FUDMA Journal of Sciences (FJS)
ISSN online: 2616-1370
ISSN print: 2645 - 2944
Vol. 9 No. 11, November, 2025, pp 249 — 255
DOI: https://doi.org/10.33003/fjs-2025-0911-3954

RSIT
WERSITY
< 00

E

ROBERTaBART_X: A HYBRID TRANSFORMER MODEL FOR ENHANCING AUTOMATED CODE
GENERATION

FEDER
%
e

1Adedayo Philip Ajibade and ?Olaniyan Olatayo Moses

1Department of Computer Science, Faculty of Sciences, National Open University of Nigeria, Lagos, Nigeria
2Department of Computer Engineering, Federal University, Oye EKiti, Nigeria

*Corresponding authors’ email: adedayoajibade01@gmail.com

ABSTRACT

The use of automated code generation (ACG) has been a significant aspect of the software engineering process,
enabling the production of code with greater speed and precision. However, many issues, such as the absence
of long-term context, poor debugging, lack of domain adaptation, and functional inaccuracy, remain in the field
of Automatic code generation. Even though its impact on Software engineering is apparently huge, these issues
continue to exist. The model proposed herein, ROBERTaBART_X, is a hybrid transformer model based on
RoBERTa and BART, supplemented by task-adaptive pretraining (TAPT), domain-specific data augmentation
(DA), retrieval-augmented generation (RAG), FlashAttention, and sparse attention. The experiments were
performed on standard datasets, including CoNalLa, Django, CodeSearchNet, and HumanEval, and were
evaluated using BLEU, CodeBLEU, Exact Match Accuracy, Syntax Validity, and Execution Accuracy. The
experiment results show that it outperforms all the baseline models of CodeBERT, CodeT5, RoBERTaMarian,
and RoBERTaBART in semantic correctness, syntactic validity, execution success, CodeBLEU, and Pass@k.
Most interestingly, ROBERTaBART_X achieves +6.1 BLEU and +6.6% Execution Accuracy on coNaLa,
+4.8% Execution Accuracy on Django, and +3.2 % on CodeBLEU on codeSearchNet, demonstrating itself to
be a strong competitor across diverse tasks. Given these findings, we recommend RoBERTaBART_X as the
highest-performing model for generating resilient executable code to date. We believe that stacking strong
encoders on top of autoregressive decoders and training them in a special way has the potential to push the
already advanced automated code generation research even further.

Keywords: Automated Code Generation, Transformer Models, RoBERTa, BART, Hybrid Architectures,

Retrieval-Augmented Models, Software development automation, Software Engineering

INTRODUCTION

Software development automation is one of the primary goals
of modern software engineering, and recent advances in
machine learning have had a positive impact in areas such as
code completion, bug repair, and natural language-to-code
translation (Allamanis et al., 2018; Chen et al., 2021). Recent
transformers such as CodeBERT (Feng et al., 2020), CodeT5
(Wang et al., 2021), and Codex (Chen et al., 2021) have
demonstrated strong performance on this task, largely by
learning to translate natural language intents into source code.
However, there are still two main challenges: the validity of
natural language query semantics and the generation of
syntactically correct and executable code (Ahmad et al., 2021,
Liu et al., 2023).

Besides, existing approaches generally adopt one architecture
type, either encoder-only, decoder-only, or encoder-decoder,
which restricts them from balancing semantic understanding
and code generation smoothly. Some studies have attempted
to explain the gap between understanding semantic
knowledge and code generation. For instance,
GraphCodeBERT (Guo et al., 2021) adopts data-flow graphs
into transformer pretraining in order to capture program
semantics more effectively, but the power of explicitly
graphed graphs limits the number of functions and slows the
inference. PLBART is used by Ahmad et al., 2021, which
adopts the encoder—decoder architecture based on a large-
scale programming and natural language corpora and
increases repair and translation work, but is also slow in
maintaining execution accuracy and handling long-range
dependencies. CodeT5+ (Liu et al.,, 2023) combines
identification-aware embeddings and a common pretraining
framework, but it produces generative performance in

FUDMA Journal of Sciences (FJS) Vol

complex program implementation, so its code understanding
is limited because it cannot perform in the broadest sense.
More recently, Codex (Chen et al. 2021) demonstrated strong
natural language-to-code generation but is inconsistent with
semantic drift and often produces code that seems
syntactically valid but fails execution tests. These problems
illustrate the difficulty of translating meanings and executable
outputs into a single architecture, and are the motivation of
proposed hybrid ROBERTaBART_X model.
RobBERTaBART_X, a model that combines RoBERTa (Liu
et al., 2019) and the autoregressive generative fluency of
BART (Lewis et al., 2020), which is enhanced with Retrieval-
Augmented Generation (RAG) (Lewis et al.,, 2020),
FlashAttention (Dao et al., 2022), and Sparse Attention (Child
et al., 2019), that utilize more contextually relevant data
processing, are more efficient at processing long sequences,
and offer better structural modeling, respectively.

MATERIALS AND METHODS

This research employs an experimental method to optimize
the accuracy model of automated code generation, combining
the principles of Natural Language Processing (NLP) from the
perspective of the ROBERTa and BART hybrid extraction
model through empirical studies for evaluation. The
methodology comprises five main components: model
architecture, dataset preparation, training strategy,
improvements, and evaluation.

Model Architecture

Using an encoder-decoder framework that includes Encoder:
RoBERTa-base (Liu et al., 2019), a robustly optimized
transformer encoder model based on BERT is developed by
Liu et al. by using dynamic masking with a larger training

.9 No. 11, November, 2025, pp 249 — 255

249


mailto:adedayoajibade01@gmail.com
https://doi.org/10.33003/fjs-2025-0911-3954

ROBERTaBART_X: AHYBRID TRA. ...

corpus (160GB of text) and longer training cycles. There are
12 transformer layers, 768 hidden dimensions, 12 attention
heads, and about 125 million parameters. It is contextual
semantic knowledge that is particularly effective in
understanding intent from human language input. It was
trained on a lot of language understanding tasks.

Decoder: BART-base (Lewis et al., 2020), on the other hand,
is a sequence-to-sequence model with an encoder—decoder
architecture. It has 6 encoder layers and 6 decoder layers with
768 hidden dimensions, 12 attention heads, and an impressive
139 million parameters. BART is a denoising autoencoder

Adedayo and Olaniyan

FJS

which can be trained to excel at conditional text generation by
reconstructing corrupted data into words and sound that are
fluent and coherent. Simply put, it is a substantial generative
transformer that can decode conditionally. Hugging Face

wraps the model in EncoderDecoderModel and trains it on

code generation tasks using example pairs of natural language
and code. Improvements include Task-adaptive pretraining
(TAPT), Domain-specific Augmentation (DA), Retrieval-

Augmented Generation (RAG), Advanced Attention

Mechanisms (FlashAttention + Sparse Attention), Self-

Correction Mechanisms, and Automated Debugging.

Natural

Language Preprocessing -

aata

| Embeddings |

Word Embeddings |

DistiROBERTa
Base Model

PFositional |
Embeddings

Token Type
| embeaaings

Layer
Normallzation

Code - Preprocessing } -

-

Yask ‘

Fine-Tuning

Automated
Detection & Fixing

Embeddings
‘Word Embeddings

Positional
Embeddinas

Seit-Correction:
Symtax & Semantic
Refinemeant

Facebook/Bart-base
Modtel ~

Attention
Mechanism
(FlashAttention &
Sparse Attention)

Execution Based

-*  Correction (Test
fun, Output
Validation)

No
A 4

Final Code Output

Figure 1: Proposed RoOBERTaBART_X Model Diagram

These operational stages take a cue from (Barna et al., 2024),
which combines these processes to improve code generation
by leveraging a sequence of stages:

Input Stage
Model input is based on natural language (NL) text and code.

Preprocessing

The NL text and code are preprocessed to standardize and
clean the data. The output of this preprocessing is prepared
for further embedding.

Embedding Stage

There are four processes for Natural Language Input:

i. Word Embedding: This step transforms the words into
vector representations.

ii. Positional Embeddings: Encodes each word's position in
the sequence.

iii. Token Type Embeddings: Helps identify tokens in the

sentence, such as the question versus context.

Layer Normalization and Dropout: To stabilize training

and mitigate overfitting

FUDMA Journal of Sciences (FJS) Vol

For the Code Input

The code is also processed and run through the embedding

stage, which consists of:

i. Word Embeddings: Transforms code entities into vector
representations.

ii. Sinusoidal Embeddings: A type of positional encoding

that makes it easier to distinguish tokens based on their

position in the code sequence.

Model Stages

i. The output of the embedding stage is fed into the
DistilRoBERTa-base Model, a distilled version of
RoBERTa that enhances efficiency without losing
performance. This model processes the input, extracting
features relevant for code generation.

ii. The output from DistilRoBERTa-base is passed to
Facebook/Bart-base, a transformer model trained for
learning mappings from natural language to code, which
can then be used to generate code automatically from
human instructions.

Combining Outputs

The embeddings from both the NL text and code are
combined at the Facebook/bart-base stage to generate the final
output for the ROBERTaBART Model.

9 No. 11, November, 2025, pp 249 — 255

250



ROBERTaBART_X: AHYBRID TRA. ...

Enhancements

i. The output from both the DistilRoBERTa-base and

Facebook/Bart-base of the RoBERTaBART Model
combines with RAG, which helps to retrieve relevant
code snippets dynamically from CoNalLa, Django, and
CodeSearchNet sources. This improves contextual
understanding of the ROBERTaBART model output.
RAG ensures that the generated code is more realistic
and executable.

ii. After combining an enhanced RoBERTaBART and
RAG, the output is passed to Advanced Attention
Mechanisms, which optimize the model's efficiency and
performance during training and inference.

The output of the Advanced Attention Mechanisms

serves as the input of the Self-Correction mechanism,

which checks for errors, refines the code, and retrieves
more relevant examples if needed.

iv. The output from the Self-Correction module is delivered
to the Automated Debugging module, which analyzes
the code and uses static analysis and dynamic runtime
checks to identify and fix errors before finalizing the
code output.

v. The output from the Automated Debugging module is
subjected to Execution-Based Testing, which runs unit
tests to check correctness. At this stage, two processes

Adedayo and Olaniyan

FJS

were carried out: if there were no errors, the final code
output would be implemented based on the provided
input, resulting in a more accurate, efficient, and context-
aware tool for code generation. Conversely, the code is
refined through RAG and Self-Correction to improve it,
incorporating more examples and learning from
mistakes. It keeps going until the output is stable and
correct.

vi. The final result is code that works and is ready to be run.

Training Strategy

To fine-tune the model parameters, the trainer class is used as
follows: Optimizer: AdamW with linear warmup, Batch size:
4 per device, Epochs: 3, Learning rate: 2e-5, Evaluation
strategy: Epoch-level, Loss Function: Cross-entropy with
attention masking, Tokenizers: RobertaTokenizer for input,
BartTokenizer for output.

Dataset Preparation

This paper utilizes several publicly available datasets that
have been proven to perform well for training Al models to
generate code. Small-scale, domain-specific datasets, which
were extracted from the curated datasets that are stored in
Hugging Face, were used for rapid experimentation:

Table 1: Domain-Specific Datasets with the Small-Scale Samples Used

Dataset Domain Samples Used  Purpose
CoNalLa: Python (Natural 26.4k pairs Intent -> Code
https://huggingface.co/datasets/AhmedSSoliman/CoNaLa-Large  Lang
<-> Code)
Django: Python (Code 18.8k snippets  Generate
www.huggingface.co/datasets/AhmedSSoliman/DJANGO Completion) completions
CodeSearchNet: Multilingual 457k examples  Retrieve
https://huggingface.co/datasets/AhmedSSoliman/CodeSearchNet ~ (Code Search) relevant code
HumanEval (openai/humaneval) Python (Eval 164 prompts Functional
Benchmarks) accuracy eval

Each dataset was also tokenized, padded, and truncated to a maximum of 128 tokens. All the datasets used were composed of

502,364 training instances

Experimental Setup

The hardware environment in which the experiments were
conducted, utilizing a Google Colab environment and GPUs
to fine-tune and evaluate each model using the specified
metrics, with results recorded for comparison. The cloud GPU
provided by Google Inc. and GPU-accelerated deep learning
frameworks, such as PyTorch, are also available. The
Implementation was done with the following specification:
Google Colab with NVIDIA A100 GPU, Frameworks:
PyTorch 2.0+, Hugging Face Transformers, Language:
Python 3.11, Notebook Environment: Google Colab and
JupyterLab, Visualization: Matplotlib, Seaborn, Plotly, GPU
Memory: 16 GB (T4) / 16-32 GB (V100), RAM: Up to 40
GB system memory, Storage Google Drive integration (100
GB+ working storage)

Evaluation Metrics

After training, the model is evaluated against syntactic,
semantic, and execution-based quality criteria.

BLEU Score (Bilingual Evaluation Understudy Score),
(Papineni et al., 2002)

It measures the overlap of n-grams in the candidate output
with n-grams in the reference outputs, including a brevity
penalty to discourage overly short output.

The formula for BLEU is

FUDMA Journal of Sciences (FJS) Vol

BLEU = BP - exp (XN_, w,log p,)
Where:

BP:{

)

1, ife>r

e /o) ifc<r

wn= Weight assigned to each n-gram

D, = anxame candidate Min( COULE czpgigee (NGTAM), COUNE roforence ( ngram ))
n-

anram € candidate COUNteapigare (g7
c= candidate length, r= reference length.

(Brevity penalty)

Exact Match Accuracy

Exact Match Accuracy (EMA) measures the percentage of

instances where the generated output exactly matches the

reference output. Eq.2 shows how Exact Match Accuracy is

expressed:

EM = EL, 1=y
N @

Where:

The Exact Match is counted when the generated output is

identical to the reference output.

N = Total number of samples (test cases).

Yi= Model's generated output for sample i.

Yi = Reference (ground truth) output for sample i.

.9 No. 11, November, 2025, pp 249 — 255

251



ROBERTaBART_X: AHYBRID TRA. ...

1(315 = yi) = Indicator function that returns 1 if the
generated output matches the reference exactly, otherwise 0.

Interpretation: EM = 1 (100%) - Model always generates
the correct code.

CodeBLEU (Ren et al., 2020)
It measures the quality of code, by combining n-gram
precision with syntax and semantics.

CodeBLEU = A, - BLEU + 1, » Weighted -gram Match + Ay - Syntax Match +
1+ Semantic Match

@)
Where:
BLEU = Traditional BLEU score measuring n-gram precision
Weighted n-gram Match = Adjusts importance of different n-
gram types
Syntax Match = Measures similarity between Abstract Syntax
Trees (ASTS)
Semantic Match = Uses data-flow analysis to assess semantic
equivalence
AL, A2, A3, M
summing to 1)

= Tunable weights (default: 0.25 each,

Pass@k Score

It measures the probability that at least one correct solution

exists out of k generated.

the formula for Pass@k Score:
<@k =1 i)

Pass@k =1 ) @

Where:

n = total generated samples,

¢ = number of correct samples,

k = number of candidate solutions evaluated.
Execution-Based Testing

A measure of the proportion of the generated code that runs
without errors and returns the expected output.

Table 2: Model Performance on CoNalL a Dataset

Adedayo and Olaniyan

FJS

_ Number of Comectly Executed Programs

Pass Rate (%) =

x 100

Total Generated Programs (5)
Syntax Validity
It ensures the generated code follows proper syntax rules and

can be parsed and executed without errors. Computed as:
__ # of Parsable Code Samples
(6)

SyllTﬂX Vahdﬂy - # of Total Samples

Baseline Model Comparison

For a performance comparison with our ROBERTaBART_X
model, we selected a few popular models used in code
generation.  All  baselines (CodeBERT, CodeT5,
RoBERTaMarian, and RoBERTaBART) were measured
consistently across the CoNaLa, Django, CodeSearchNet, and
HumanEval datasets.

RESULTS AND DISCUSSION

Results

These  results  compare the  performance  of
RoBERTaBART_X with that of all baseline models
(CodeBERT, CodeT5, RoBERTaMarian, ROBERTaBART)
using various metrics, including BLEU, CodeBLEU, Exact
Match, Syntax Validity, Pass@k, and Execution Accuracy.
The table below summarizes the comparison between
RoBERTaBART_X with its counterpart to several baseline
models over multiple benchmarks. This Table 1 summarizes
the performance metrics for the CoNalLa dataset on key
BLEU, CodeBLEU, Exact Match, Syntax Validity, Pass@1,
and Execution Accuracy. For CodeBERT, the best scores
were 32.1 on BLEU, 38.5 on CodeBLEU, and 28.0 on Exact
Match Accuracy. Additionally, it shows that it is weakest for
that task, with the lowest scores in all metrics. However, it is
average in generating valid and relevant code snippets with
decent performance, as indicated by a Syntax Validity score
of 85.0, a Pass@1 rate of 17.4, and an Execution Accuracy of
14.2.

Model BLEU CodeBLEU Exact Match  Syntax Validity Pass@1  Execution Accuracy
CodeBERT 321 385 28.0 85.3 174 14.2
CodeT5 36.8 41.2 30.5 88.6 20.3 18.0
RoBERTaMarian 34.6 39.9 29.7 86.7 185 16.1
RoBERTaBART 35.2 40.3 30.0 87.1 19.2 17.0
RoBERTaBART_X 42.9 48.6 36.3 914 21.7 24.6

CodeT5 also reported Exact Match Accuracy of 30.5, BLEU
of 36.8, and CodeBLEU of 41.2. It had a Syntax Validity of
88.6, a Pass@1 of 20.3, and an Execution Accuracy of 18.0.
These obtained results demonstrate that this model is more
powerful, as it outperforms other non-X RoBERTa variants
and achieves better scores than the CodeBERT model. The
RoBERTaMarian model achieved a BLEU score of 34.6, a
CodeBLEU score of 39.9, and an Exact Match Accuracy of
29.7. Together with a Syntax Validity of 86.7, a Pass@1 of
18.5, and an Execution Accuracy of 16.1, these indicate an
average performance slightly below that of CodeT5.
RoBERTaBART had 35.2 BLEU, 40.3 CodeBLEU, 30.0
Exact Match Accuracy, 87.1 Syntax validity, 19.2 Pass@1,
and 17.0 Execution Accuracy. This score showed that it was
basically on par with RoBERTaMarian and that
ROBERTaBART surpassed but did not outscore CodeT5 on
most metrics. Finally, ROBERTaBART_X is by far the best
model. This model, for instance, achieved a BLEU score of
42.9, a CodeBLEU score of 48.6, an Exact Match Accuracy

FUDMA Journal of Sciences (FJS) Vol

of 36.3, a Syntax validity score of 91.4, a Pass@1 score of
27.7, and an Execution Accuracy score of 24.6 on the CoNaLa
dataset.

Example 1

The following are examples of employing the
RoBERTaBART_X model for the code generation task.
Using CoNaLa: AhmedSSoliman/CoNalLa-Large, and
evaluation metric score.

Input

check if all elements in list mylist are identical.

Reference

all(x == mylist[0] for x in mylist)

Output

def all_identical(mylist: list) -> bool:

return all(x == mylist[0] for x in mylist)

Bleu_score: 47.0

Example 2:

.9 No. 11, November, 2025, pp 249 — 255

252



ROBERTaBART_X: AHYBRID TRA. ...

The following are examples of employing the
RoBERTaMarian model for the code generation task, using
CoNala datasets

Input

Get the last part of a string before the character *-

Reference

Print (x.rsplit(*-', 1)[0])

Output

Table 3: Model Performance on Django Dataset

Adedayo and Olaniyan

FJS

Print (x.rsplit(-', 1)[0])

Bleu_score: 31.6

In Table 2 below, the results of the experiment applied to the
Django dataset are shown, where it was noted that all models
achieve lower performance on the Django dataset compared
to the CoNaLa dataset, indicating that the Django task is
likely more challenging.

Model BLEU CodeBLEU Exact Match  Syntax Validity = Pass@1 Execution Accuracy
CodeBERT 29.7 36.4 26.9 84.1 16.1 13.0
CodeT5 34.1 39.5 28.8 86.3 18.6 155
RoBERTaMarian 32.2 38.1 28.0 85.5 17.3 14.0
RoBERTaBART 33.0 38.8 28.3 85.9 17.9 14.7
ROBERTaBART_X  39.5 46.2 34.1 90.2 245 21.3

On the CodeBERT model, the results on the Django dataset
scored 29.7 BLEU, 36.4 CodeBLEU, an Exact Match
Accuracy of 26.9, and Syntax Validity (84.1), Pass@1 (16.1),
and Execution Accuracy (13.0), suggesting it is the worst-
performing model in all considered metrics. Although it has
reasonable syntax, it has low execution accuracy.
Additionally, the CodeT5 model recorded the following
results: BLEU: 34.1, CodeBLEU: 39.5, Exact Match: 28.8,
Syntax Validity: 86.3, Pass@1: 18.6, Execution Accuracy:
15.5, indicating that it has shown strong improvement over
CodeBERT and a better balance across all metrics, especially
excelling in syntax validity and execution. Moreover, the
performance metrics of the RoBERTaMarian model
demonstrate its efficacy by achieving the following records: a
BLEU score of 32.2, a CodeBLEU score of 38.1, an Exact
Match Accuracy of 28.0, a Syntax validity of 85.5, and a
Pass@ score of 17.3, as well as an Execution Accuracy score
of 14.0 on the Django dataset. These results show good code
syntax, though execution accuracy is moderate. Although it
has a slightly worse performance than CodeT5 across several
metrics, it also proves to be competitive. Furthermore, when
assessed on the DJANGO dataset, the ROBERTaBART model
demonstrates its coherent superiority among all state-of-the-
art models in code generation, boasting a slight superior
BLEU score of 33.0, CodeBERT score of 38.8, an Exact
Match Accuracy score of 28.3, Syntax Validity score of 85.9,
a Pass@1 score of 17.9, and an Execution Accuracy score of
92.76. It shows marginally better generation and good syntax
validity, but it falls in the middle tier of performance
compared to more advanced models, such as

Table 4: Model Performance on CodeSearchNet Dataset

RoBERTaBART_X. Finally, under all metrics considered,
RoBERTaBART_X has the best performance. Its high BLEU
(39.5), CodeBLEU (46.2), and an Exact Match Accuracy
(34.1) scores show how similar its outputs are to those of the
references, and its state-of-the-art execution accuracy (21.3),
Pass@1 (24.5), and syntax validity (90.2) in turn show it
generates runnable and correct code. This is due to better
training methods and additional enhancements that establish
RoBERTaBART_X as the most reliable model for code
generation tasks.

Example of Employing the ROBERTaBART_X Model for
Code Generation using the Django Dataset.

Input

"Generate a Django model for a blog.”

Reference

class Blog(models.Model):

title = models.CharField(max_length=100)

content = models.TextField()

Output

Def create_blog_model():

Class Blog(models.Model):

Title = models.CharField(max_length=100)

Content = models. TextField()

Return Blog

BLEU_Score: 100.0

As shown in Table 3 below, some of the models assessed on
the CodeSearchNet dataset are compared according to several
metrics including BLEU, CodeBLEU, Exact Match, Syntax
Validity, Pass@1, and Execution Accuracy.

Model BLEU CodeBLEU Exact Match  Syntax Validity Pass@1 Execution Accuracy
CodeBERT 33.2 374 27.2 84.7 15.6 12.8

CodeT5 38.6 42.7 30.9 874 19.8 17.2

RoBERTaMarian 36.0 40.5 29.5 86.1 18.2 155

RoOBERTaBART 374 41.1 30.1 86.5 18.9 16.3
ROBERTaBART_X  44.3 498 355 923 26.8 235

A BLEU score of 33.2, Exact Match of 27.2, and a performance in generating working code. Similarly,

CodeBLEU of 37.4, with Syntax Validity of 84.7, Pass@1 is
15.6, and Execution Accuracy is 12.8, were the records
obtained for CodeBERT, which indicate some issues in
running the generated code. The CodeT5 model demonstrated
its effectiveness with a BLEU score of 38.6, a CodeBLEU
score of 42.7, and an Exact Match score of 30.9. Its Syntax
Validity is also at 87.4, achieving a Pass@1 score (19.8) and
Execution Accuracy (17.2), which indicates strong

RoBERTaMarian achieved records that were slightly lower
than CodeT5 in the other metrics, but still consistent; these
were the results: a BLEU of 36.0, CodeBLEU of 40.5, and
Exact Match of 29.5. Its scores were Syntax Validity 86.1,
Pass@1 18.2, and Execution Accuracy 15.5. Additionally, the
performance of ROBERTaBART on CodeSearchNet was
impressive, with a BLEU score of 37.4, a CodeBLEU score
of 41.1, and an Exact Match score of 30.1. It performed better

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 — 255



ROBERTaBART_X: AHYBRID TRA. ...

in general and across generations, with Syntax Validity at
86.5, Pass@1 at 18.9, and Execution Accuracy at 16.3.
ROBERTaBART_X also had the best performance in all
metrics overall. This yielded a BLEU score of 44.3, a
CodeBLEU score of 49.8, and an Exact Match score of 35.5.
It also exhibited the highest Syntax Validity and Pass@1 and
Execution Accuracy, at 92.3, 26.8, and 23.5, respectively, in
addition to being more efficient and robust in executing code
generation based on the CodeSearchNet dataset compared to
the other models. ROBERTaBART _X outperformed all other
models in each of the evaluation metrics.

Example of Employing the ROBERTaBART_X Model for
Code Generation using CodeSearchNet.

Input

Find the maximum value in a list numbers.

Reference

Max(numbers)

Output

Def get_max(numbers: list) -> int:

Return max(numbers)

CodeBLEU_score: 49.2

Example 2

Input: compute the factorial of a number n.
Reference:

Math.factorial(n)

Output:

Import math

Def factorial(n: int) -> int:

Return math.factorial(n)
CodeBLEU_score: 50.1

Discussion

RoBERTaBART_X's performance (as shown in Tables 1, 2,
and 3) on test data was compared to that of other baseline
models, including CodeBERT, CodeT5, RoBERTaMarian,
and RoBERTaBART, across three popular code generation
datasets: CoNaLa, Django, and CodeSearchNet. The metrics
used for evaluation are BLEU, CodeBLEU, Exact Match,
Syntax Validity, Pass@1, and Execution Accuracy.
ROBERTaBART_X consistently surpasses all baseline
models across all datasets based on principal evaluation
metrics. This model had the greatest increase in BLEU and
CodeBLEU, which are indicative of generating semantically
correct code. Exact Match and Syntax Validity are also
substantially better in ROBERTaBART_X, in favour of the
hypothesis that the generated code follows syntax rules more
strongly and resembles human-written code more.

The significant effect on execution accuracy was founded,
meaning that the generated programs are syntactically correct
and ensure error-free execution. In addition, the performance
splits on the datasets; for the CoNalLa dataset,
ROBERTaBART_X scored the highest BLEU (42.9),
CodeBLEU (48.6), and Exact Match (36.3) scores. It also
presented the highest average syntax validity (91.4) and
execution accuracy (24.6). On the Django dataset,
ROBERTaBART_X once again outperformed all other
metrics. Its BLEU and CodeBLEU scores were 39.5 and 46.2
respectively, with an Exact Match score of 34.1.
ROBERTaBART_X also outperformed the other models in
the CodeSearchNet dataset, achieving a BLEU score of 44.3,
a CodeBLEU score of 49.8, and an Exact Match of 35.5, as it
did in all other cases. Finally, the improvements reported with
RoBERTaBART_X are attributed to the use of task-adaptive
pretraining (TAPT) alongside specialized data augmentation
techniques, such as retrieval-augmented generation (RAG),
FlashAttention, and sparse attention. These techniques

FUDMA Journal of Sciences (FJS) Vol

Adedayo and Olaniyan

FJS

improve the understanding and completion of the given task.
Self-correction mechanisms also helped improve execution
accuracy, transforming RoBERTaBART_X into a more
effective code generation tool.

CONCLUSION

This paper presents ROBERTaBART _X, a hybrid transformer
architecture designed to improve automated code generation
through the use of TAPT, RAG, FlashAttention, Sparse
Attention, and domain-aware augmentation. It has been
empirically validated to outperform current best practices
traditional transformer-based models such as CodeBERT,
CodeT5, RoBERTaMarian, and ROBERTaBART across all
scores (BLEU, CodeBLEU, Exact Match, Syntax Validity,
Pass@1, and Execution Accuracy) on all levels. The best
improvements are BLEU, CodeBLEU and Execution
Accuracy which both accurately perform semantic
correctness and are also able to run without error. Syntax
Validity was 90% greater across the CoNaLa, Django, and
CodeSearchNet datasets for ROBERTaBART_X, which
highlighted high grammatical correctness of generated code.
Notably, it also enhances performance with respect to
execution correctness, syntactical correctness, and robustness
in the domain, making it useful in practice as an aid to
automated software development.

REFERENCES

Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K. W.
(2021). Unified pre-training for program understanding and
generation. Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2655-2668.
https://doi.org/10.18653/v1/2021.naacl-main.211

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018).
A survey of machine learning for big code and naturalness.
ACM Computing Surveys, 51(4), 81.
https://doi.org/10.1145/3212695

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P., Kaplan,
J., & Zaremba, W. (2021). Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374.
https://arxiv.org/abs/2107.03374

Child, R., Gray, S., Radford, A., & Sutskever, 1. (2019).
Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509. https://arxiv.org/abs/1904.10509

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., & Ré, C. (2022).
FlashAttention: Fast and memory-efficient exact attention
with 10-awareness. Advances in Neural Information
Processing Systems, 35, 16344-16359.
https://arxiv.org/abs/2205.14135

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., &
Zhou, M. (2020). CodeBERT: A pre-trained model for
programming and natural languages. Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: Findings, 1536-1547.
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed,
A., Levy, O., & Zettlemoyer, L. (2020). BART: Denoising
sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. Proceedings of
the 58th Annual Meeting of the Association for

.9 No. 11, November, 2025, pp 249 — 255

254


https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3212695
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2205.14135
https://doi.org/10.18653/v1/2020.findings-emnlp.139

ROBERTaBART_X: AHYBRID TRA. ...

Computational Linguistics, 7871-7880.

https://doi.org/10.18653/v1/2020.acl-main.703

Lewis, P., Perez, E., Piktus, A., Karpukhin, V., Goyal, N.,
Kittler, H., & Riedel, S. (2020). Retrieval-augmented
generation for knowledge-intensive NLP tasks. Advances in
Neural Information Processing Systems, 33, 9459-9474.
https://arxiv.org/abs/2005.11401

Liu, I., Wang, Y., Zhang, Y., & Neubig, G. (2023). CodeT5+:
Open code large language models for code understanding and
generation. arXiv preprint arXiv:2305.07922.
https://arxiv.org/abs/2305.07922

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., &
Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT
pretraining approach. arXiv preprint arXiv:1907.11692.
https://arxiv.org/abs/1907.11692

OS]

Adedayo and Olaniyan

FJS

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002).
BLEU: A method for automatic evaluation of machine
translation. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, 311-318.
https://doi.org/10.3115/1073083.1073135

Ren, S., Guo, D,, Lu, S., Zhou, L., Ma, S., Zhou, J., & Li, H.
(2020). CodeBLEU: A method for automatic evaluation of
code synthesis. arXiv  preprint  arXiv:2009.10297.
https://arxiv.org/abs/2009.10297

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. (2021). CodeT5:
Identifier-aware unified pre-trained encoder-decoder models
for code understanding and generation. Proceedings of the
2021 Conference on Empirical Methods in Natural Language
Processing, 8696-8708.
https://doi.org/10.18653/v1/2021.emnlp-main.707

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 — 255

©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

255


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/1907.11692
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2009.10297
https://doi.org/10.18653/v1/2021.emnlp-main.707

