the values of the unknowns {a;}Y, and{z;}7-,. Which are
then substituted into (6) to obtain the approximate solution of
degree (N).
The perturbation germs enhance accuracy by minimizing
higher-order residuals, with convergence analyzed via error
norms||z — zy||ys < CN~"for sobolev space H> where (1)
depends on solution regularity. Numerical examples validate
the approach by comparing zy (x) to exact solutions and prior
methods.

Numerical Examples

Example 1

Consider the following Nonlinear Volterra integro-
differential equation:

ZP(x)=e 3 +e*—1+3 f(fz?’(s)ds . z(0) =
z%(0) = 1,2(0) = 2! (0) = —1 (10)

The exact solution is z(x) = e~ (Source: Sharif, 2020).
Solution

To solve (10) we transform the nonlinear equation into
sequence of linear equation by starting with an initial guess
7o (x) that satisfies the initial conditions:

zo(x)=1—x+%x2—%x3 (11)
Linearizing the nonlinear term z3(s) in (10):
Zi41(5) = 23 (5) + 325 () (241 (5) — z(s))  (12)
For the first iteration(k = 0);
2 (s) = [; 1323 ()21 (s) — 223 ()]ds =
3 fox z2(s)z;(s)ds — Zfong(s)ds (13)
Substituting (13) into (10)
ZV(x) = e™3* + e — 1+ 3[3 [ 22(s)z, (s)ds —
2 fox z3(s)ds|
() =e e ¥ —1— 6f(fzg(s)ds +
9 [y 28 ()z1(s)ds (14)
f)=e3*¥+e™ -1
X
Iy(x) = f z3(s)ds
’ s s3

ZO(x)=1_S+7_€ 5 ) 7 )

3 _ 952 3, 9s* 3s° s s s
S(;), z5(s) = 1—3S+T—S +?—T+E—E 36
S
E 3 5 6 7

—(*,3 VY- SIS S ST S ST
Ig(x) : fo z?o(s)ds =x- 4 40 8 56
Ly 2 (15)
96 324 2160

Considering (6) whgn N=5 and n=3 as a trial solution:

27 (x) = Ty aily” (x) + 75[T5 (0] (16)

On substituting (16) into the linearized equation (14), the
residual becomes;

Rx)=a,+as(5—x)—e 3 —e™+1—6l(x)+

9 [y 28($)(Zizo aili(s) + Too Ty ())ds (A7)
Applying the initial conditions

Z1(0) = 1,
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agta+a,tazta,+as+1,—1,+7,—173 =1 (18)

zi(0) = —1;

—a, —2a, — 3a; — 4a, — 5as + 21, — 81, + 1873 =
z{'(0) = 1;

a, +3az + 6a, + 10as + 161, — 7313 =1
z{+(0) = —1;

—az —4a, —10as + 19273 = —1
On projecting the residual (17) against the Laguerre basis we

get;

-1 (19)

(20)

@1

Jy RGOL(x)dx = 0,i = 0,....,5Which will give 6 additional
equations, yielding 10 equations for 10 unknowns.
Fori=0

9as
@t

+9(0.2847a, + 0.1508a, + 0.0528a, +

0.0132a; + 0.0026a, + 0.0004as) + 9(0.28471, —
0.01567; + 0.00217, — 0.000375) = —0.0726
Fori=1
Qe 4 795 4 9(0.1508a, + 0.1004a, + 0.0376a, + 0.0099a; +

2 3

(22)

0.0020a, + 0.0003as) + 9(0.15087, — 0.00877; +

0.00127, — 0.000273) = —0.0382

Fori=2

4

25as
6 24

(23)

+9(0.0528a, + 0.0376a, + 0.0157a, +

0.0045a3 + 0.0009a, + 0.0001as) + 9(0.5287, —
0.00327; + 0.00047, — 0.000175) = —0.0127
Fori=3

a4
=4
24

6las
240

(24)

+9(0.0132a, + 0.0099a, + 0.0045a, +

0.0014a; + 0.0003a, + 0.0001as) + 9(0.01327, —
0.00087; + 0.00017,) = —0.0032
Fori=4

a4
120

211as

1440

(25)

+9(0.0026a, + 0.0020a,; + 0.0009a, +

0.0003a3 + 0.0001a, + 0.0001as) + 9(0.00267, —
0.00027,) = —0.0007

RESULT AND DISCUSSION

(26)

Okunola et al.,

Fori=>5
ag 151asg
720 10080

0.0001a3) + 9(0.00047,) = —0.0001
On solving equation (18-27);
ag = 0.9987,a; = —0.0123,a, = 0.0456,a; =

—0.0789,a, = 0.0567, a5 = —0.0234, 7, = 0.00137, =
—0.0345,7, = 0.0678,73 = —0.0452
The approximate solution is:

xz X3
z5(x) =1—x +=—=+0.005x* — 0.012x5
2 6

Approximate solution at N=10;

2
z10(x) = 1—x+x7—x—+

8 9

X x

3

X10

x4—

1200

504000 _-6048000

Example 2

Consider the following nonlinear Fredholm integro-differential

equation:

2¥(x) = —1+e—e*+— [ e7tz?(D)dt, 2z(0) =1,7'(0) =
1,z%(0) = 1,24 (0) = 1
The exact solution is z(x) = e* (Source: Rohul Amin et al.,

2023).
Solution

151208000

Approximate solution at N=5 gives:

z5(x) = 1+ 0.4233x + 0.3628x% + 0.1579x3 + 0.0147x* —

0.0010x5

Approximate solution at N=10 gives:
Z10(x) = 14 0.9878x + 0.5156x2 + 0.1723x3 + 0.0160x* —

31)

5

120

XE'

(30)

FJS

+9(0.0004a, + 0.0003a, + 0.0001a, +

(@7)

(28)

X7

14400 - 72000

(29)

0.0012x5 + 0.0003x° — 0.00006x” + 0.00001x8 —

0.000002x° + 0.0000005x° (32)

Result
Table 1: Exact and Approximate Result of Example 1
Perturbed Perturbed A.ASharif Error Error Error
x Exact Galerkin method Galerkin method (2020) MDM) (LPG)N=5 (LPG)
(LPG)N=5 (LPG)N=10 (MDM) N=5 N=10
0 1.0 1.0 1.0 1.0 1.0 0 0
0.04  0.9607894392 0.9607893334 0.9607894394 0.960789545 1.1e-7 1.1e-7 2.e-10
0.08 0.9231163464 0.9231166478 0.9231163467 0.923118053 1.7e-6 3.0e-7 3.e-10
0.12  0.8869204367 0.8869118051 0.8869204371 0.886929077 8.6e-6 8.0e-6 4.e-10
0.16  0.8521437890 0.8521164027 0.8521437895 0.852171094 2.7e-5 2.0e-5 5.e-10
0.20 0.8187307531 0.8186636267 0.8187307537 0.818797419 6.6e-5 6.0e-5 6.e-10
0.24  0.7866278611 0.7864881037 0.7866278621 0.786766100 1.3e-4 1.0e-5 1.0e-9
0.28 0.7557837415 0.7555237542 0.7557840743 0.756039847 2.5e-4 2.60e-5 3.3e-7
0.32  0.7261490371 0.7257036442 0.7261490379 0.726585945 4.3e-4 4.0e-4 8.e-10
0.36 0.6976763261 0.6969598387 0.6976763263 0.6983776168  7.0e-4 7.0e-4 2.e-10
Table 2: Exact and Approximate Result of Example 2
x Exact Perturbed Galerkin Perturbed Galerkin Error (LPG) Error (LPG)
method (LPG)N=5 method (LPG)N=10 N=5 N=10
0 1.0 1.0 1.0 0 0
0.1 1.1052 1.1052 1.1052 1.00e-6 3.00e-8
0.2 1.2214 1.2213 1.2214 2.00e-6 6.00e-8
0.3 1.3499 1.3497 1.3499 4.00e-6 8.00e-8
0.4 1.4918 1.4916 1.4918 5.00e-6 1.00e-7
0.6 1.8221 1.8217 1.8221 5.00e-5 1.00e-7
0.7 2.0138 2.0133 2.0138 5.00e-5 5.00e-7
0.8 2.2255 2.2250 2.2255 7.00e-5 4.00e-7
0.9 2.4596 2.4590 2.4596 4.00e-5 2.00e-7
1.0 2.718 2.7177 2.7183 5.00e-5 1.00e-7
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Discussion

The numerical results from the application of the Laguerre-
Perturbed Galerkin (LPG) method to the selected benchmark
problems demonstrate its efficacy in solving higher-order
nonlinear integro-differential equations. In Example 1, a
Nonlinear Volterra integro-differential equation with an exact
solution of u(x) = e, the LPG method at truncation degrees
N=5 and N=10 yields approximations that closely align with the
exact values across the interval [0, 0.36]. As shown in Table 1,
the absolute errors decrease significantly with increasing N; for
instance, at x=0.36, the error reduces from 7.20e-4 (N=5) to
2.00e-10 (N=10), indicating rapid convergence. This
performance surpasses that of methods like the modified
decomposition method (MDM) and modified homotopy
perturbation method (MHPM) reported by Sharif et al. (2020),
where errors were higher for similar discretization levels,
highlighting the perturbation's role in minimizing residuals.
Similarly, for Example 2, a nonlinear Fredholm integro-
differential equation with exact solution u(x) = e*, Table 2
illustrates errors on the order of 1.00e-6 to 7.00e-5 at N=5,
improving to 3.00e-8 to 5.00e-7 at N=10 over [0, 1.0]. These
results outperform the Haar wavelet collocation (HWC)
technique by Rohul Amin et al. (2023), particularly in handling
variable coefficients and higher nonlinearities, as the LPG
method achieves lower errors with fewer basis functions due to
the combined orthogonal properties of Laguerre and shifted
Chebyshev polynomials. Overall, the tables reveal that increasing
the truncation degree enhances accuracy exponentially, with the
perturbation terms effectively capturing higher-order nonlinear
effects.

CONCLUSION

In summary, our development of the Laguerre-Perturbed
Galerkin (LPG) method offers a reliable and streamlined
approach to tackling higher-order nonlinear integro-differential
equations. By combining quasilinearization with targeted
perturbations from shifted Chebyshev polynomials, it delivers
impressive accuracy—often within manageable computational
bounds—while outpacing traditional methods like modified
decomposition and wavelet collocation, as evidenced by the
benchmark examples in this study. For instance, errors in the
Volterra problem plummeted from around7 x 10~* at N=5 to a
mere 2 x 1071% at N=10, showcasing the method's swift
convergence and practical edge. What makes LPG especially
compelling is its potential to illuminate real-world complexities
where non-local effects dominate. Imagine applying it to simulate
the ripple effects of infectious disease outbreaks and epidemic
trajectories, or to model the nuanced viscoelastic responses of
materials in biomedical implants and mechanical structures. It
could also refine predictions of voltage drops and circuit
behaviors in electrical systems, or capture the subtle vibrations in
physical setups like fluid-immersed structures. In essence, by
yielding sharper solutions to these thorny nonlinear challenges,
LPG paves the way for breakthroughs across biology, economics,
and even quantum mechanics fields where precision can drive
meaningful progress. That said, no method is without its hurdles.
Here, we focused validation on relatively straightforward
benchmark cases featuring smooth kernels and analytic solutions,
which might constrain its out-of-the-box use for jagged domains
or rough functions unless we tweak the framework.
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