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ABSTRACT 

The use of automated code generation (ACG) has been a significant aspect of the software engineering process, 

enabling the production of code with greater speed and precision. However, many issues, such as the absence 

of long-term context, poor debugging, lack of domain adaptation, and functional inaccuracy, remain in the field 

of Automatic code generation. Even though its impact on Software engineering is apparently huge, these issues 

continue to exist. The model proposed herein, RoBERTaBART_X, is a hybrid transformer model based on 

RoBERTa and BART, supplemented by task-adaptive pretraining (TAPT), domain-specific data augmentation 

(DA), retrieval-augmented generation (RAG), FlashAttention, and sparse attention. The experiments were 

performed on standard datasets, including CoNaLa, Django, CodeSearchNet, and HumanEval, and were 

evaluated using BLEU, CodeBLEU, Exact Match Accuracy, Syntax Validity, and Execution Accuracy. The 

experiment results show that it outperforms all the baseline models of CodeBERT, CodeT5, RoBERTaMarian, 

and RoBERTaBART in semantic correctness, syntactic validity, execution success, CodeBLEU, and Pass@k. 

Most interestingly, RoBERTaBART_X achieves +6.1 BLEU and +6.6% Execution Accuracy on coNaLa, 

+4.8% Execution Accuracy on Django, and +3.2 % on CodeBLEU on codeSearchNet, demonstrating itself to 

be a strong competitor across diverse tasks. Given these findings, we recommend RoBERTaBART_X as the 

highest-performing model for generating resilient executable code to date. We believe that stacking strong 

encoders on top of autoregressive decoders and training them in a special way has the potential to push the 

already advanced automated code generation research even further. 

 

Keywords: Automated Code Generation, Transformer Models, RoBERTa, BART, Hybrid Architectures, 
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INTRODUCTION 

Software development automation is one of the primary goals 

of modern software engineering, and recent advances in 

machine learning have had a positive impact in areas such as 

code completion, bug repair, and natural language-to-code 

translation (Allamanis et al., 2018; Chen et al., 2021). Recent 

transformers such as CodeBERT (Feng et al., 2020), CodeT5 

(Wang et al., 2021), and Codex (Chen et al., 2021) have 

demonstrated strong performance on this task, largely by 

learning to translate natural language intents into source code. 

However, there are still two main challenges: the validity of 

natural language query semantics and the generation of 

syntactically correct and executable code (Ahmad et al., 2021; 

Liu et al., 2023). 

Besides, existing approaches generally adopt one architecture 

type, either encoder-only, decoder-only, or encoder-decoder, 

which restricts them from balancing semantic understanding 

and code generation smoothly. Some studies have attempted 

to explain the gap between understanding semantic 

knowledge and code generation. For instance, 

GraphCodeBERT (Guo et al., 2021) adopts data-flow graphs 

into transformer pretraining in order to capture program 

semantics more effectively, but the power of explicitly 

graphed graphs limits the number of functions and slows the 

inference. PLBART is used by Ahmad et al., 2021, which 

adopts the encoder–decoder architecture based on a large-

scale programming and natural language corpora and 

increases repair and translation work, but is also slow in 

maintaining execution accuracy and handling long-range 

dependencies. CodeT5+ (Liu et al., 2023) combines 

identification-aware embeddings and a common pretraining 

framework, but it produces generative performance in 

complex program implementation, so its code understanding 

is limited because it cannot perform in the broadest sense.  

More recently, Codex (Chen et al. 2021) demonstrated strong 

natural language-to-code generation but is inconsistent with 

semantic drift and often produces code that seems 

syntactically valid but fails execution tests. These problems 

illustrate the difficulty of translating meanings and executable 

outputs into a single architecture, and are the motivation of 

proposed hybrid RoBERTaBART_X model. 

RobBERTaBART_X, a model that combines RoBERTa (Liu 

et al., 2019) and the autoregressive generative fluency of 

BART (Lewis et al., 2020), which is enhanced with Retrieval-

Augmented Generation (RAG) (Lewis et al., 2020), 

FlashAttention (Dao et al., 2022), and Sparse Attention (Child 

et al., 2019), that utilize more contextually relevant data 

processing, are more efficient at processing long sequences, 

and offer better structural modeling, respectively. 

  

MATERIALS AND METHODS 

This research employs an experimental method to optimize 

the accuracy model of automated code generation, combining 

the principles of Natural Language Processing (NLP) from the 

perspective of the RoBERTa and BART hybrid extraction 

model through empirical studies for evaluation. The 

methodology comprises five main components: model 

architecture, dataset preparation, training strategy, 

improvements, and evaluation. 

  

Model Architecture 

Using an encoder-decoder framework that includes Encoder: 

RoBERTa-base (Liu et al., 2019), a robustly optimized 

transformer encoder model based on BERT is developed by 

Liu et al. by using dynamic masking with a larger training 
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corpus (160GB of text) and longer training cycles. There are 

12 transformer layers, 768 hidden dimensions, 12 attention 

heads, and about 125 million parameters. It is contextual 

semantic knowledge that is particularly effective in 

understanding intent from human language input. It was 

trained on a lot of language understanding tasks.  

Decoder: BART-base (Lewis et al., 2020), on the other hand, 

is a sequence-to-sequence model with an encoder–decoder 

architecture. It has 6 encoder layers and 6 decoder layers with 

768 hidden dimensions, 12 attention heads, and an impressive 

139 million parameters. BART is a denoising autoencoder 

which can be trained to excel at conditional text generation by 

reconstructing corrupted data into words and sound that are 

fluent and coherent. Simply put, it is a substantial generative 

transformer that can decode conditionally. Hugging Face 

wraps the model in EncoderDecoderModel and trains it on 

code generation tasks using example pairs of natural language 

and code. Improvements include Task-adaptive pretraining 

(TAPT), Domain-specific Augmentation (DA), Retrieval-

Augmented Generation (RAG), Advanced Attention 

Mechanisms (FlashAttention + Sparse Attention), Self-

Correction Mechanisms, and Automated Debugging.  

 

 
Figure 1: Proposed RoBERTaBART_X Model Diagram 

 

These operational stages take a cue from (Barna et al., 2024), 

which combines these processes to improve code generation 

by leveraging a sequence of stages: 

 

Input Stage  

Model input is based on natural language (NL) text and code.  

 

Preprocessing  

The NL text and code are preprocessed to standardize and 

clean the data. The output of this preprocessing is prepared 

for further embedding.  

 

Embedding Stage 

There are four processes for Natural Language Input: 

i. Word Embedding: This step transforms the words into 

vector representations. 

ii. Positional Embeddings: Encodes each word's position in 

the sequence. 

iii. Token Type Embeddings: Helps identify tokens in the 

sentence, such as the question versus context. 

iv. Layer Normalization and Dropout: To stabilize training 

and mitigate overfitting  

 

 

 

For the Code Input 

The code is also processed and run through the embedding 

stage, which consists of:  

i. Word Embeddings: Transforms code entities into vector 

representations. 

ii. Sinusoidal Embeddings: A type of positional encoding 

that makes it easier to distinguish tokens based on their 

position in the code sequence. 

 

Model Stages  

i. The output of the embedding stage is fed into the 

DistilRoBERTa-base Model, a distilled version of 

RoBERTa that enhances efficiency without losing 

performance. This model processes the input, extracting 

features relevant for code generation. 

ii. The output from DistilRoBERTa-base is passed to 

Facebook/Bart-base, a transformer model trained for 

learning mappings from natural language to code, which 

can then be used to generate code automatically from 

human instructions. 

 

Combining Outputs  

The embeddings from both the NL text and code are 

combined at the Facebook/bart-base stage to generate the final 

output for the RoBERTaBART Model. 
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Enhancements  

i. The output from both the DistilRoBERTa-base and 

Facebook/Bart-base of the RoBERTaBART Model 

combines with RAG, which helps to retrieve relevant 

code snippets dynamically from CoNaLa, Django, and 

CodeSearchNet sources. This improves contextual 

understanding of the RoBERTaBART model output. 

RAG ensures that the generated code is more realistic 

and executable. 

ii. After combining an enhanced RoBERTaBART and 

RAG, the output is passed to Advanced Attention 

Mechanisms, which optimize the model's efficiency and 

performance during training and inference. 

iii. The output of the Advanced Attention Mechanisms 

serves as the input of the Self-Correction mechanism, 

which checks for errors, refines the code, and retrieves 

more relevant examples if needed. 

iv. The output from the Self-Correction module is delivered 

to the Automated Debugging module, which analyzes 

the code and uses static analysis and dynamic runtime 

checks to identify and fix errors before finalizing the 

code output. 

v. The output from the Automated Debugging module is 

subjected to Execution-Based Testing, which runs unit 

tests to check correctness. At this stage, two processes 

were carried out: if there were no errors, the final code 

output would be implemented based on the provided 

input, resulting in a more accurate, efficient, and context-

aware tool for code generation. Conversely, the code is 

refined through RAG and Self-Correction to improve it, 

incorporating more examples and learning from 

mistakes. It keeps going until the output is stable and 

correct. 

vi. The final result is code that works and is ready to be run. 

 

Training Strategy 

To fine-tune the model parameters, the trainer class is used as 

follows: Optimizer: AdamW with linear warmup, Batch size: 

4 per device, Epochs: 3, Learning rate: 2e-5, Evaluation 

strategy: Epoch-level, Loss Function: Cross-entropy with 

attention masking, Tokenizers: RobertaTokenizer for input, 

BartTokenizer for output. 

 

Dataset Preparation 

This paper utilizes several publicly available datasets that 

have been proven to perform well for training AI models to 

generate code. Small-scale, domain-specific datasets, which 

were extracted from the curated datasets that are stored in 

Hugging Face, were used for rapid experimentation: 

 

Table 1: Domain-Specific Datasets with the Small-Scale Samples Used 

Dataset Domain Samples Used Purpose 

CoNaLa: 

https://huggingface.co/datasets/AhmedSSoliman/CoNaLa-Large 

Python (Natural 

Lang 

<-> Code) 

26.4k pairs 

 

Intent -> Code 

Django: 

www.huggingface.co/datasets/AhmedSSoliman/DJANGO 

Python (Code 

Completion) 

18.8k snippets Generate 

completions 

 

CodeSearchNet: 

https://huggingface.co/datasets/AhmedSSoliman/CodeSearchNet 

Multilingual 

(Code Search) 

457k examples Retrieve 

relevant code 

HumanEval (openai/humaneval) Python (Eval 

Benchmarks) 

164 prompts Functional 

accuracy eval 

Each dataset was also tokenized, padded, and truncated to a maximum of 128 tokens. All the datasets used were composed of 

502,364 training instances 

 

Experimental Setup 

The hardware environment in which the experiments were 

conducted, utilizing a Google Colab environment and GPUs 

to fine-tune and evaluate each model using the specified 

metrics, with results recorded for comparison. The cloud GPU 

provided by Google Inc. and GPU-accelerated deep learning 

frameworks, such as PyTorch, are also available. The 

Implementation was done with the following specification: 

Google Colab with NVIDIA A100 GPU, Frameworks: 

PyTorch 2.0+, Hugging Face Transformers, Language: 

Python 3.11, Notebook Environment: Google Colab and 

JupyterLab, Visualization: Matplotlib, Seaborn, Plotly, GPU 

Memory: 16 GB (T4) / 16–32 GB (V100), RAM: Up to 40 

GB system memory, Storage Google Drive integration (100 

GB+ working storage) 

 

Evaluation Metrics 

After training, the model is evaluated against syntactic, 

semantic, and execution-based quality criteria. 

BLEU Score (Bilingual Evaluation Understudy Score), 

(Papineni et al., 2002) 

It measures the overlap of n-grams in the candidate output 

with n-grams in the reference outputs, including a brevity 

penalty to discourage overly short output. 

The formula for BLEU is  

 (1) 

Where: 

 (Brevity penalty) 

wn= Weight assigned to each n-gram 

  
c= candidate length, r= reference length. 

 

Exact Match Accuracy  

Exact Match Accuracy (EMA) measures the percentage of 

instances where the generated output exactly matches the 

reference output. Eq.2 shows how Exact Match Accuracy is 

expressed: 

   (2)  

Where:  

The Exact Match is counted when the generated output is 

identical to the reference output. 

N = Total number of samples (test cases). 

= Model's generated output for sample i. 

 = Reference (ground truth) output for sample i. 



ROBERTaBART_X: A HYBRID TRA …            Adedayo and Olaniyan     FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 – 255 252 

 = Indicator function that returns 1 if the 

generated output matches the reference exactly, otherwise 0. 

Interpretation: EM = 1 (100%) - Model always generates 

the correct code. 

 

CodeBLEU (Ren et al., 2020) 

It measures the quality of code, by combining n-gram 

precision with syntax and semantics. 

(3) 

Where: 

BLEU = Traditional BLEU score measuring n-gram precision 

Weighted n-gram Match = Adjusts importance of different n-

gram types 

Syntax Match = Measures similarity between Abstract Syntax 

Trees (ASTs) 

Semantic Match = Uses data-flow analysis to assess semantic 

equivalence 

λ1, λ2, λ3, λ4  = Tunable weights (default: 0.25 each, 

summing to 1) 

 

Pass@k Score 

It measures the probability that at least one correct solution 

exists out of k generated. 

the formula for Pass@k Score: 

   (4) 

Where: 

n = total generated samples, 

c = number of correct samples, 

k = number of candidate solutions evaluated. 

 

Execution-Based Testing 

A measure of the proportion of the generated code that runs 

without errors and returns the expected output. 

 (5) 

 

Syntax Validity 

It ensures the generated code follows proper syntax rules and 

can be parsed and executed without errors. Computed as: 

  (6) 

 

Baseline Model Comparison 

For a performance comparison with our RoBERTaBART_X 

model, we selected a few popular models used in code 

generation. All baselines (CodeBERT, CodeT5, 

RoBERTaMarian, and RoBERTaBART) were measured 

consistently across the CoNaLa, Django, CodeSearchNet, and 

HumanEval datasets.  

 

RESULTS AND DISCUSSION 

Results 

These results compare the performance of 

RoBERTaBART_X with that of all baseline models 

(CodeBERT, CodeT5, RoBERTaMarian, RoBERTaBART) 

using various metrics, including BLEU, CodeBLEU, Exact 

Match, Syntax Validity, Pass@k, and Execution Accuracy. 

The table below summarizes the comparison between 

RoBERTaBART_X with its counterpart to several baseline 

models over multiple benchmarks. This Table 1 summarizes 

the performance metrics for the CoNaLa dataset on key 

BLEU, CodeBLEU, Exact Match, Syntax Validity, Pass@1, 

and Execution Accuracy. For CodeBERT, the best scores 

were 32.1 on BLEU, 38.5 on CodeBLEU, and 28.0 on Exact 

Match Accuracy. Additionally, it shows that it is weakest for 

that task, with the lowest scores in all metrics. However, it is 

average in generating valid and relevant code snippets with 

decent performance, as indicated by a Syntax Validity score 

of 85.0, a Pass@1 rate of 17.4, and an Execution Accuracy of 

14.2.  

 

Table 2: Model Performance on CoNaLa Dataset 

Model BLEU CodeBLEU Exact Match Syntax Validity Pass@1 Execution Accuracy 

CodeBERT 32.1 38.5 28.0 85.3 17.4 14.2 

CodeT5 36.8 41.2 30.5 88.6 20.3 18.0 

RoBERTaMarian 34.6 39.9 29.7 86.7 18.5 16.1 

RoBERTaBART 35.2 40.3 30.0 87.1 19.2 17.0 

RoBERTaBART_X 42.9 48.6 36.3 91.4 27.7 24.6 

 

CodeT5 also reported Exact Match Accuracy of 30.5, BLEU 

of 36.8, and CodeBLEU of 41.2. It had a Syntax Validity of 

88.6, a Pass@1 of 20.3, and an Execution Accuracy of 18.0. 

These obtained results demonstrate that this model is more 

powerful, as it outperforms other non-X RoBERTa variants 

and achieves better scores than the CodeBERT model. The 

RoBERTaMarian model achieved a BLEU score of 34.6, a 

CodeBLEU score of 39.9, and an Exact Match Accuracy of 

29.7. Together with a Syntax Validity of 86.7, a Pass@1 of 

18.5, and an Execution Accuracy of 16.1, these indicate an 

average performance slightly below that of CodeT5. 

RoBERTaBART had 35.2 BLEU, 40.3 CodeBLEU, 30.0 

Exact Match Accuracy, 87.1 Syntax validity, 19.2 Pass@1, 

and 17.0 Execution Accuracy. This score showed that it was 

basically on par with RoBERTaMarian and that 

RoBERTaBART surpassed but did not outscore CodeT5 on 

most metrics. Finally, RoBERTaBART_X is by far the best 

model. This model, for instance, achieved a BLEU score of 

42.9, a CodeBLEU score of 48.6, an Exact Match Accuracy 

of 36.3, a Syntax validity score of 91.4, a Pass@1 score of 

27.7, and an Execution Accuracy score of 24.6 on the CoNaLa 

dataset.  

 

Example 1 

The following are examples of employing the 

RoBERTaBART_X model for the code generation task. 

Using CoNaLa: AhmedSSoliman/CoNaLa-Large, and 

evaluation metric score. 

Input 

check if all elements in list mylist are identical. 

Reference 

all(x == mylist[0] for x in mylist) 

Output 

def all_identical(mylist: list) -> bool: 

return all(x == mylist[0] for x in mylist) 

Bleu_score: 47.0 

Example 2: 
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The following are examples of employing the 

RoBERTaMarian model for the code generation task, using 

CoNaLa datasets 

Input 

Get the last part of a string before the character ’-’ 

Reference 

Print (x.rsplit('-', 1)[0]) 

Output 

Print (x.rsplit('-', 1)[0]) 

Bleu_score: 31.6 

In Table 2 below, the results of the experiment applied to the 

Django dataset are shown, where it was noted that all models 

achieve lower performance on the Django dataset compared 

to the CoNaLa dataset, indicating that the Django task is 

likely more challenging. 

  

Table 3: Model Performance on Django Dataset 

Model BLEU CodeBLEU Exact Match Syntax Validity Pass@1 Execution Accuracy 

CodeBERT 29.7 36.4 26.9 84.1 16.1 13.0 

CodeT5 34.1 39.5 28.8 86.3 18.6 15.5 

RoBERTaMarian 32.2 38.1 28.0 85.5 17.3 14.0 

RoBERTaBART 33.0 38.8 28.3 85.9 17.9 14.7 

RoBERTaBART_X 39.5 46.2 34.1 90.2 24.5 21.3 

  

On the CodeBERT model, the results on the Django dataset 

scored 29.7 BLEU, 36.4 CodeBLEU, an Exact Match 

Accuracy of 26.9, and Syntax Validity (84.1), Pass@1 (16.1), 

and Execution Accuracy (13.0), suggesting it is the worst-

performing model in all considered metrics. Although it has 

reasonable syntax, it has low execution accuracy. 

Additionally, the CodeT5 model recorded the following 

results: BLEU: 34.1, CodeBLEU: 39.5, Exact Match: 28.8, 

Syntax Validity: 86.3, Pass@1: 18.6, Execution Accuracy: 

15.5, indicating that it has shown strong improvement over 

CodeBERT and a better balance across all metrics, especially 

excelling in syntax validity and execution. Moreover, the 

performance metrics of the RoBERTaMarian model 

demonstrate its efficacy by achieving the following records: a 

BLEU score of 32.2, a CodeBLEU score of 38.1, an Exact 

Match Accuracy of 28.0, a Syntax validity of 85.5, and a 

Pass@ score of 17.3, as well as an Execution Accuracy score 

of 14.0 on the Django dataset. These results show good code 

syntax, though execution accuracy is moderate. Although it 

has a slightly worse performance than CodeT5 across several 

metrics, it also proves to be competitive. Furthermore, when 

assessed on the DJANGO dataset, the RoBERTaBART model 

demonstrates its coherent superiority among all state-of-the-

art models in code generation, boasting a slight superior 

BLEU score of 33.0, CodeBERT score of 38.8, an Exact 

Match Accuracy score of 28.3, Syntax Validity score of 85.9, 

a Pass@1 score of 17.9, and an Execution Accuracy score of 

92.76. It shows marginally better generation and good syntax 

validity, but it falls in the middle tier of performance 

compared to more advanced models, such as 

RoBERTaBART_X. Finally, under all metrics considered, 

RoBERTaBART_X has the best performance. Its high BLEU 

(39.5), CodeBLEU (46.2), and an Exact Match Accuracy 

(34.1) scores show how similar its outputs are to those of the 

references, and its state-of-the-art execution accuracy (21.3), 

Pass@1 (24.5), and syntax validity (90.2) in turn show it 

generates runnable and correct code. This is due to better 

training methods and additional enhancements that establish 

RoBERTaBART_X as the most reliable model for code 

generation tasks. 

Example of Employing the RoBERTaBART_X Model for 

Code Generation using the Django Dataset. 

Input 

"Generate a Django model for a blog." 

Reference 

class Blog(models.Model): 

title = models.CharField(max_length=100) 

content = models.TextField() 

Output 

Def create_blog_model(): 

Class Blog(models.Model): 

Title = models.CharField(max_length=100) 

Content = models.TextField() 

Return Blog 

BLEU_Score: 100.0 

As shown in Table 3 below, some of the models assessed on 

the CodeSearchNet dataset are compared according to several 

metrics including BLEU, CodeBLEU, Exact Match, Syntax 

Validity, Pass@1, and Execution Accuracy. 

 

Table 4: Model Performance on CodeSearchNet Dataset 

Model BLEU CodeBLEU Exact Match Syntax Validity Pass@1 Execution Accuracy 

CodeBERT 33.2 37.4 27.2 84.7 15.6 12.8 

CodeT5 38.6 42.7 30.9 87.4 19.8 17.2 

RoBERTaMarian 36.0 40.5 29.5 86.1 18.2 15.5 

RoBERTaBART 37.4 41.1 30.1 86.5 18.9 16.3 

RoBERTaBART_X 44.3 49.8 35.5 92.3 26.8 23.5 

 

A BLEU score of 33.2, Exact Match of 27.2, and a 

CodeBLEU of 37.4, with Syntax Validity of 84.7, Pass@1 is 

15.6, and Execution Accuracy is 12.8, were the records 

obtained for CodeBERT, which indicate some issues in 

running the generated code. The CodeT5 model demonstrated 

its effectiveness with a BLEU score of 38.6, a CodeBLEU 

score of 42.7, and an Exact Match score of 30.9. Its Syntax 

Validity is also at 87.4, achieving a Pass@1 score (19.8) and 

Execution Accuracy (17.2), which indicates strong 

performance in generating working code. Similarly, 

RoBERTaMarian achieved records that were slightly lower 

than CodeT5 in the other metrics, but still consistent; these 

were the results: a BLEU of 36.0, CodeBLEU of 40.5, and 

Exact Match of 29.5. Its scores were Syntax Validity 86.1, 

Pass@1 18.2, and Execution Accuracy 15.5. Additionally, the 

performance of RoBERTaBART on CodeSearchNet was 

impressive, with a BLEU score of 37.4, a CodeBLEU score 

of 41.1, and an Exact Match score of 30.1. It performed better 
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in general and across generations, with Syntax Validity at 

86.5, Pass@1 at 18.9, and Execution Accuracy at 16.3. 

RoBERTaBART_X also had the best performance in all 

metrics overall. This yielded a BLEU score of 44.3, a 

CodeBLEU score of 49.8, and an Exact Match score of 35.5. 

It also exhibited the highest Syntax Validity and Pass@1 and 

Execution Accuracy, at 92.3, 26.8, and 23.5, respectively, in 

addition to being more efficient and robust in executing code 

generation based on the CodeSearchNet dataset compared to 

the other models. RoBERTaBART_X outperformed all other 

models in each of the evaluation metrics. 

Example of Employing the RoBERTaBART_X Model for 

Code Generation using CodeSearchNet. 

Input 

Find the maximum value in a list numbers. 

Reference 

Max(numbers) 

Output 

Def get_max(numbers: list) -> int: 

Return max(numbers) 

CodeBLEU_score: 49.2 

 

Example 2 

Input: compute the factorial of a number n. 

Reference: 

Math.factorial(n) 

Output: 

Import math 

Def factorial(n: int) -> int: 

Return math.factorial(n) 

CodeBLEU_score: 50.1 

 

Discussion 

RoBERTaBART_X's performance (as shown in Tables 1, 2, 

and 3) on test data was compared to that of other baseline 

models, including CodeBERT, CodeT5, RoBERTaMarian, 

and RoBERTaBART, across three popular code generation 

datasets: CoNaLa, Django, and CodeSearchNet. The metrics 

used for evaluation are BLEU, CodeBLEU, Exact Match, 

Syntax Validity, Pass@1, and Execution Accuracy. 

RoBERTaBART_X consistently surpasses all baseline 

models across all datasets based on principal evaluation 

metrics. This model had the greatest increase in BLEU and 

CodeBLEU, which are indicative of generating semantically 

correct code. Exact Match and Syntax Validity are also 

substantially better in RoBERTaBART_X, in favour of the 

hypothesis that the generated code follows syntax rules more 

strongly and resembles human-written code more.  

The significant effect on execution accuracy was founded, 

meaning that the generated programs are syntactically correct 

and ensure error-free execution. In addition, the performance 

splits on the datasets; for the CoNaLa dataset, 

RoBERTaBART_X scored the highest BLEU (42.9), 

CodeBLEU (48.6), and Exact Match (36.3) scores. It also 

presented the highest average syntax validity (91.4) and 

execution accuracy (24.6). On the Django dataset, 

RoBERTaBART_X once again outperformed all other 

metrics. Its BLEU and CodeBLEU scores were 39.5 and 46.2 

respectively, with an Exact Match score of 34.1. 

RoBERTaBART_X also outperformed the other models in 

the CodeSearchNet dataset, achieving a BLEU score of 44.3, 

a CodeBLEU score of 49.8, and an Exact Match of 35.5, as it 

did in all other cases. Finally, the improvements reported with 

RoBERTaBART_X are attributed to the use of task-adaptive 

pretraining (TAPT) alongside specialized data augmentation 

techniques, such as retrieval-augmented generation (RAG), 

FlashAttention, and sparse attention. These techniques 

improve the understanding and completion of the given task. 

Self-correction mechanisms also helped improve execution 

accuracy, transforming RoBERTaBART_X into a more 

effective code generation tool. 

 

CONCLUSION 

This paper presents RoBERTaBART_X, a hybrid transformer 

architecture designed to improve automated code generation 

through the use of TAPT, RAG, FlashAttention, Sparse 

Attention, and domain-aware augmentation. It has been 

empirically validated to outperform current best practices 

traditional transformer-based models such as CodeBERT, 

CodeT5, RoBERTaMarian, and RoBERTaBART across all 

scores (BLEU, CodeBLEU, Exact Match, Syntax Validity, 

Pass@1, and Execution Accuracy) on all levels. The best 

improvements are BLEU, CodeBLEU and Execution 

Accuracy which both accurately perform semantic 

correctness and are also able to run without error. Syntax 

Validity was 90% greater across the CoNaLa, Django, and 

CodeSearchNet datasets for RoBERTaBART_X, which 

highlighted high grammatical correctness of generated code. 

Notably, it also enhances performance with respect to 

execution correctness, syntactical correctness, and robustness 

in the domain, making it useful in practice as an aid to 

automated software development. 
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