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ABSTRACT 

This study presents a novel Laguerre-Perturbed Galerkin (LPG) method for the numerical solution of higher-

order nonlinear integro-differential equations. The method integrates Laguerre polynomials as primary basis 

functions with shifted Chebyshev polynomial perturbations to improve approximation precision. Nonlinear 

terms are handled via quasilinearization, converting the problem into a sequence of linear systems solvable 

within a Galerkin projection framework. The LPG approach is tested on benchmark nonlinear Volterra and 

Fredholm integro-differential equations, exhibiting superior convergence rates and accuracy compared to 

existing techniques such as decomposition methods and wavelet collocation. Testing on classic Volterra and 

Fredholm examples shows LPG pulling ahead, errors drop from about   at N=5 to a tiny   at N=10, with faster 

exponential convergence than methods like Sharif et al.'s (2020) decomposition or Amin et al.'s (2023) 

wavelets,which confirm the method's robustness across different orders and nonlinearities. The LPG method's 

adaptability positions it as a valuable tool for modeling complex phenomena in physics, engineering, and 

applied mathematics, with opportunities for further extensions to fractional and partial integro-differential 

systems. 
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INTRODUCTION 

Integro-differential equations combine differential and 

integral operators, playing a vital role in mathematical 

modeling of intricate phenomena across disciplines including 

physics, engineering, biology, economics, and social 

sciences. They emerge in scenarios involving both localized 

and non-local effects, offering essential insights into evolving 

systems and processes. Research on integro-differential 

equations traces its origins to the foundational contributions 

of key mathematicians like Volterra, Fredholm, and 

Hammerstein, who established the groundwork for their 

theoretical examination and approximate solutions. 

Subsequent advancements have focused on exploring their 

characteristics, stability, and practical computational 

approaches. However, deriving closed-form analytical 

solutions is often intractable particularly for nonlinear or 

high-order variants necessitating efficient numerical 

techniques. Numerous advanced numerical methods have 

been developed to effectively solve integro-differential 

equations, addressing their inherent complexity and 

nonlinearity. For instance, Chandel et al. (2015) presented a 

solution for higher-order Volterra integro-differential 

equations using Legendre wavelets. Several examples were 

discussed, and the results obtained by this method are very 

close to the exact solution. Adebisi et al. (2021) employed 

Galerkin and perturbed collocation methods for solving a 

class of linear fractional integro-differential equations, where 

both methods converge rapidly; the Galerkin method yields 

higher-order accuracy and outperforms the collocation 

method. Olayiwola and Oguniran (2019) applied the 

Variational Iteration Method (VIM), a modified Lagrange 

multiplier approach, to solve different types of integro-

differential equations, yielding highly accurate results. 

Jain and Yadav (2025) developed a hybridizable 

discontinuous Galerkin method for solving nonlinear 

hyperbolic integro-differential equations, incorporating a 

mixed finite element approach to handle the integral terms. 

The authors proved a priori error estimates and demonstrate 

numerical stability through simulations, showing superior 

convergence rates compared to traditional finite difference 

methods for problems with variable coefficients. Ogunrinde 

et al. (2023) proposed a six-step linear multistep method 

combined with Newton-Cotes quadrature for third-order 

Fredholm integro-differential equations, ensuring 

consistency, stability, and convergence. While Mamun et al. 

(2019), who solved eighth-order boundary value problems 

using VIM, establishing that its approximate solutions 

converge to exact solutions, and Youssri et al. (2025) propose 

a ChebyshevPetrov-Galerkin method for nonlinear time-

fractional partial integro-differential equations, employing 

shifted Chebyshev polynomials to approximate solutions and 

Petrov-Galerkin weighting for residual minimization. The 

approach yields high-order accuracy and is validated on 

benchmark problems, outperforming collocation methods in 

handling nonlinearity. Asiya and Ahmad (2023) solved a class 

of linear and nonlinear Volterra-Fredholm integro-differential 

equation using Adomian Decomposition method (ADM) and 

Modified Adomian Decomposition method (MADM). Their 

results show that MADM is highly effective and promising. 

Higher-order Volterra integro-differential equations, 

achieving results remarkably close to exact solutions. Sharif 

et.al (2020) solved nonlinear initial value problems for 

volterra integro-differential equations by modified 

decomposition method (MDM) and modified homotopy 

perturbation method (MHPM).  

These methods proved powerful and efficient for wide classes 

of linear and nonlinear Volterra integro-differential equations. 

Uwaheren et al. (2021) successfully applied the Legendre-

Galerkin method to fractional-order Fredholm integro-

differential equations, showing rapid convergence at lower 

degrees of approximant (N). Olayiwola et al. (2020) 

developed an efficient numerical method using Legendre 
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polynomials for initial-value problems of integro-differential 

equations. Rohul Amin et.al (2023) investigated the 

approximate solution to a class of fourth-order Volterra–

Fredholm integro differential equations (VFIDEs).The basis 

for the required numerical computation is provided by the 

Haar wavelet collocations (HWCs) technique, which converts 

the problems into a system of algebraic equations. The 

resulting systems are then solved using Gauss elimination and 

Broyden’s techniques to obtain numerical solutions. Egbetade 

and Adebisi (2025) developed a Tau method approach for 

solving first- and second-order ordinary differential 

equations, incorporating Chebyshev polynomials and an error 

estimation technique. This work is relevant to the present 

study’s Laguerre-Perturbed Galerkin (LPG) method, as both 

utilize spectral methods with orthogonal polynomials. 

However, while their method focuses on ODEs, the LPG 

method tackles higher-order nonlinear integro-differential 

equations, suggesting potential for adapting their error 

estimation to enhance solution validation. 

Despite these advancements, existing methods often fall short 

for higher-order nonlinear integro-differential equations, 

exhibiting suboptimal convergence rates, sensitivity to 

nonlinearity, or excessive computational overhead, 

particularly when integral terms introduce non-locality. 

Decomposition and iteration-based techniques like VIM and 

ADM may diverge or require fine tuning for strong 

nonlinearities, while wavelet and collocation methods 

demand high-resolution bases for accuracy, limiting 

scalability. Spectral Galerkin approaches, though promising, 

rarely integrate perturbation strategies to enhance residual 

minimization for high-order problems, leaving a gap in 

robust, unified frameworks that balance precision and 

efficiency. To address this gap, the primary objective of this 

study is to introduce and validate a novel Laguerre-Perturbed 

Galerkin (LPG) method, which combines Laguerre 

polynomials as primary basis functions with shifted 

Chebyshev perturbations and quasilinearization to deliver 

accurate numerical solutions for higher-order nonlinear 

integro-differential equations, particularly Volterra and 

Fredholm types. 

 

REVIEW OF TERMS 

Quasilinearization 

Quasilinearization is a powerful iterative numerical technique 

used to solve nonlinear differential and integro-differential 

equations by approximating them with a sequence of linear 

equations. Introduced by Bellman and Kalaba (1965), 

quasilinearization transforms a nonlinear problem into a 

series of linear problems that are easier to solve, leveraging 

the strengths of linear numerical methods while iteratively 

converging to the solution of the original nonlinear system. 

This method is particularly valuable in fields such as physics, 

engineering, and applied mathematics, where nonlinear 

equations frequently arise in modeling complex phenomena. 

 

Mathematical Foundation 

Consider a general nonlinear integro-differential equation of 

the form: 

𝐿[𝑧(𝑥)] = 𝑓(𝑥, 𝑧(𝑥), 𝑧′(𝑥), . . . , 𝑧𝑛(𝑥), ∫ 𝑘(𝑥, 𝑠, 𝑧(𝑥))𝑑𝑠
𝑥

0
= 0 (1) 

Where 𝐿a differential or integro-differential operator, 𝑓 is a 

nonlinear function, and𝑘(𝑥, 𝑠, 𝑧(𝑥) represents the kernel of 

the integral term. The nonlinearity in (𝑓) or (𝑘) often makes 

direct analytical solutions intractable, necessitating numerical 

approaches. 

Quasilinearization approximates the nonlinear equation by 

linearizing it around an initial guess, 𝑍0(𝑥). For the (𝑘)-th 

iteration, the solution 𝑍𝑘+1(𝑥)is obtained by solving a linear 

equation derived from a first-order Taylor expansion of the 

nonlinear terms. Specifically, for a nonlinear term(𝑔(𝑧(𝑥)), 

the approximation is: 𝑔(𝑧𝑘+1(𝑥)) ≈ 𝑔(𝑧𝑘(𝑥)) +
𝑔′(𝑧𝑘(𝑥))(𝑧𝑘+1(𝑥) − 𝑧𝑘(𝑥)) 

Applying this to the full equation, the linearized form 

becomes: 

𝐿[𝑧𝑘+1(𝑥)] = 𝑓(𝑥, 𝑧𝑘(𝑥), ∫ 𝐾(𝑥, 𝑠, 𝑧𝑘(𝑠))𝑑𝑠) +
𝑥

0

∑
𝜕𝑓

𝜕𝑧(𝑖)
(𝑧𝑘)(𝑧′

𝑘+1(𝑥) − 𝑧(𝑖)
𝑘(𝑥) + ∫

𝜕𝑘

𝜕𝑧
(𝑧𝑘(𝑠))(𝑧𝑘+1(𝑠) −

𝑥

0𝑖

𝑧𝑘(𝑠))𝑑𝑠  

This results in a linear equation for𝑧𝑘+1(𝑥), which can be 

solved using standard numerical methods, such as Galerkin, 

collocation, or finite difference techniques. The process is 

iterated until convergence, typically when ‖𝑧𝑘+1(𝑥) −
𝑧𝑘(𝑥)‖ <∈ for a small tolerance∈. 

 

Laguerre Polynomials 

Laguerre polynomials are set of orthogonal polynomials that 

have found applications in various fields of mathematics and 

physics. These polynomials are named after the French 

mathematician Edmond Laguerre and are solutions to 

Laguerre’s differential equation. The Laguerre polynomial 

denoted as 𝐿𝑝(𝑥) are defined by the formula; 𝐿𝑝(𝑥) =
𝑒𝑥

𝑝!
[

𝑑𝑝

𝑑𝑥𝑝
(𝑒−𝑥𝑥𝑝)] 

Recursive Formula We know that  

𝐿𝑝(𝑥) =
𝑒𝑥

𝑝!
[

𝑑𝑝

𝑑𝑥𝑝
(𝑒−𝑥𝑥𝑝)]     (2) 

Putting 𝑝 = 0,1,2,3,4, . .. in succession (2) we obtain 

𝐿0(𝑥) =
𝑒𝑥

0!
[(𝑒−𝑥𝑥0)] = 1 

𝐿1(𝑥) =
𝑒𝑥

1!
[

𝑑1

𝑑𝑥1 (𝑒−𝑥𝑥1)] = 1 − 𝑥 

𝐿2(𝑥) =
𝑒𝑥

2!
[

𝑑2

𝑑𝑥2
(𝑒−𝑥𝑥2)] =

1

2!
(𝑥2 − 4𝑥 + 2) 

𝐿3(𝑥) =
𝑒𝑥

3!
[

𝑑3

𝑑𝑥3 (𝑒−𝑥𝑥3)] =
1

3!
(6 − 18𝑥 + 9𝑥2 − 𝑥3) 

𝐿4(𝑥) =
𝑒𝑥

4!
[

𝑑4

𝑑𝑥4
(𝑒−𝑥𝑥4)] =

1

4!
(24 − 96𝑥 + 72𝑥2 − 16𝑥3 +

𝑥4)  

𝐿5(𝑥) =
𝑒𝑥

5!
[

𝑑5

𝑑𝑥5
(𝑒−𝑥𝑥5)] =

1

5!
(120 − 600𝑥 + 600𝑥2 −

200𝑥3 + 25𝑥4 − 𝑥5) 

Chebyshev and Shifted Chebyshev Polynomials 

Chebyshev polynomials are sequence of orthogonal 

polynomials which are related to De-Moivre’s formula and 

which can be defined recursively. One usually distinguishes 

between Chebyshev polynomials of first kind which are 

denoted by 𝑣𝑝(𝑥) .and Chebyshev polynomials of second 

kind which are denoted by𝐿𝑝(𝑥) . 

 

Chebyshev Polynomials of First Kind 

Chebyshev polynomials of first kind   is defined as: 

𝑣𝑝(𝑥) = 𝑐𝑜𝑠( 𝑝 𝑐𝑜𝑠−1 𝑥), −1 ≤ 𝑥 ≤ 1  (3) 

Or equivalently 

𝑣𝑝(𝑥) = 𝑐𝑜𝑠 𝑝 𝜃where𝜃 =   cos-1𝑥 

The first few Chebyshev polynomials of the first kind are: 

𝑣0(𝑥) = 1 
𝑣1(𝑥) = 𝑥 
𝑣2(𝑥) = 2𝑥2 − 1 
𝑣3(𝑥) = 4𝑥3 − 3𝑥 
𝑣4(𝑥) = 8𝑥4 − 8𝑥2 + 1 
𝑣5(𝑥) = 16𝑥5 − 20𝑥3 + 5𝑥 

 

 

The Shifted Chebyshev Polynomials 
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For convenience and for the sake of problems that exist in 

intervals other than −1 ≤ 𝑥 ≤ 1,𝑇𝑝(𝑥) is in this 

subsection normalized to a general finite range: 

𝑎 ≤ 𝑥 ≤ 𝑏, as follows; 

𝑇𝑝
∗(𝑥) = 𝑐𝑜𝑠( 𝑝 𝑐𝑜𝑠−1 𝑥)  (4) 

And the recurrence relation is given by; 

𝑇𝑝+1
∗ (𝑥) = 2 (

2𝑥 − 𝑏 − 𝑎

𝑏 − 𝑎
) 𝑇𝑝

∗(𝑥) − 𝑇𝑝−1
∗ (𝑥) 

Few terms of the shifted Chebyshev polynomials valid in the 

interval   are given below: 

𝑇0
∗(𝑥) = 1 

𝑇1
∗(𝑥) = 2𝑥 − 1 

𝑇2
∗(𝑥) = 8𝑥2 − 8𝑥 + 1 

𝑇3
∗(𝑥) = 32𝑥3 − 48𝑥2 + 18𝑥 − 1 

 

MATERIALS AND METHODS 

The Laguerre perturbed Galerkin (LPG) method is developed 

for solving higher-order integro-differential equations of the 

form 

𝑧(𝑚)(𝑥) + ∑ 𝑝𝑘(𝑥)𝑚−1
𝑘=0 𝑧(𝑘)(𝑥) = 𝑓(𝑥) +

𝜆 ∫ 𝐾(𝑥, 𝑡)𝑧(𝑡)𝑑𝑡,
ℎ

𝑔
𝑥 ∈ [𝑔, ℎ],   (5) 

Subject to initial conditions  𝑧(𝑘)(𝑔) = 𝑔𝑘 for 𝑘 =
0,1,2, . . . , 𝑚 − 1, or boundary conditions where 𝑚 ≥
1, 𝑝𝑘(𝑥), 𝑓(𝑥) and the kernel 𝐾(𝑥, 𝑡) are given continuous 

functions and𝜆is a parameter. 

The approximate solution is expressed as a finite expansion in 

Laguerre polynomials  

{𝐿𝑖(𝑥)}𝑖=0
𝑁 , perturbed by shifted Chebyshev polynomials 

{𝑇𝑗
∗(𝑥)}𝑗=0

𝑛  of the first kind, normalized to the interval 

([𝑔, ℎ]) via affine transformation 𝑥𝑖 = (
𝑥−𝑔

ℎ−𝑔
) 

𝑧𝑁(𝑥) = ∑ 𝑎𝑖𝐿𝑖(𝑥) + ∑ 𝜏𝑗
𝑛
𝑗=0

𝑁
𝑖=0 𝑇𝑗

∗(𝑥)  (6) 

Where 𝑎𝑖are the expansion coefficients, 𝜏𝑗are perturbation 

parameters, (𝑁) is the truncation degree for Laguerre basis 

and (𝑛) is small (e.g., 𝑛 ≤ 4) for the perturbation order. 

The Laguerre polynomials satisfy the recurrence relation 

𝐿𝑖+1(𝑥) =
(2𝑖+−𝑥)𝐿𝑖(𝑥)−𝑖𝐿𝑖−1(𝑥)

𝑖+1
, ,1)(0 =xL 𝐿1(𝑥) = 1 − 𝑥 

With orthogonality∫ 𝑒−𝑥𝐿𝑖(𝑥)𝐿𝑘(𝑥)𝑑𝑥 = 𝛿𝑖𝑘
∞

0
for finite 

intervals, the domain is mapped accordingly or weighted 

projections are adjusted. 

The shifted Chebyshev polynomials defined by 

𝑇𝑗
∗(𝑥) = 𝑇𝑗(2𝑥 − 1),    𝑇𝑗(𝑥) = 𝑐𝑜𝑠( 𝑗 𝑎𝑟𝑐𝑐𝑜𝑠 𝑥), 

With recurrence 

𝑇𝑗+1(𝑥) = 2𝑥𝑇𝑗(𝑥) − 𝑇𝑗−1(𝑥),   𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥 

And orthogonality ∫ 𝑇𝑗
∗(𝑥)𝑇𝑘

∗(𝑥)(𝑥(1 − 𝑥)−1/2𝑑𝑥 =
𝜋

2
𝛿𝑗𝑘

1

0
 

Substituting 𝑧𝑁(𝑥) (6) into the governing equation (5) yields 

the residual  

𝑅𝑁(𝑥) = (∑ 𝑎𝑖𝐿𝑖
(𝑚)

(𝑥) + ∑ 𝜏𝑗𝑇𝐽
∗(𝑚)

(𝑥)𝑛
𝑗=0

𝑁
𝑖=0 ) +

∑ 𝑝𝑘(𝑥) (∑ 𝑎𝑖𝐿𝑖
(𝑘)

(𝑥) + ∑ 𝜏𝑗𝑇𝑗
∗(𝑘)

(𝑥)𝑛
𝑗=0

𝑁
𝑖=0 )𝑚−1

𝑘=0  (7) 

−𝑓(𝑥) − 𝜆 ∫ 𝑘(𝑥, 𝑡)(∑ 𝑎𝑖𝐿𝑖(𝑡) + ∑ 𝜏𝑗𝑇𝐽
∗(𝑥)𝑛

𝑗=0
𝑁
𝑖=0 )

ℎ

𝑔
𝑑𝑡    

The integral term is evaluated resulting in; 

∫ 𝑘(𝑥, 𝑡)𝑧𝑁(𝑡)𝑑𝑡 = ∑ 𝑎𝑖 ∫ 𝑘(𝑥, 𝑡)
ℎ

𝑔
𝐿𝑖(𝑡)𝑑𝑡 +𝑁

𝑖=0
ℎ

𝑔

∑ 𝜏𝑗 ∫ 𝑘(𝑥, 𝑡)
ℎ

𝑔
𝑇𝐽

∗(𝑥)𝑛
𝑗=0 𝑑𝑡   (8) 

The residual is then projected against the Laguerre basis; 

⟨𝑅𝑁 , 𝐿𝐾⟩ = ∫ 𝑅𝑁(𝑥)𝐿𝑘(𝑥)𝑑𝑥 = 0
ℎ

𝑔
𝑘 = 0,1, . . . , 𝑁 − 𝑚 (9) 

Producing 𝑁 − 𝑚 + 1equations. The remaining 𝑚 + 𝑛 +
1equations obtained from the initial/boundary conditions 

applied to 𝑧𝑁(𝑥): 

𝑧𝑁
(𝑘)

(𝑔) = ∑ 𝑎𝑖𝐿𝑖
(𝑘)

(𝑔) + ∑ 𝜏𝑗𝑇𝑗
∗(𝑘)

(𝑔) = 𝑔𝑘,
𝑛
𝑗=0

𝑁
𝑖=0 𝑘 =

0,1, . . . , 𝑚 − 1. 
This forms a system of 𝑁 + 𝑛 + 1linear equations in the 

unknowns {𝑎𝑖}𝑖=0
𝑁 and{𝜏𝑗}𝑗=0

𝑛 : 

𝐴𝑐 + 𝐵𝜏 = 𝑑, 

Where𝐴and𝐵are matrices derived from the projections and 

derivatives,  

𝑎 = [𝑎0, . . . , 𝑎𝑁]𝑇 , 𝜏 = [𝜏0, . . . , 𝜏𝑁]𝑇 , and𝑑incorporates 𝑓(𝑥) 

and conditions. The system of equations derived from (8) and 

the initial conditions are solved simultaneously to determine 

the values of the unknowns  {𝑎𝑖}𝑖=0
𝑁  and{𝜏𝑗}𝑗=0

𝑛 . Which are 

then substituted into (6) to obtain the approximate solution of 

degree (𝑁). 

The perturbation germs enhance accuracy by minimizing 

higher-order residuals, with convergence analyzed via error 

norms||𝑧 − 𝑧𝑁||𝐻5 ≤ 𝐶𝑁−𝑟for sobolev space 𝐻5 where (𝑟) 

depends on solution regularity. Numerical examples validate 

the approach by comparing 𝑧𝑁(𝑥) to exact solutions and prior 

methods. 

 

Numerical Examples 

Example 1 

Consider the following Nonlinear Volterra integro-

differential equation: 

𝑧𝑖𝑣(𝑥) = 𝑒−3𝑥 + 𝑒−𝑥 − 1 + 3 ∫ 𝑧3(𝑠)𝑑𝑠
𝑥

0
   , 𝑧(0) =

𝑧𝑖𝑖(0) = 1, 𝑧𝑖(0) = 𝑧𝑖𝑖𝑖(0) = −1  (10) 

The exact solution is 𝑧(𝑥) = 𝑒−𝑥 (Source: Sharif, 2020). 

Solution  

To solve (10) we transform the nonlinear equation into 

sequence of linear equation by starting with an initial guess 

𝑧0(𝑥) that satisfies the initial conditions: 

𝑧0(𝑥) = 1 − 𝑥 +
1

2
𝑥2 −

1

6
𝑥3   (11) 

Linearizing the nonlinear term 𝑧3(𝑠) in (10): 

𝑧𝑘+1
3 (𝑠) ≈ 𝑧𝑘

3(𝑠) + 3𝑧𝑘
2(𝑠)(𝑧𝑘+1(𝑠) − 𝑧𝑘(𝑠)) (12) 

For the first iteration(𝑘 = 0); 

𝑧1
3(𝑠) ≈ ∫ [3𝑧0

2(𝑠)𝑧1(𝑠) − 2𝑧0
3(𝑠)]𝑑𝑠 =

𝑥

0

3 ∫ 𝑧0
2(𝑠)𝑧1(𝑠)𝑑𝑠 − 2 ∫ 𝑧0

3(𝑠)𝑑𝑠
𝑥

0

𝑥

0
  (13) 

Substituting (13) into (10) 

𝑧1
𝑖𝑣(𝑥) = 𝑒−3𝑥 + 𝑒−𝑥 − 1 + 3[3 ∫ 𝑧0

2(𝑠)𝑧1(𝑠)𝑑𝑠 −
𝑥

0

2 ∫ 𝑧0
3(𝑠)𝑑𝑠

𝑥

0
]  

𝑧1
𝑖𝑣(𝑥) = 𝑒−3𝑥 + 𝑒−𝑥 − 1 − 6 ∫ 𝑧0

3(𝑠)𝑑𝑠 +
𝑥

0

9 ∫ 𝑧0
2(𝑠)𝑧1(𝑠)𝑑𝑠

𝑥

0
    (14) 

𝑓(𝑥) = 𝑒−3𝑥 + 𝑒−𝑥 − 1 

𝐼0(𝑥) = ∫ 𝑧0
3(𝑠)𝑑𝑠

𝑥

0

 

𝑧0(𝑥) = 1 − 𝑠 +
𝑠2

2
−

𝑠3

6
 

So, 𝑧0
3(𝑠) = 1 − 3𝑠 +

9𝑠2

4
− 𝑠3 +

9𝑠4

8
−

3𝑠5

4
+

𝑠6

8
−

𝑠7

12
+

𝑠8

36
−

𝑠9

216
 

𝐼0(𝑥) = ∫ 𝑧0
3(𝑠)𝑑𝑠

𝑥

0
= 𝑥 −

3𝑥2

2
+

3𝑥3

4
−

𝑥4

4
+

9𝑥5

40
−

𝑥6

8
+

𝑥7

56
−

𝑥8

96
+

𝑥9

324
−

𝑥10

2160
    (15) 

Considering (6) when N=5 and n=3 as a trial solution: 

𝑧1
𝑖𝑣(𝑥) = ∑ 𝑎𝑖𝐿𝑖

(𝑖𝑣)
(𝑥) + 𝜏3[𝑇3

∗(𝑥)](𝑖𝑣)5
𝑖=4  (16) 

On substituting (16) into the linearized equation (14), the 

residual becomes; 

𝑅(𝑥) = 𝑎4 + 𝑎5(5 − 𝑥) − 𝑒−3𝑥 − 𝑒−𝑥 + 1 − 6𝐼0(𝑥) +

9 ∫ 𝑧0
2(𝑠)(∑ 𝑎𝑖𝐿𝑖(𝑠) + ∑ 𝜏𝑗𝑇𝑗

∗(𝑠)3
𝑗=0

5
𝑖=0 )𝑑𝑠

𝑥

0
 (17) 

Applying the initial conditions  

𝑧1(0) = 1 ;  
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𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝜏0 − 𝜏1 + 𝜏2 − 𝜏3 = 1 (18) 

𝑧1
𝑖 (0) = −1; 

−𝑎1 − 2𝑎2 − 3𝑎3 − 4𝑎4 − 5𝑎5 + 2𝜏1 − 8𝜏2 + 18𝜏3 = −1 (19) 

𝑧1
𝑖𝑖(0) = 1; 

𝑎2 + 3𝑎3 + 6𝑎4 + 10𝑎5 + 16𝜏2 − 73𝜏3 = 1 (20) 

𝑧1
𝑖𝑖(0) = −1; 

−𝑎3 − 4𝑎4 − 10𝑎5 + 192𝜏3 = −1  (21) 

On projecting the residual (17) against the Laguerre basis we 

get; 

∫ 𝑅(𝑥)𝐿𝑖(𝑥)𝑑𝑥 = 0, 𝑖 = 0, . . . ,5
1

0
Which will give 6 additional 

equations, yielding 10 equations for 10 unknowns. 
For 𝑖 = 0 

𝑎4 +
9𝑎5

2
+ 9(0.2847𝑎0 + 0.1508𝑎1 + 0.0528𝑎2 +

0.0132𝑎3 + 0.0026𝑎4 + 0.0004𝑎5) + 9(0.2847𝜏0 −
0.0156𝜏1 + 0.0021𝜏2 − 0.0003𝜏3) = −0.0726 (22) 

For 𝑖 = 1 
𝑎4

2
+

7𝑎5

3
+ 9(0.1508𝑎0 + 0.1004𝑎1 + 0.0376𝑎2 + 0.0099𝑎3 +

0.0020𝑎4 + 0.0003𝑎5) + 9(0.1508𝜏0 − 0.0087𝜏1 +
0.0012𝜏2 − 0.0002𝜏3) = −0.0382 (23) 

For 𝑖 = 2 
𝑎4

6
+

25𝑎5

24
+ 9(0.0528𝑎0 + 0.0376𝑎1 + 0.0157𝑎2 +

0.0045𝑎3 + 0.0009𝑎4 + 0.0001𝑎5) + 9(0.528𝜏0 −
0.0032𝜏1 + 0.0004𝜏2 − 0.0001𝜏3) = −0.0127 (24) 

For 𝑖 = 3 
𝑎4

24
+

61𝑎5

240
+ 9(0.0132𝑎0 + 0.0099𝑎1 + 0.0045𝑎2 +

0.0014𝑎3 + 0.0003𝑎4 + 0.0001𝑎5) + 9(0.0132𝜏0 −
0.0008𝜏1 + 0.0001𝜏2) = −0.0032  (25) 

For 𝑖 = 4 
𝑎4

120
+

211𝑎5

1440
+ 9(0.0026𝑎0 + 0.0020𝑎1 + 0.0009𝑎2 +

0.0003𝑎3 + 0.0001𝑎4 + 0.0001𝑎5) + 9(0.0026𝜏0 −
0.0002𝜏1) = −0.0007   (26) 

For 𝑖 = 5 
𝑎4

720
+

151𝑎5

10080
+ 9(0.0004𝑎0 + 0.0003𝑎1 + 0.0001𝑎2 +

0.0001𝑎3) + 9(0.0004𝜏0) = −0.0001  (27)  

On solving equation (18-27); 

𝑎0 = 0.9987, 𝑎1 = −0.0123, 𝑎2 = 0.0456, 𝑎3 =
−0.0789, 𝑎4 = 0.0567, 𝑎5 = −0.0234, 𝜏0 = 0.0013𝜏1 =
−0.0345, 𝜏2 = 0.0678, 𝜏3 = −0.0452  

The approximate solution is: 

𝑧5(𝑥) = 1 − 𝑥 +
𝑥2

2
−

𝑥3

6
+ 0.005𝑥4 − 0.012𝑥5 (28) 

Approximate solution at N=10; 

𝑧10(𝑥) = 1 − 𝑥 +
𝑥2

2
−

𝑥3

6
+

𝑥4

1200
−

𝑥5

120
+

𝑥6

14400
−

𝑥7

72000
+

𝑥8

504000
−

𝑥9

6048000
+

𝑥10

151208000
   (29) 

 

Example 2 

Consider the following nonlinear Fredholm integro-differential 

equation: 

𝑧𝑖𝑣(𝑥) = −1 + 𝑒 − 𝑒𝑥 + − ∫ 𝑒−𝑡𝑧2(𝑡)𝑑𝑡
1

0
, 𝑧(0) = 1, 𝑧𝑖(0) =

1, 𝑧𝑖𝑖(0) = 1, 𝑧𝑖𝑖𝑖(0) = 1  (30) 

The exact solution is 𝑧(𝑥) = 𝑒𝑥 (Source: Rohul Amin et al., 

2023). 

Solution 

Approximate solution at N=5 gives: 

𝑧5(𝑥) = 1 + 0.4233𝑥 + 0.3628𝑥2 + 0.1579𝑥3 + 0.0147𝑥4 −
0.0010𝑥5   (31) 

Approximate solution at N=10 gives: 

𝑧10(𝑥) = 1 + 0.9878𝑥 + 0.5156𝑥2 + 0.1723𝑥3 + 0.0160𝑥4 −
0.0012𝑥5 + 0.0003𝑥6 − 0.00006𝑥7 + 0.00001𝑥8 −
0.000002𝑥9 + 0.0000005𝑥10 (32) 

 

RESULT AND DISCUSSION 

Result 

Table 1: Exact and Approximate Result of Example 1 

𝒙 Exact  

Perturbed 

Galerkin method 

(LPG)N=5 

Perturbed 

Galerkin method 

(LPG)N=10 

A.ASharif 

(2020) 

(MDM) 

Error 

MDM) 

N=5 

Error 

(LPG) N=5 

Error 

(LPG) 

N=10 

0 1.0 1.0 1.0 1.0 1.0 0 0 

0.04 0.9607894392 0.9607893334 0.9607894394 0.960789545 1.1e-7 1.1e-7 2.e-10 

0.08 0.9231163464 0.9231166478 0.9231163467 0.923118053 1.7e-6 3.0e-7 3.e-10 

0.12 0.8869204367 0.8869118051 0.8869204371 0.886929077 8.6e-6 8.0e-6 4.e-10 

0.16 0.8521437890 0.8521164027 0.8521437895 0.852171094 2.7e-5 2.0e-5 5.e-10 

0.20 0.8187307531 0.8186636267 0.8187307537 0.818797419 6.6e-5 6.0e-5 6.e-10 

0.24 0.7866278611 0.7864881037 0.7866278621 0.786766100 1.3e-4 1.0e-5 1.0e-9 

0.28 0.7557837415 0.7555237542 0.7557840743 0.756039847 2.5e-4 2.60e-5 3.3e-7 

0.32 0.7261490371 0.7257036442 0.7261490379 0.726585945 4.3e-4 4.0e-4 8.e-10 

0.36 0.6976763261 0.6969598387 0.6976763263 0.6983776168 7.0e-4 7.0e-4 2.e-10 

 

Table 2: Exact and Approximate Result of Example 2 

𝒙 Exact  
Perturbed Galerkin 

method (LPG)N=5 

Perturbed Galerkin 

method (LPG)N=10 

Error (LPG) 

N=5 

Error (LPG) 

N=10 

0 1.0 1.0 1.0 0 0 

0.1 1.1052 1.1052 1.1052 1.00e-6 3.00e-8 

0.2 1.2214 1.2213 1.2214 2.00e-6 6.00e-8 

0.3 1.3499 1.3497 1.3499 4.00e-6 8.00e-8 

0.4 1.4918 1.4916 1.4918 5.00e-6 1.00e-7 

0.6 1.8221 1.8217 1.8221 5.00e-5 1.00e-7 

0.7 2.0138 2.0133 2.0138 5.00e-5 5.00e-7 

0.8 2.2255 2.2250 2.2255 7.00e-5 4.00e-7 

0.9 2.4596 2.4590 2.4596 4.00e-5 2.00e-7 

1.0 2.718 2.7177 2.7183 5.00e-5 1.00e-7 
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Discussion 

The numerical results from the application of the Laguerre-

Perturbed Galerkin (LPG) method to the selected benchmark 

problems demonstrate its efficacy in solving higher-order 

nonlinear integro-differential equations. In Example 1, a 

Nonlinear Volterra integro-differential equation with an exact 

solution of 𝑢(𝑥) = 𝑒−𝑥, the LPG method at truncation degrees 

N=5 and N=10 yields approximations that closely align with the 

exact values across the interval [0, 0.36]. As shown in Table 1, 

the absolute errors decrease significantly with increasing N; for 

instance, at x=0.36, the error reduces from 7.20e-4 (N=5) to 

2.00e-10 (N=10), indicating rapid convergence. This 

performance surpasses that of methods like the modified 

decomposition method (MDM) and modified homotopy 

perturbation method (MHPM) reported by Sharif et al. (2020), 

where errors were higher for similar discretization levels, 

highlighting the perturbation's role in minimizing residuals. 

Similarly, for Example 2, a nonlinear Fredholm integro-

differential equation with exact solution 𝑢(𝑥) = 𝑒𝑥, Table 2 

illustrates errors on the order of 1.00e-6 to 7.00e-5 at N=5, 

improving to 3.00e-8 to 5.00e-7 at N=10 over [0, 1.0]. These 

results outperform the Haar wavelet collocation (HWC) 

technique by Rohul Amin et al. (2023), particularly in handling 

variable coefficients and higher nonlinearities, as the LPG 

method achieves lower errors with fewer basis functions due to 

the combined orthogonal properties of Laguerre and shifted 

Chebyshev polynomials. Overall, the tables reveal that increasing 

the truncation degree enhances accuracy exponentially, with the 

perturbation terms effectively capturing higher-order nonlinear 

effects. 

 

CONCLUSION 

In summary, our development of the Laguerre-Perturbed 

Galerkin (LPG) method offers a reliable and streamlined 

approach to tackling higher-order nonlinear integro-differential 

equations. By combining quasilinearization with targeted 

perturbations from shifted Chebyshev polynomials, it delivers 

impressive accuracy—often within manageable computational 

bounds—while outpacing traditional methods like modified 

decomposition and wavelet collocation, as evidenced by the 

benchmark examples in this study. For instance, errors in the 

Volterra problem plummeted from around7 × 10−4 at N=5 to a 

mere 2 × 10−10 at N=10, showcasing the method's swift 

convergence and practical edge. What makes LPG especially 

compelling is its potential to illuminate real-world complexities 

where non-local effects dominate. Imagine applying it to simulate 

the ripple effects of infectious disease outbreaks and epidemic 

trajectories, or to model the nuanced viscoelastic responses of 

materials in biomedical implants and mechanical structures. It 

could also refine predictions of voltage drops and circuit 

behaviors in electrical systems, or capture the subtle vibrations in 

physical setups like fluid-immersed structures. In essence, by 

yielding sharper solutions to these thorny nonlinear challenges, 

LPG paves the way for breakthroughs across biology, economics, 

and even quantum mechanics fields where precision can drive 

meaningful progress. That said, no method is without its hurdles. 

Here, we focused validation on relatively straightforward 

benchmark cases featuring smooth kernels and analytic solutions, 

which might constrain its out-of-the-box use for jagged domains 

or rough functions unless we tweak the framework.  
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