
FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 – 255 249

8

ROBERTaBART_X: A HYBRID TRANSFORMER MODEL FOR ENHANCING AUTOMATED CODE

GENERATION

1Adedayo Philip Ajibade and 2Olaniyan Olatayo Moses

1Department of Computer Science, Faculty of Sciences, National Open University of Nigeria, Lagos, Nigeria

2Department of Computer Engineering, Federal University, Oye Ekiti, Nigeria

*Corresponding authors’ email: adedayoajibade01@gmail.com

ABSTRACT

The use of automated code generation (ACG) has been a significant aspect of the software engineering process,

enabling the production of code with greater speed and precision. However, many issues, such as the absence

of long-term context, poor debugging, lack of domain adaptation, and functional inaccuracy, remain in the field

of Automatic code generation. Even though its impact on Software engineering is apparently huge, these issues

continue to exist. The model proposed herein, RoBERTaBART_X, is a hybrid transformer model based on

RoBERTa and BART, supplemented by task-adaptive pretraining (TAPT), domain-specific data augmentation

(DA), retrieval-augmented generation (RAG), FlashAttention, and sparse attention. The experiments were

performed on standard datasets, including CoNaLa, Django, CodeSearchNet, and HumanEval, and were

evaluated using BLEU, CodeBLEU, Exact Match Accuracy, Syntax Validity, and Execution Accuracy. The

experiment results show that it outperforms all the baseline models of CodeBERT, CodeT5, RoBERTaMarian,

and RoBERTaBART in semantic correctness, syntactic validity, execution success, CodeBLEU, and Pass@k.

Most interestingly, RoBERTaBART_X achieves +6.1 BLEU and +6.6% Execution Accuracy on coNaLa,

+4.8% Execution Accuracy on Django, and +3.2 % on CodeBLEU on codeSearchNet, demonstrating itself to

be a strong competitor across diverse tasks. Given these findings, we recommend RoBERTaBART_X as the

highest-performing model for generating resilient executable code to date. We believe that stacking strong

encoders on top of autoregressive decoders and training them in a special way has the potential to push the

already advanced automated code generation research even further.

Keywords: Automated Code Generation, Transformer Models, RoBERTa, BART, Hybrid Architectures,

Retrieval-Augmented Models, Software development automation, Software Engineering

INTRODUCTION

Software development automation is one of the primary goals

of modern software engineering, and recent advances in

machine learning have had a positive impact in areas such as

code completion, bug repair, and natural language-to-code

translation (Allamanis et al., 2018; Chen et al., 2021). Recent

transformers such as CodeBERT (Feng et al., 2020), CodeT5

(Wang et al., 2021), and Codex (Chen et al., 2021) have

demonstrated strong performance on this task, largely by

learning to translate natural language intents into source code.

However, there are still two main challenges: the validity of

natural language query semantics and the generation of

syntactically correct and executable code (Ahmad et al., 2021;

Liu et al., 2023).

Besides, existing approaches generally adopt one architecture

type, either encoder-only, decoder-only, or encoder-decoder,

which restricts them from balancing semantic understanding

and code generation smoothly. Some studies have attempted

to explain the gap between understanding semantic

knowledge and code generation. For instance,

GraphCodeBERT (Guo et al., 2021) adopts data-flow graphs

into transformer pretraining in order to capture program

semantics more effectively, but the power of explicitly

graphed graphs limits the number of functions and slows the

inference. PLBART is used by Ahmad et al., 2021, which

adopts the encoder–decoder architecture based on a large-

scale programming and natural language corpora and

increases repair and translation work, but is also slow in

maintaining execution accuracy and handling long-range

dependencies. CodeT5+ (Liu et al., 2023) combines

identification-aware embeddings and a common pretraining

framework, but it produces generative performance in

complex program implementation, so its code understanding

is limited because it cannot perform in the broadest sense.

More recently, Codex (Chen et al. 2021) demonstrated strong

natural language-to-code generation but is inconsistent with

semantic drift and often produces code that seems

syntactically valid but fails execution tests. These problems

illustrate the difficulty of translating meanings and executable

outputs into a single architecture, and are the motivation of

proposed hybrid RoBERTaBART_X model.

RobBERTaBART_X, a model that combines RoBERTa (Liu

et al., 2019) and the autoregressive generative fluency of

BART (Lewis et al., 2020), which is enhanced with Retrieval-

Augmented Generation (RAG) (Lewis et al., 2020),

FlashAttention (Dao et al., 2022), and Sparse Attention (Child

et al., 2019), that utilize more contextually relevant data

processing, are more efficient at processing long sequences,

and offer better structural modeling, respectively.

MATERIALS AND METHODS

This research employs an experimental method to optimize

the accuracy model of automated code generation, combining

the principles of Natural Language Processing (NLP) from the

perspective of the RoBERTa and BART hybrid extraction

model through empirical studies for evaluation. The

methodology comprises five main components: model

architecture, dataset preparation, training strategy,

improvements, and evaluation.

Model Architecture

Using an encoder-decoder framework that includes Encoder:

RoBERTa-base (Liu et al., 2019), a robustly optimized

transformer encoder model based on BERT is developed by

Liu et al. by using dynamic masking with a larger training

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 9 No. 11, November, 2025, pp 249 – 255

DOI: https://doi.org/10.33003/fjs-2025-0911-3954

mailto:adedayoajibade01@gmail.com
https://doi.org/10.33003/fjs-2025-0911-3954

ROBERTaBART_X: A HYBRID TRA … Adedayo and Olaniyan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 – 255 250

corpus (160GB of text) and longer training cycles. There are

12 transformer layers, 768 hidden dimensions, 12 attention

heads, and about 125 million parameters. It is contextual

semantic knowledge that is particularly effective in

understanding intent from human language input. It was

trained on a lot of language understanding tasks.

Decoder: BART-base (Lewis et al., 2020), on the other hand,

is a sequence-to-sequence model with an encoder–decoder

architecture. It has 6 encoder layers and 6 decoder layers with

768 hidden dimensions, 12 attention heads, and an impressive

139 million parameters. BART is a denoising autoencoder

which can be trained to excel at conditional text generation by

reconstructing corrupted data into words and sound that are

fluent and coherent. Simply put, it is a substantial generative

transformer that can decode conditionally. Hugging Face

wraps the model in EncoderDecoderModel and trains it on

code generation tasks using example pairs of natural language

and code. Improvements include Task-adaptive pretraining

(TAPT), Domain-specific Augmentation (DA), Retrieval-

Augmented Generation (RAG), Advanced Attention

Mechanisms (FlashAttention + Sparse Attention), Self-

Correction Mechanisms, and Automated Debugging.

Figure 1: Proposed RoBERTaBART_X Model Diagram

These operational stages take a cue from (Barna et al., 2024),

which combines these processes to improve code generation

by leveraging a sequence of stages:

Input Stage

Model input is based on natural language (NL) text and code.

Preprocessing

The NL text and code are preprocessed to standardize and

clean the data. The output of this preprocessing is prepared

for further embedding.

Embedding Stage

There are four processes for Natural Language Input:

i. Word Embedding: This step transforms the words into

vector representations.

ii. Positional Embeddings: Encodes each word's position in

the sequence.

iii. Token Type Embeddings: Helps identify tokens in the

sentence, such as the question versus context.

iv. Layer Normalization and Dropout: To stabilize training

and mitigate overfitting

For the Code Input

The code is also processed and run through the embedding

stage, which consists of:

i. Word Embeddings: Transforms code entities into vector

representations.

ii. Sinusoidal Embeddings: A type of positional encoding

that makes it easier to distinguish tokens based on their

position in the code sequence.

Model Stages

i. The output of the embedding stage is fed into the

DistilRoBERTa-base Model, a distilled version of

RoBERTa that enhances efficiency without losing

performance. This model processes the input, extracting

features relevant for code generation.

ii. The output from DistilRoBERTa-base is passed to

Facebook/Bart-base, a transformer model trained for

learning mappings from natural language to code, which

can then be used to generate code automatically from

human instructions.

Combining Outputs

The embeddings from both the NL text and code are

combined at the Facebook/bart-base stage to generate the final

output for the RoBERTaBART Model.

ROBERTaBART_X: A HYBRID TRA … Adedayo and Olaniyan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 – 255 251

Enhancements

i. The output from both the DistilRoBERTa-base and

Facebook/Bart-base of the RoBERTaBART Model

combines with RAG, which helps to retrieve relevant

code snippets dynamically from CoNaLa, Django, and

CodeSearchNet sources. This improves contextual

understanding of the RoBERTaBART model output.

RAG ensures that the generated code is more realistic

and executable.

ii. After combining an enhanced RoBERTaBART and

RAG, the output is passed to Advanced Attention

Mechanisms, which optimize the model's efficiency and

performance during training and inference.

iii. The output of the Advanced Attention Mechanisms

serves as the input of the Self-Correction mechanism,

which checks for errors, refines the code, and retrieves

more relevant examples if needed.

iv. The output from the Self-Correction module is delivered

to the Automated Debugging module, which analyzes

the code and uses static analysis and dynamic runtime

checks to identify and fix errors before finalizing the

code output.

v. The output from the Automated Debugging module is

subjected to Execution-Based Testing, which runs unit

tests to check correctness. At this stage, two processes

were carried out: if there were no errors, the final code

output would be implemented based on the provided

input, resulting in a more accurate, efficient, and context-

aware tool for code generation. Conversely, the code is

refined through RAG and Self-Correction to improve it,

incorporating more examples and learning from

mistakes. It keeps going until the output is stable and

correct.

vi. The final result is code that works and is ready to be run.

Training Strategy

To fine-tune the model parameters, the trainer class is used as

follows: Optimizer: AdamW with linear warmup, Batch size:

4 per device, Epochs: 3, Learning rate: 2e-5, Evaluation

strategy: Epoch-level, Loss Function: Cross-entropy with

attention masking, Tokenizers: RobertaTokenizer for input,

BartTokenizer for output.

Dataset Preparation

This paper utilizes several publicly available datasets that

have been proven to perform well for training AI models to

generate code. Small-scale, domain-specific datasets, which

were extracted from the curated datasets that are stored in

Hugging Face, were used for rapid experimentation:

Table 1: Domain-Specific Datasets with the Small-Scale Samples Used

Dataset Domain Samples Used Purpose

CoNaLa:

https://huggingface.co/datasets/AhmedSSoliman/CoNaLa-Large

Python (Natural

Lang

<-> Code)

26.4k pairs

Intent -> Code

Django:

www.huggingface.co/datasets/AhmedSSoliman/DJANGO

Python (Code

Completion)

18.8k snippets Generate

completions

CodeSearchNet:

https://huggingface.co/datasets/AhmedSSoliman/CodeSearchNet

Multilingual

(Code Search)

457k examples Retrieve

relevant code

HumanEval (openai/humaneval) Python (Eval

Benchmarks)

164 prompts Functional

accuracy eval

Each dataset was also tokenized, padded, and truncated to a maximum of 128 tokens. All the datasets used were composed of

502,364 training instances

Experimental Setup

The hardware environment in which the experiments were

conducted, utilizing a Google Colab environment and GPUs

to fine-tune and evaluate each model using the specified

metrics, with results recorded for comparison. The cloud GPU

provided by Google Inc. and GPU-accelerated deep learning

frameworks, such as PyTorch, are also available. The

Implementation was done with the following specification:

Google Colab with NVIDIA A100 GPU, Frameworks:

PyTorch 2.0+, Hugging Face Transformers, Language:

Python 3.11, Notebook Environment: Google Colab and

JupyterLab, Visualization: Matplotlib, Seaborn, Plotly, GPU

Memory: 16 GB (T4) / 16–32 GB (V100), RAM: Up to 40

GB system memory, Storage Google Drive integration (100

GB+ working storage)

Evaluation Metrics

After training, the model is evaluated against syntactic,

semantic, and execution-based quality criteria.

BLEU Score (Bilingual Evaluation Understudy Score),

(Papineni et al., 2002)

It measures the overlap of n-grams in the candidate output

with n-grams in the reference outputs, including a brevity

penalty to discourage overly short output.

The formula for BLEU is

 (1)

Where:

 (Brevity penalty)

wn= Weight assigned to each n-gram

c= candidate length, r= reference length.

Exact Match Accuracy

Exact Match Accuracy (EMA) measures the percentage of

instances where the generated output exactly matches the

reference output. Eq.2 shows how Exact Match Accuracy is

expressed:

 (2)

Where:

The Exact Match is counted when the generated output is

identical to the reference output.

N = Total number of samples (test cases).

= Model's generated output for sample i.

 = Reference (ground truth) output for sample i.

ROBERTaBART_X: A HYBRID TRA … Adedayo and Olaniyan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 – 255 252

 = Indicator function that returns 1 if the

generated output matches the reference exactly, otherwise 0.

Interpretation: EM = 1 (100%) - Model always generates

the correct code.

CodeBLEU (Ren et al., 2020)

It measures the quality of code, by combining n-gram

precision with syntax and semantics.

(3)

Where:

BLEU = Traditional BLEU score measuring n-gram precision

Weighted n-gram Match = Adjusts importance of different n-

gram types

Syntax Match = Measures similarity between Abstract Syntax

Trees (ASTs)

Semantic Match = Uses data-flow analysis to assess semantic

equivalence

λ1, λ2, λ3, λ4 = Tunable weights (default: 0.25 each,

summing to 1)

Pass@k Score

It measures the probability that at least one correct solution

exists out of k generated.

the formula for Pass@k Score:

 (4)

Where:

n = total generated samples,

c = number of correct samples,

k = number of candidate solutions evaluated.

Execution-Based Testing

A measure of the proportion of the generated code that runs

without errors and returns the expected output.

 (5)

Syntax Validity

It ensures the generated code follows proper syntax rules and

can be parsed and executed without errors. Computed as:

 (6)

Baseline Model Comparison

For a performance comparison with our RoBERTaBART_X

model, we selected a few popular models used in code

generation. All baselines (CodeBERT, CodeT5,

RoBERTaMarian, and RoBERTaBART) were measured

consistently across the CoNaLa, Django, CodeSearchNet, and

HumanEval datasets.

RESULTS AND DISCUSSION

Results

These results compare the performance of

RoBERTaBART_X with that of all baseline models

(CodeBERT, CodeT5, RoBERTaMarian, RoBERTaBART)

using various metrics, including BLEU, CodeBLEU, Exact

Match, Syntax Validity, Pass@k, and Execution Accuracy.

The table below summarizes the comparison between

RoBERTaBART_X with its counterpart to several baseline

models over multiple benchmarks. This Table 1 summarizes

the performance metrics for the CoNaLa dataset on key

BLEU, CodeBLEU, Exact Match, Syntax Validity, Pass@1,

and Execution Accuracy. For CodeBERT, the best scores

were 32.1 on BLEU, 38.5 on CodeBLEU, and 28.0 on Exact

Match Accuracy. Additionally, it shows that it is weakest for

that task, with the lowest scores in all metrics. However, it is

average in generating valid and relevant code snippets with

decent performance, as indicated by a Syntax Validity score

of 85.0, a Pass@1 rate of 17.4, and an Execution Accuracy of

14.2.

Table 2: Model Performance on CoNaLa Dataset

Model BLEU CodeBLEU Exact Match Syntax Validity Pass@1 Execution Accuracy

CodeBERT 32.1 38.5 28.0 85.3 17.4 14.2

CodeT5 36.8 41.2 30.5 88.6 20.3 18.0

RoBERTaMarian 34.6 39.9 29.7 86.7 18.5 16.1

RoBERTaBART 35.2 40.3 30.0 87.1 19.2 17.0

RoBERTaBART_X 42.9 48.6 36.3 91.4 27.7 24.6

CodeT5 also reported Exact Match Accuracy of 30.5, BLEU

of 36.8, and CodeBLEU of 41.2. It had a Syntax Validity of

88.6, a Pass@1 of 20.3, and an Execution Accuracy of 18.0.

These obtained results demonstrate that this model is more

powerful, as it outperforms other non-X RoBERTa variants

and achieves better scores than the CodeBERT model. The

RoBERTaMarian model achieved a BLEU score of 34.6, a

CodeBLEU score of 39.9, and an Exact Match Accuracy of

29.7. Together with a Syntax Validity of 86.7, a Pass@1 of

18.5, and an Execution Accuracy of 16.1, these indicate an

average performance slightly below that of CodeT5.

RoBERTaBART had 35.2 BLEU, 40.3 CodeBLEU, 30.0

Exact Match Accuracy, 87.1 Syntax validity, 19.2 Pass@1,

and 17.0 Execution Accuracy. This score showed that it was

basically on par with RoBERTaMarian and that

RoBERTaBART surpassed but did not outscore CodeT5 on

most metrics. Finally, RoBERTaBART_X is by far the best

model. This model, for instance, achieved a BLEU score of

42.9, a CodeBLEU score of 48.6, an Exact Match Accuracy

of 36.3, a Syntax validity score of 91.4, a Pass@1 score of

27.7, and an Execution Accuracy score of 24.6 on the CoNaLa

dataset.

Example 1

The following are examples of employing the

RoBERTaBART_X model for the code generation task.

Using CoNaLa: AhmedSSoliman/CoNaLa-Large, and

evaluation metric score.

Input

check if all elements in list mylist are identical.

Reference

all(x == mylist[0] for x in mylist)

Output

def all_identical(mylist: list) -> bool:

return all(x == mylist[0] for x in mylist)

Bleu_score: 47.0

Example 2:

ROBERTaBART_X: A HYBRID TRA … Adedayo and Olaniyan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 – 255 253

The following are examples of employing the

RoBERTaMarian model for the code generation task, using

CoNaLa datasets

Input

Get the last part of a string before the character ’-’

Reference

Print (x.rsplit('-', 1)[0])

Output

Print (x.rsplit('-', 1)[0])

Bleu_score: 31.6

In Table 2 below, the results of the experiment applied to the

Django dataset are shown, where it was noted that all models

achieve lower performance on the Django dataset compared

to the CoNaLa dataset, indicating that the Django task is

likely more challenging.

Table 3: Model Performance on Django Dataset

Model BLEU CodeBLEU Exact Match Syntax Validity Pass@1 Execution Accuracy

CodeBERT 29.7 36.4 26.9 84.1 16.1 13.0

CodeT5 34.1 39.5 28.8 86.3 18.6 15.5

RoBERTaMarian 32.2 38.1 28.0 85.5 17.3 14.0

RoBERTaBART 33.0 38.8 28.3 85.9 17.9 14.7

RoBERTaBART_X 39.5 46.2 34.1 90.2 24.5 21.3

On the CodeBERT model, the results on the Django dataset

scored 29.7 BLEU, 36.4 CodeBLEU, an Exact Match

Accuracy of 26.9, and Syntax Validity (84.1), Pass@1 (16.1),

and Execution Accuracy (13.0), suggesting it is the worst-

performing model in all considered metrics. Although it has

reasonable syntax, it has low execution accuracy.

Additionally, the CodeT5 model recorded the following

results: BLEU: 34.1, CodeBLEU: 39.5, Exact Match: 28.8,

Syntax Validity: 86.3, Pass@1: 18.6, Execution Accuracy:

15.5, indicating that it has shown strong improvement over

CodeBERT and a better balance across all metrics, especially

excelling in syntax validity and execution. Moreover, the

performance metrics of the RoBERTaMarian model

demonstrate its efficacy by achieving the following records: a

BLEU score of 32.2, a CodeBLEU score of 38.1, an Exact

Match Accuracy of 28.0, a Syntax validity of 85.5, and a

Pass@ score of 17.3, as well as an Execution Accuracy score

of 14.0 on the Django dataset. These results show good code

syntax, though execution accuracy is moderate. Although it

has a slightly worse performance than CodeT5 across several

metrics, it also proves to be competitive. Furthermore, when

assessed on the DJANGO dataset, the RoBERTaBART model

demonstrates its coherent superiority among all state-of-the-

art models in code generation, boasting a slight superior

BLEU score of 33.0, CodeBERT score of 38.8, an Exact

Match Accuracy score of 28.3, Syntax Validity score of 85.9,

a Pass@1 score of 17.9, and an Execution Accuracy score of

92.76. It shows marginally better generation and good syntax

validity, but it falls in the middle tier of performance

compared to more advanced models, such as

RoBERTaBART_X. Finally, under all metrics considered,

RoBERTaBART_X has the best performance. Its high BLEU

(39.5), CodeBLEU (46.2), and an Exact Match Accuracy

(34.1) scores show how similar its outputs are to those of the

references, and its state-of-the-art execution accuracy (21.3),

Pass@1 (24.5), and syntax validity (90.2) in turn show it

generates runnable and correct code. This is due to better

training methods and additional enhancements that establish

RoBERTaBART_X as the most reliable model for code

generation tasks.

Example of Employing the RoBERTaBART_X Model for

Code Generation using the Django Dataset.

Input

"Generate a Django model for a blog."

Reference

class Blog(models.Model):

title = models.CharField(max_length=100)

content = models.TextField()

Output

Def create_blog_model():

Class Blog(models.Model):

Title = models.CharField(max_length=100)

Content = models.TextField()

Return Blog

BLEU_Score: 100.0

As shown in Table 3 below, some of the models assessed on

the CodeSearchNet dataset are compared according to several

metrics including BLEU, CodeBLEU, Exact Match, Syntax

Validity, Pass@1, and Execution Accuracy.

Table 4: Model Performance on CodeSearchNet Dataset

Model BLEU CodeBLEU Exact Match Syntax Validity Pass@1 Execution Accuracy

CodeBERT 33.2 37.4 27.2 84.7 15.6 12.8

CodeT5 38.6 42.7 30.9 87.4 19.8 17.2

RoBERTaMarian 36.0 40.5 29.5 86.1 18.2 15.5

RoBERTaBART 37.4 41.1 30.1 86.5 18.9 16.3

RoBERTaBART_X 44.3 49.8 35.5 92.3 26.8 23.5

A BLEU score of 33.2, Exact Match of 27.2, and a

CodeBLEU of 37.4, with Syntax Validity of 84.7, Pass@1 is

15.6, and Execution Accuracy is 12.8, were the records

obtained for CodeBERT, which indicate some issues in

running the generated code. The CodeT5 model demonstrated

its effectiveness with a BLEU score of 38.6, a CodeBLEU

score of 42.7, and an Exact Match score of 30.9. Its Syntax

Validity is also at 87.4, achieving a Pass@1 score (19.8) and

Execution Accuracy (17.2), which indicates strong

performance in generating working code. Similarly,

RoBERTaMarian achieved records that were slightly lower

than CodeT5 in the other metrics, but still consistent; these

were the results: a BLEU of 36.0, CodeBLEU of 40.5, and

Exact Match of 29.5. Its scores were Syntax Validity 86.1,

Pass@1 18.2, and Execution Accuracy 15.5. Additionally, the

performance of RoBERTaBART on CodeSearchNet was

impressive, with a BLEU score of 37.4, a CodeBLEU score

of 41.1, and an Exact Match score of 30.1. It performed better

ROBERTaBART_X: A HYBRID TRA … Adedayo and Olaniyan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 – 255 254

in general and across generations, with Syntax Validity at

86.5, Pass@1 at 18.9, and Execution Accuracy at 16.3.

RoBERTaBART_X also had the best performance in all

metrics overall. This yielded a BLEU score of 44.3, a

CodeBLEU score of 49.8, and an Exact Match score of 35.5.

It also exhibited the highest Syntax Validity and Pass@1 and

Execution Accuracy, at 92.3, 26.8, and 23.5, respectively, in

addition to being more efficient and robust in executing code

generation based on the CodeSearchNet dataset compared to

the other models. RoBERTaBART_X outperformed all other

models in each of the evaluation metrics.

Example of Employing the RoBERTaBART_X Model for

Code Generation using CodeSearchNet.

Input

Find the maximum value in a list numbers.

Reference

Max(numbers)

Output

Def get_max(numbers: list) -> int:

Return max(numbers)

CodeBLEU_score: 49.2

Example 2

Input: compute the factorial of a number n.

Reference:

Math.factorial(n)

Output:

Import math

Def factorial(n: int) -> int:

Return math.factorial(n)

CodeBLEU_score: 50.1

Discussion

RoBERTaBART_X's performance (as shown in Tables 1, 2,

and 3) on test data was compared to that of other baseline

models, including CodeBERT, CodeT5, RoBERTaMarian,

and RoBERTaBART, across three popular code generation

datasets: CoNaLa, Django, and CodeSearchNet. The metrics

used for evaluation are BLEU, CodeBLEU, Exact Match,

Syntax Validity, Pass@1, and Execution Accuracy.

RoBERTaBART_X consistently surpasses all baseline

models across all datasets based on principal evaluation

metrics. This model had the greatest increase in BLEU and

CodeBLEU, which are indicative of generating semantically

correct code. Exact Match and Syntax Validity are also

substantially better in RoBERTaBART_X, in favour of the

hypothesis that the generated code follows syntax rules more

strongly and resembles human-written code more.

The significant effect on execution accuracy was founded,

meaning that the generated programs are syntactically correct

and ensure error-free execution. In addition, the performance

splits on the datasets; for the CoNaLa dataset,

RoBERTaBART_X scored the highest BLEU (42.9),

CodeBLEU (48.6), and Exact Match (36.3) scores. It also

presented the highest average syntax validity (91.4) and

execution accuracy (24.6). On the Django dataset,

RoBERTaBART_X once again outperformed all other

metrics. Its BLEU and CodeBLEU scores were 39.5 and 46.2

respectively, with an Exact Match score of 34.1.

RoBERTaBART_X also outperformed the other models in

the CodeSearchNet dataset, achieving a BLEU score of 44.3,

a CodeBLEU score of 49.8, and an Exact Match of 35.5, as it

did in all other cases. Finally, the improvements reported with

RoBERTaBART_X are attributed to the use of task-adaptive

pretraining (TAPT) alongside specialized data augmentation

techniques, such as retrieval-augmented generation (RAG),

FlashAttention, and sparse attention. These techniques

improve the understanding and completion of the given task.

Self-correction mechanisms also helped improve execution

accuracy, transforming RoBERTaBART_X into a more

effective code generation tool.

CONCLUSION

This paper presents RoBERTaBART_X, a hybrid transformer

architecture designed to improve automated code generation

through the use of TAPT, RAG, FlashAttention, Sparse

Attention, and domain-aware augmentation. It has been

empirically validated to outperform current best practices

traditional transformer-based models such as CodeBERT,

CodeT5, RoBERTaMarian, and RoBERTaBART across all

scores (BLEU, CodeBLEU, Exact Match, Syntax Validity,

Pass@1, and Execution Accuracy) on all levels. The best

improvements are BLEU, CodeBLEU and Execution

Accuracy which both accurately perform semantic

correctness and are also able to run without error. Syntax

Validity was 90% greater across the CoNaLa, Django, and

CodeSearchNet datasets for RoBERTaBART_X, which

highlighted high grammatical correctness of generated code.

Notably, it also enhances performance with respect to

execution correctness, syntactical correctness, and robustness

in the domain, making it useful in practice as an aid to

automated software development.

REFERENCES

Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K. W.

(2021). Unified pre-training for program understanding and

generation. Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies, 2655–2668.

https://doi.org/10.18653/v1/2021.naacl-main.211

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018).

A survey of machine learning for big code and naturalness.

ACM Computing Surveys, 51(4), 81.

https://doi.org/10.1145/3212695

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P., Kaplan,

J., & Zaremba, W. (2021). Evaluating large language models

trained on code. arXiv preprint arXiv:2107.03374.

https://arxiv.org/abs/2107.03374

Child, R., Gray, S., Radford, A., & Sutskever, I. (2019).

Generating long sequences with sparse transformers. arXiv

preprint arXiv:1904.10509. https://arxiv.org/abs/1904.10509

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., & Ré, C. (2022).

FlashAttention: Fast and memory-efficient exact attention

with IO-awareness. Advances in Neural Information

Processing Systems, 35, 16344–16359.

https://arxiv.org/abs/2205.14135

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., &

Zhou, M. (2020). CodeBERT: A pre-trained model for

programming and natural languages. Proceedings of the 2020

Conference on Empirical Methods in Natural Language

Processing: Findings, 1536–1547.

https://doi.org/10.18653/v1/2020.findings-emnlp.139

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed,

A., Levy, O., & Zettlemoyer, L. (2020). BART: Denoising

sequence-to-sequence pre-training for natural language

generation, translation, and comprehension. Proceedings of

the 58th Annual Meeting of the Association for

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3212695
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2205.14135
https://doi.org/10.18653/v1/2020.findings-emnlp.139

ROBERTaBART_X: A HYBRID TRA … Adedayo and Olaniyan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 249 – 255 255

 ©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

Computational Linguistics, 7871–7880.

https://doi.org/10.18653/v1/2020.acl-main.703

Lewis, P., Perez, E., Piktus, A., Karpukhin, V., Goyal, N.,

Küttler, H., & Riedel, S. (2020). Retrieval-augmented

generation for knowledge-intensive NLP tasks. Advances in

Neural Information Processing Systems, 33, 9459–9474.

https://arxiv.org/abs/2005.11401

Liu, I., Wang, Y., Zhang, Y., & Neubig, G. (2023). CodeT5+:

Open code large language models for code understanding and

generation. arXiv preprint arXiv:2305.07922.

https://arxiv.org/abs/2305.07922

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., &

Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT

pretraining approach. arXiv preprint arXiv:1907.11692.

https://arxiv.org/abs/1907.11692

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002).

BLEU: A method for automatic evaluation of machine

translation. Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics, 311–318.

https://doi.org/10.3115/1073083.1073135

Ren, S., Guo, D., Lu, S., Zhou, L., Ma, S., Zhou, J., & Li, H.

(2020). CodeBLEU: A method for automatic evaluation of

code synthesis. arXiv preprint arXiv:2009.10297.

https://arxiv.org/abs/2009.10297

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. (2021). CodeT5:

Identifier-aware unified pre-trained encoder-decoder models

for code understanding and generation. Proceedings of the

2021 Conference on Empirical Methods in Natural Language

Processing, 8696–8708.

https://doi.org/10.18653/v1/2021.emnlp-main.707

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/1907.11692
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2009.10297
https://doi.org/10.18653/v1/2021.emnlp-main.707

