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ABSTRACT 

Pneumonia remains a leading cause of morbidity and mortality among children, particularly in low-resource 

settings such as Nigeria. The accurate and timely diagnosis of pediatric pneumonia is hindered by the scarcity 

of skilled radiologists and diagnostic infrastructure. This study proposes a robust, efficient, and scalable 

classification model utilizing transfer learning to support pneumonia detection from chest X-ray (CXR) images. 

The model employs pre-trained convolutional neural networks (CNNs), fine-tuned under a novel Resource-

Constrained Medical Transfer Learning (RCMTL) framework, to optimize predictive accuracy, computational 

efficiency, and equipment robustness. The approach shows promise in enhancing clinical decision-making, 

especially in under-resourced environments, and paves the way for practical AI integration in healthcare 

delivery. 
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INTRODUCTION 

Pneumonia is an inflammatory condition of the lung 

parenchyma caused by various infectious agents (Liu et al., 

2021). It is a significant cause of morbidity and mortality 

worldwide, especially in young children and the elderly 

(Ayuk, 2024; Tomys-Skladowska et al., 2023). Pneumonia 

remains one of the most persistent global health challenges, 

representing a leading cause of mortality worldwide, 

particularly among vulnerable populations. Recent 

epidemiological data reveal that pneumonia claimed the lives 

of 2.2 million people globally in 2021, including 502,000 

children under five years of age, accounting for 

approximately 23% of pediatric deaths (Canada et al., 2024) 

The disease burden is disproportionately concentrated in 

developing regions, with over 1,400 cases per 100,000 

children globally, and the highest incidence rates observed in 

South Asia (2,500 cases per 100,000 children) and West and 

Central Africa (1,620 cases per 100,000 children) (UNICEF, 

2024). Despite significant medical advances, pneumonia 

continues to account for 14% of all deaths among children 

under five years, highlighting the urgent need for improved 

diagnostic and therapeutic interventions (Teixeira, 2020) 

The burden of childhood pneumonia is severe and widespread 

in Nigeria, contributing the highest number of child deaths 

globally from this preventable disease (UNICEF, 2024). The 

country ranks second globally after India in the absolute 

number of pneumonia deaths among children under five 

years, with recent projections indicating that approximately 

two million Nigerian children could die from pneumonia in 

the next decade without significant improvements in 

prevention and treatment efforts (UNICEF, 2024). According 

to Okafor et al. (2023) and Odeyemi et al. (2022), Pneumonia 

kills a child every three minutes in Nigeria, making it one of 

the leading causes of childhood mortality in the country. The 

overwhelming impact of pneumonia in Nigeria is 

compounded by several interconnected factors, including 

widespread malnutrition, severe air pollution, and limited 

access to essential vaccines and life-saving drugs. Nigeria is 

among the 15 countries that collectively account for over 70% 

of global under-five pneumonia and diarrhea mortality, 

emphasizing the critical need for targeted interventions in the 

Nigerian healthcare context (International Vaccine Access 

Center, 2024). 

The correct diagnosis of pneumonia presents extensive 

clinical challenges that compound the global disease burden. 

Traditional diagnostic approaches rely heavily on chest X-ray 

(CXR) interpretation, which requires significant radiological 

expertise and experience to differentiate pneumonia-related 

infiltrates from other pulmonary conditions (Bhattacharyya, 

2011). These diagnostic challenges are particularly acute in 

resource-limited settings where there is a critical shortage of 

qualified radiologists. The complexity of pneumonia 

diagnosis is further exacerbated by the need for rapid 

differential diagnosis between various pneumonia types, 

including COVID-19 pneumonia and typical bacterial 

pneumonia, especially in emergency department settings 

where timely clinical decisions are essential (Aziz et al., 

2024). Even experienced radiologists face difficulties in 

achieving consistent diagnostic accuracy, as pneumonia 

manifestations on chest X-rays can be subtle and overlap with 

other pulmonary pathologies. 

The emergence of machine learning (ML) a branch of 

artificial intelligence (AI) technologies has opened 

unparalleled opportunities to address these diagnostic 

challenges and improve pneumonia detection capabilities. 

Recent advances in deep learning algorithms have 

demonstrated remarkable potential in medical image analysis, 

with AI systems achieving diagnostic accuracy levels that 

match or exceed those of traditional or human radiologists in 

certain contexts (Bansal et al., 2024). Deep learning models, 

particularly convolutional neural networks (CNNs), have 

shown exceptional performance in automated pneumonia 

detection from chest X-ray images, with some studies 

reporting area under the receiver operating characteristic 

curve (AUROC) values of 0.923 for pneumonia detection 

(Bellman et al., 2024). These AI-driven diagnostic tools offer 

the potential to enhance physician accuracy in comprehensive 

detection of chest X-ray abnormalities, providing valuable 

support for clinical decision-making processes (Bansal et al., 

2024). Furthermore, the integration of AI systems in 

emergency departments has demonstrated the ability to help 

radiologists detect pneumonia more quickly and accurately, 
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particularly in high-volume clinical settings where rapid 

diagnosis is crucial (Aziz et al., 2024). The implementation of 

transfer learning approaches which this study is proposing, 

represents a particularly promising advancement in the 

application of ML to pneumonia detection. Transfer learning 

techniques enable the adaptation of pre-trained deep learning 

models, originally developed on large-scale general-purpose 

datasets such as ImageNet, DenseNet, and MobileNet, to 

specific medical imaging tasks with limited training data. This 

approach addresses one of the primary challenges in medical 

AI development: the scarcity of high-quality, correctly 

labeled large-scale medical image datasets (Bharati et al., 

2024). Recent studies have demonstrated the effectiveness of 

various pre-trained CNN architectures, including 

MobileNet121, VGG16, AlexNet, ResNet18, DenseNet201, 

and SqueezeNet, when applied through transfer learning 

frameworks for pneumonia detection (Bellman et al., 2024). 

The transfer learning paradigm offers significant 

computational efficiency advantages by leveraging 

previously learned features from natural image domains and 

fine-tuning them for medical image classification tasks, 

thereby reducing training time and computational resource 

requirements while maintaining high diagnostic accuracy 

(Hamri et al., 2022). This approach is particularly valuable in 

resource-constrained medical environments where 

computational limitations and limited training data 

availability pose significant barriers to the development and 

deployment of AI-based diagnostic systems. 

 

Related Works 

Okaforet al., (2023), pneumonia is a significant public health 

concern that disproportionately affects children under five 

years old and remains a leading cause of morbidity and 

mortality globally. 

Lujan-    Garcíaet al. (2020) involved the use of a pre-trained 

Xception CNN model for pneumonia detection using 

pediatric chest X-ray images. The dataset consisted of 5,232 

images, including 3,883 pneumonia cases and 1,349 normal 

cases. Transfer learning was applied, with preprocessing steps 

such as border removal and class weighting to address 

imbalance. The model was trained using the Adam optimizer 

and binary cross-entropy loss. Grad-CAM was used to 

visualize infected lung regions for interpretability. The model 

achieved strong performance with an F1-score of 0.91, recall 

of 0.99, precision of 0.84, and an AUC of 0.97. Despite high 

accuracy, limitations included a narrow age range, lack of 

testing across varied equipment, and high computational 

demands due to the Xception architecture. Applying the 

RCMTL framework could enhance the model by selecting 

architectures better suited for low-resource settings, 

optimizing feature selection for reduced complexity, and 

ensuring performance across diverse imaging devices. This 

would improve model robustness, lower latency, and facilitate 

real-world deployment in under-resourced healthcare 

environments. 

Rahmanet al. (2020), titled "Transfer Learning with Deep 

Convolutional Neural Network (CNN) for Pneumonia 

Detection using Chest X-ray," explored the application of 

transfer learning techniques for pneumonia classification. The 

researchers utilized four pre-trained CNN architectures 

AlexNet, ResNet18, DenseNet201, and SqueezeNet on a 

dataset comprising 5,247 chest X-ray images, including 

bacterial, viral, and normal cases. The dataset underwent 

preprocessing steps such as augmentation and normalization 

to enhance model performance. The study implemented three 

classification schemes: normal vs. pneumonia, bacterial vs. 

viral pneumonia, and a three-class classification of normal, 

bacterial, and viral pneumonia. The models achieved 

classification accuracies of 98% for normal vs. pneumonia, 

95% for bacterial vs. viral pneumonia, and 93.3% for the 

three-class scenario. Among the architectures, DenseNet201 

consistently outperformed the others across all classification 

tasks. Despite these promising results, the study faced 

limitations. The high computational demands of models like 

DenseNet201 may hinder deployment in resource-constrained 

environments. Additionally, the study did not assess model 

performance across varying imaging equipment, which is 

crucial for real-world applicability. Integrating the Resource-

Constrained Medical Transfer Learning (RCMTL) 

framework could address these challenges. RCMTL 

emphasizes selecting models that balance accuracy with 

computational efficiency, making them suitable for 

deployment in low-resource settings. By incorporating 

RCMTL's feature selection strategies, the model complexity 

can be reduced without compromising performance, ensuring 

robustness across diverse imaging devices and facilitating 

real-world implementation. 

Jain et al. (2020), in their study "Pneumonia Detection in 

Chest X-ray Images Using Convolutional Neural Networks 

and Transfer Learning," focused on developing a deep 

learning model for pneumonia detection. The researchers 

employed transfer learning with pre-trained CNN 

architectures, including VGG16, ResNet50, and InceptionV3, 

to classify chest X-ray images into pneumonia and normal 

categories. The dataset comprised 5,856 chest X-ray images, 

which were preprocessed through resizing and normalization 

to enhance model performance.  Among the evaluated 

models, ResNet50 achieved the highest accuracy of 96.4%, 

demonstrating its effectiveness in pneumonia classification 

tasks. The study highlighted the potential of transfer learning 

in medical image analysis, particularly when dealing with 

limited datasets. However, the study had certain limitations. 

It did not assess the models' performance across different 

imaging devices, which is crucial for real-world applicability. 

Additionally, the computational requirements of models like 

ResNet50 may pose challenges for deployment in resource-

constrained environments, integrating the Resource-

Constrained Medical Transfer Learning (RCMTL) 

framework could address these challenges. RCMTL 

emphasizes selecting models that balance accuracy with 

computational efficiency, making them suitable for 

deployment in low-resource settings. By incorporating 

RCMTL's feature selection strategies, the model complexity 

can be reduced without compromising performance, ensuring 

robustness across diverse imaging devices and facilitating 

real-world implementation.  

Chouhanet al. (2020), in their article titled *"A Novel 

Transfer Learning Based Approach for Pneumonia Detection 

in Chest X-ray Images,"* proposed an ensemble deep learning 

model for classifying pneumonia. The study utilized five pre-

trained CNN architectures AlexNet, VGG16, ResNet18, 

DenseNet121, and InceptionV3 on a dataset of 5,856 labeled 

chest X-ray images. Transfer learning was applied to fine-

tune each model, and an ensemble strategy was used to fuse 

their outputs for improved accuracy. The ensemble model 

achieved a classification accuracy of 96.4% and a recall of 

99.62%, outperforming individual models and indicating 

strong diagnostic potential. The findings support the value of 

combining multiple CNNs in a transfer learning framework 

for medical image analysis. The study faced limitations, 

particularly regarding computational cost, which poses 

challenges for deployment in resource-constrained 

environments. It also did not evaluate model performance 

across diverse imaging devices, affecting generalizability. 
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Adopting the RCMTL framework could mitigate these 

limitations by guiding model selection based on efficiency, 

reducing computational demands, and ensuring robustness 

across different clinical settings and equipment types. 

Maquen-Niño et al. (2024), titled "Classification Model 

Using Transfer Learning for the Detection of Pneumonia in 

Chest X-Ray Images," presents a comparative analysis of 

transfer learning models for pneumonia detection. Utilizing 

the CRISP-DM methodology, the study employed a dataset of 

5,856 anteroposterior chest X-ray images sourced from 

Kaggle, partitioned into 5,216 for training, 16 for validation, 

and 624 for testing. Preprocessing steps included image 

augmentation, scaling, and batch division in tensor format. 

The researchers evaluated three pre-trained CNN 

architectures DenseNet, VGG19, and ResNet50 v2 each 

serving as the base of a CNN with four subsequent layers. 

Upon testing, ResNet50 v2 achieved the highest accuracy of 

91%, followed by DenseNet at 87% and VGG19 at 86%. 

These results underscore the effectiveness of ResNet50 v2 in 

binary classification tasks for pneumonia detection. However, 

the study's limitations include the high computational 

demands of deep CNNs, which may impede deployment in 

resource-constrained settings, and the lack of evaluation 

across diverse imaging devices, potentially affecting model 

generalizability. Integrating the Resource-Constrained 

Medical Transfer Learning (RCMTL) framework could 

address these challenges by guiding the selection of models 

that balance accuracy with computational efficiency and 

ensuring robustness across varying equipment, thereby 

enhancing the model's applicability in real-world, low-

resource healthcare environments. 

Singla and Gupta (2024) applied transfer learning with the 

EfficientNetB1 model to detect pneumonia from chest X-ray 

images. Using a well-known public dataset, they performed 

preprocessing steps like image normalization and 

augmentation to boost model performance. The 

EfficientNetB1 model achieved an accuracy of 93.5% along 

with strong precision and recall scores, highlighting its 

effectiveness in distinguishing pneumonia cases. The study 

emphasized EfficientNetB1’s balance between accuracy and 

computational efficiency, making it a practical choice for 

healthcare environments with limited resources. Although the 

model performed well on the dataset, it was not tested across 

images from different X-ray machines, which might affect its 

generalizability in diverse clinical settings. Integrating the 

Resource-Constrained Medical Transfer Learning (RCMTL) 

framework could help by selecting models that maintain high 

accuracy while reducing computational demands and 

adapting better to variability in imaging equipment. This 

would increase the model’s usability in real-world, resource-

constrained healthcare systems. 

 

MATERIALS AND METHODS 

This section provides a detailed account of the methods and 

processes employed in developing an efficient classification 

model for the detection of pneumonia in children using chest 

X-ray (CXR) images and transfer learning techniques. The 

study leverages the RCMTL (Resource-Constrained Medical 

Transfer Learning) framework to guide the development 

process, ensuring that the model is not only accurate but also 

suitable for deployment in real-world, low-resource clinical 

settings such as those found in parts of Nigeria. 

 

Method of Dataset Collection and Feature Identification 

To ensure clinical relevance, this study began with the 

collection of a dataset consisting of chest X-ray images from 

University Teaching Hospitals across South West Nigeria. A 

preliminary phase involved conducting formal interviews 

with key medical professionals, including pulmonologists, 

radiologists, and general physicians, to identify the critical 

features necessary for accurate pneumonia diagnosis. These 

expert insights were complemented by findings from relevant 

literature to ensure that the model considered clinically 

significant indicators. 

The dataset comprised 3,145 X-ray images labeled as either 

'NORMAL' or 'PNEUMONIA'. Inclusion criteria were 

established to ensure that only the most relevant patient 

records were used for model development. Records were 

selected if they presented a confirmed pneumonia diagnosis, 

included demographic data, captured presenting symptoms 

and vital signs, documented laboratory test results and 

radiological findings, and provided evidence of treatment 

history. The age of patients included in the dataset ranged 

from four to eighty-five years, covering a wide spectrum of 

pediatric to geriatric cases. Records that lacked key diagnostic 

information, represented non-infectious pulmonary diseases, 

or were technically deficient were excluded from the study to 

maintain data quality. 

Image selection also followed strict criteria. Only images with 

acceptable radiographic quality, clear anatomical landmarks, 

and sufficient contrast were used. Images exhibiting motion 

artifacts, poor exposure, or improper patient positioning were 

excluded. By focusing on high-quality, labeled CXR images 

and clinically confirmed cases, the dataset used in this study 

ensured robustness and relevance for the pneumonia 

classification task. 

 

Data Preprocessing and Augmentation 

Once the dataset was curated, it was subjected to a series of 

preprocessing steps designed to prepare it for deep learning 

model training. The chest X-ray images were resized 

uniformly to 224 by 224 pixels to match the input dimensions 

expected by pre-trained convolutional neural networks 

(CNNs). Pixel intensity values were normalized to fall within 

a 0 to 1 range to promote efficient model convergence during 

training. 

To improve model generalization and reduce overfitting, 

various data augmentation techniques were applied. These 

included horizontal flipping, slight zooming, and rotation of 

the images to simulate variations that might occur in real-

world clinical imaging scenarios. Data augmentation 

increased the diversity of training samples without requiring 

additional labeled images and played a crucial role in 

enhancing the model's learning capability. 

All preprocessing and augmentation steps were executed 

using Python libraries, primarily Tensor Flow and Keras. The 

Image Data Generator class in Keras provided a streamlined 

way to apply these transformations in real time during model 

training. 

 

Model Development with the RCMTL Framework 

The core of this study’s methodology revolves around the use 

of transfer learning within the RCMTL framework. Transfer 

learning enables the adaptation of pre-trained models 

originally developed on large image datasets such as 

ImageNet to the medical imaging domain with relatively 

small datasets. The RCMTL framework adds an essential 

layer of practicality to the model development process by 

considering the constraints commonly encountered in 

healthcare systems within low-resource environments. 

The RCMTL framework guided the selection of appropriate 

CNN architectures by evaluating candidate models not only 

on the basis of classification accuracy but also on their 

computational efficiency and adaptability to variations in 
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imaging equipment. The framework incorporated a utility-

based function that balanced three key factors: predictive 

accuracy, computational cost (e.g., FLOPs, memory usage, 

and latency), and robustness to differences in image quality 

from various CXR devices. 

Three pre-trained CNN architectures were selected for this 

study MobileNetV2, DenseNet121, and VGG16. 

MobileNetV2 was chosen for its lightweight design and 

suitability for real-time deployment on low-power devices. 

DenseNet121 offered strong performance by using a dense 

connectivity pattern that encourages feature reuse and reduces 

parameter redundancy. VGG16, though heavier than the other 

models, was included due to its well-established performance 

in medical image classification tasks and its architectural 

simplicity. 

Each of these models was fine-tuned using the curated CXR 

dataset. This involved initializing the base layers with 

ImageNet weights and reconfiguring the final layers to 

perform binary classification detecting whether an image 

belonged to the ‘NORMAL’ or ‘PNEUMONIA’ class. In 

some cases, the deeper layers of the base networks were 

partially unfrozen to allow further learning on domain-

specific features. 

 

Model Training and Evaluation 

Model training and testing were conducted using Google 

Colaboratory (Colab), a cloud-based Jupyter notebook 

environment that provides access to GPU acceleration for 

efficient deep learning workflows. Python served as the 

programming language for all stages of development, 

supported by libraries such as TensorFlow, Keras, NumPy, 

Scikit-learn, and Matplotlib. 

The dataset was split into training, validation, and testing 

subsets. Each model was trained over 10 epochs to ensure 

convergence without overfitting. Performance was evaluated 

using standard classification metrics: accuracy, precision, 

recall, specificity, F1-score, ROC-AUC, and confusion 

matrix. These metrics allowed for both quantitative and visual 

interpretation of each model’s diagnostic capabilities. 

In addition to evaluating predictive performance, the RCMTL 

utility function was used to select the most deployment-ready 

model. It incorporated a penalty for models with high 

computational demand or poor adaptability to hardware and 

equipment variability. This ensured that the final selected 

model was not only accurate but also viable for use in 

environments with limited processing power or outdated 

imaging infrastructure. 

 

Simulation Environment and Deployment Feasibility 

The entire simulation pipeline was executed within Google 

Colaboratory, enabling access to cloud-based GPU resources 

that expedited training and validation processes. Colab’s 

interactive environment allowed for real-time monitoring of 

model performance and fine-tuning of hyperparameters. 

To explore deployment feasibility, model inference time, 

memory usage, and prediction accuracy on CPU-only systems 

were analyzed. This step was crucial in determining whether 

the developed model could function effectively in rural or 

under-equipped healthcare facilities. A front-end application 

was also prototyped using the Streamlit framework to 

demonstrate the model’s usability by clinicians and healthcare 

workers without programming experience. 

 

RESULTS AND DISCUSSION 

This section presents the findings from the implementation 

and evaluation of a deep learning-based system for 

pneumonia detection using chest X-ray images. The 

framework explored the integration of Resource-Constrained 

Medical Transfer Learning (RCMTL) to enhance model 

efficiency and accuracy in low-resource clinical 

environments. The experimental results are organized into 

exploratory data analysis, performance evaluation of baseline 

and RCMTL-enhanced models, analysis of training dynamics, 

and application-level deployment results. 

 

Exploratory Data Analysis 

The dataset utilized in this study comprises chest radiographs 

captured in the posterior-anterior view, labeled as either 

“Normal” or “Pneumonia,” with the latter class encompassing 

both bacterial and viral etiologies. Initial exploratory data 

analysis revealed significant heterogeneity in image 

dimensions and quality across the dataset. Pneumonia-labeled 

images tended to have slightly lower resolutions and greater 

variability in size than those in the normal class. A 

quantitative review of 200 randomly selected samples 

indicated that pneumonia images exhibited a wider standard 

deviation in both width and height, suggesting inconsistent 

acquisition protocols. 

Visual inspection and statistical summaries of pixel intensity 

distributions revealed marked differences in brightness and 

texture between the two classes. Normal images showed a 

bimodal intensity histogram, corresponding to the sharp 

contrast between air-filled lung fields and denser anatomical 

structures. In contrast, pneumonia images demonstrated a 

unimodal distribution skewed toward higher intensity values, 

indicating diffuse opacities associated with infiltrates. 

The dataset was heavily imbalanced, with approximately 

3,800 pneumonia samples compared to only 1,300 normal 

samples. This imbalance was addressed using the Synthetic 

Minority Oversampling Technique (SMOTE), which 

synthetically generated new samples of the minority class. 

Post-SMOTE, the class distribution was effectively balanced, 

which served to improve model training stability and 

generalization performance. 

Feature engineering further revealed that shape and texture 

descriptors such as edge density, entropy, and image contrast 

were moderately correlated in pneumonia samples. A 

correlation matrix of derived features indicated 

complementary predictive relationships that supported the use 

of a multi-feature embedding strategy during training. 

Principal Component Analysis (PCA) provided initial 

evidence of class separability in feature space, validating the 

dataset’s discriminative potential. 
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Table 1: Dataset Description for Pneumonia Image Dataset 

Derived Feature Description 

Image Chest X-ray image 

Label  'NORMAL' or 'PNEUMONIA' 

height, width Image dimensions (pixels) 

aspect_ratio Width / Height 

mean_intensity Average brightness 

std_intensity Contrast (standard deviation of pixel values) 

edge_density Proportion of edge pixels (via edge detectors like Sobel/Canny) 

texture_features GLCM-based texture metrics 

Entropy Shannon entropy (measures complexity) 

HOG_features Histogram of Oriented Gradients (for shape detection) 

PCA_components Top K features from image flattening + PCA 

CNN_embeddings Extracted features from pre-trained models (e.g. VGG16) 

 

Table 2: Summary of Pneumonia Image Size Statistics 

Statistic Height (NORMAL) Width (NORMAL) Height (PNEUMONIA) Width (PNEUMONIA) 

Count 100 100 100 100 

Mean 1337.90 1626.22 858.44 1228.70 

Std Dev 314.07 295.71 288.25 289.14 

Min 846.00 1014.00 375.00 703.00 

25% 1126.25 1410.00 668.00 1014.50 

Median 1272.00 1620.00 808.00 1180.00 

75% 1462.00 1784.00 962.00 1409.50 

Max 2578.00 2633.00 2032.00 2080.00 

 

 
Figure 1: Comparative Plot of the Statistical Measures of Height and Width 

 
Figure 2: Image Count Per Class Split of Pneumonia Dataset 
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Performance of Deep Learning Models 

Three widely adopted convolutional neural networks 

MobileNetV2, DenseNet121, and VGG16—were evaluated 

under two conditions: (1) standard transfer learning and (2) 

RCMTL-enhanced transfer learning. 

 

Baseline Transfer Learning Models 

MobileNetV2, owing to its lightweight architecture and 

depthwise separable convolutions, performed robustly with a 

test accuracy of 84% and an AUC of 0.9586. The model 

achieved a high recall (98%) on pneumonia cases, indicating 

strong sensitivity. However, precision scores revealed a mild 

bias, favoring positive class predictions. 

DenseNet121 achieved an accuracy of 79% and an AUC of 

0.9280. While recall for pneumonia detection was high 

(96%), its performance on normal samples was notably poor 

(recall = 51%), indicating an overfitting tendency toward the 

majority class. This skewness limited its practical utility in 

clinical settings where both classes are diagnostically 

important. 

VGG16, the oldest of the three architectures evaluated, 

attained a modest overall accuracy of 70% with an extremely 

high recall for pneumonia cases (99%) but critically low recall 

for normal cases (22%). This pattern of results suggests 

VGG16 may be prone to over-sensitivity in imbalanced data 

scenarios without additional regularization or augmentation 

strategies. 

 

RCMTL-Enhanced Models 

Integration of the RCMTL framework led to noticeable 

performance improvements, particularly in terms of AUC and 

class balance. 

MobileNetV2 with RCMTL achieved an accuracy of 86% and 

an improved AUC of 0.960. Notably, recall for the normal 

class improved, thereby balancing the model's diagnostic 

performance across both categories. This enhancement 

underscores RCMTL’s capacity to reduce classification bias 

and improve generalization in resource-constrained 

deployments. 

DenseNet121 also benefited from RCMTL, reaching an 

improved accuracy of 83% and an AUC of 0.937. Its recall  

for normal cases increased by 21 percentage points, correcting 

the earlier bias seen in the baseline model. 

Interestingly, VGG16 exhibited marginal improvement in 

AUC (0.9306) but a slight drop in accuracy to 69%. Although 

its pneumonia recall remained very high, the model’s 

precision and balance did not improve significantly with 

RCMTL, suggesting that VGG16 may not be well suited for 

this application, even with adaptive transfer learning 

techniques. 

 

Training Dynamics and Validation Trends 

Training and validation curves for each model revealed 

significant overfitting in the absence of RCMTL. 

MobileNetV2, in particular, showed a widening gap between 

training and validation accuracy beyond epoch 10 under 

standard transfer learning. However, with RCMTL applied, 

the training dynamics improved markedly both training and 

validation curves showed smooth convergence, indicative of 

better generalization. 

VGG16 consistently showed unstable convergence, 

regardless of the training regime, suggesting either 

insufficient regularization or incompatibility with the dataset 

size and feature complexity. DenseNet121, although initially 

prone to underfitting, responded well to RCMTL, with 

gradual improvements in validation performance. 

Confusion matrices provided a detailed breakdown of 

classification errors. With RCMTL, MobileNetV2 displayed 

a balanced true positive and true negative rate, while 

DenseNet121 reduced its false negatives significantly. 

VGG16 continued to misclassify a large number of normal 

images, reaffirming earlier observations. 

 

Utility Score Analysis 

To evaluate the clinical usability of the models, a utility score 

metric was employed, integrating sensitivity, specificity, and 

prediction confidence. The highest utility score (0.2876) was 

recorded by RCMTL-enhanced MobileNetV2, followed 

closely by DenseNet121. These scores suggest both models 

hold potential for deployment in diagnostic decision-support 

systems. 

In contrast, VGG16’s utility remained low despite high recall, 

reflecting its disproportionate sensitivity at the expense of 

specificity. When data augmentation techniques were applied 

in tandem with RCMTL, DenseNet121 outperformed the 

others, achieving better balance between accuracy and 

decision confidence, as evidenced by improved metrics across 

the board. 

 

Deployment and Application-Level Integration 

To evaluate the practical viability of the system, the best-

performing model (MobileNetV2 with RCMTL) was 

deployed as a lightweight web application using the Flask 

framework. The application enables users to upload chest X-

ray images and receive automated diagnostic feedback. The 

user interface displays the prediction class, confidence score, 

and reference images, ensuring both accessibility and 

transparency. 

The application was optimized for low-latency environments 

and tested on mobile and desktop devices. The system 

exhibited fast inference times (~200ms per image) and 

maintained a high level of accuracy consistent with offline 

evaluations. This proves the feasibility of deploying AI-

assisted pneumonia detection tools in clinical or remote 

settings without reliance on cloud-based infrastructure. 

 

 
Figure 3: Users Web Interface for Pneumonia Detection 
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Figure 4: Preview Interface for Pneumonia Detection 

 

 
Figure 5: Result Display Interface for Pneumonia Detection 

 

CONCLUSION 

The study concluded that deep learning models, particularly 

when optimized through the RCMTL framework, can serve 

as highly effective diagnostic tools for pneumonia detection 

using chest X-ray images. The findings confirmed that 

lightweight architectures such as MobileNetV2 not only offer 

competitive accuracy but also meet the computational 

efficiency required for real-time deployment in low-resource 

healthcare facilities. The RCMTL framework successfully 

improved class balance and model generalization across the 

evaluated CNNs, with the most significant gains observed in 

DenseNet121 and MobileNetV2. These enhancements were 

particularly evident in reduced false positives and improved 

recall of normal cases, which are critical for avoiding 

misdiagnosis and reducing the burden on clinical personnel. 

Among the evaluated models, MobileNetV2 with RCMTL 

emerged as the best-suited for practical deployment, 

combining high diagnostic performance with resource-

conscious design. DenseNet121 also proved to be robust, 

although slightly more resource-intensive. VGG16, while 

achieving high pneumonia sensitivity, exhibited limited 

specificity and was less ideal for clinical use without further 

refinement. 

The deployment of the models in web and mobile platforms 

demonstrated how advanced AI methods can be translated 

into real-world healthcare applications. The developed system 

provides fast, interpretable results and has the potential to 

support early diagnosis 
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