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ABSTRACT

Floods are recurring disasters in Bayelsa State, Nigeria, causing significant damage to infrastructure,
displacement of people, and loss of livelihoods. The research aims to develop an accurate and efficient method
for identifying flood-affected areas using satellite imagery and deep learning techniques. The U-Net
architecture, a convolutional neural network designed for image segmentation tasks, was adapted and trained
on a dataset of high-resolution satellite images including both flood and non-flood periods. The model's
performance was evaluated using various metrics, including precision, recall, and F1-score. Results
demonstrate that the U-Net-based approach achieves high accuracy in delineating flood extents, outperforming
traditional methods. The study also explores the model's ability to detect flood progression over time and its
potential for real-time flood monitoring. The model achieved an accuracy of 88.66%, Recall of 0.90, Loss of
0.2846, Dice 0f 0.90, and IoU of 0.75. This research contributes to the development of advanced flood detection
systems, which can aid in disaster management and mitigation efforts in Bayelsa State and similar flood-prone
regions.
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INTRODUCTION

Floods are a recurring natural disaster in Bayelsa State. They
are among the most devastating natural disasters, causing
significant economic losses, displacement of people, and loss
of life worldwide (IPCC, 2021). Bayelsa State’s unique
geography, with its numerous rivers and low-lying terrain,
makes it particularly vulnerable to flooding. Effective flood
detection and management are crucial for mitigating the
impact of these events. Uso and Onye (2025) carried out
research on the Performance evaluation of five probability
distribution models for the analysis of flood data at River
Niger. Their study evaluates five statistical models to
determine the most reliable method for predicting extreme
flood events at River Niger, Onitsha. Climate change is
increasingly linked to the intensification of flood disasters in
coastal Nigeria (Adelekan, 2016). In Nigeria, particularly in
Bayelsa State, floods are a recurring phenomenon,
exacerbated by climate change, poor urban planning, and
inadequate infrastructure (Nkwunonwo et al., (2020). The
state's geographical location in the Niger Delta region makes
it prone to flooding, with severe consequences on the
environment, economy, and human lives (Ologunorisa,
2004). To mitigate the impact of floods, early detection and
mapping are crucial. Traditional methods of flood detection,
such as ground-based sensors and manual surveys, have
limitations in terms of coverage, accuracy, and timeliness
(Wang et al., 2019).

Remote sensing provides cost-effective, real-time monitoring
of flood-prone areas, even in inaccessible regions (Schumann
& Domeneghetti, 2016). Remote sensing and Geographic
Information Systems (GIS) have emerged as crucial tools for
flood detection and management. Satellite imagery, both
optical and radar, plays a significant role in monitoring and
mapping flood events (Lin et al., 2016; Opolot, 2013). These
technologies offer cost-effective and timely access to spatial
data, even in physically inaccessible areas. For instance,
Sentinel-1 satellite imagery has been used to extract flooding
information and develop machine learning models for flood
detection (Tanim et al., 2022). Sentinel-1 SAR data have been

increasingly applied for near real-time flood detection in
developing countries (Twele et al., 2016). Interestingly, while
advanced technologies are gaining prominence, traditional
sensor-based monitoring techniques still retain significant
advantages in practical applications. Future flood risk
monitoring should focus on integrating multiple data sources
to achieve real-time and accurate monitoring of urban
flooding (Song et al., 2024). This approach could be
particularly beneficial for regions like Bayelsa State, where a
combination of traditional and modern techniques might yield
the most comprehensive flood detection system. Early-
warning systems powered by Al reduce disaster response
times significantly (Guo et al., 2020). Hence, the need to
employ machine learning techniques in flood detection in
Bayelsa State. Machine learning algorithms outperform
traditional thresholding methods for flood detection in
complex terrains (Shen et al., 2019). Recent studies show that
convolutional neural networks have revolutionized image
segmentation tasks in environmental monitoring (Zhang et al.,
2021).

Convolutional neural network like U-Net can be employed.
The use of U-Net in biomedical imaging has inspired its
adaptation for environmental applications (Falk et al., 2019).
Deep learning architectures such as U-Net and ResNet have
been widely applied for geospatial image segmentation tasks
(Zhu et al., 2019). This study applies the U-Net deep learning
architecture to satellite imagery for accurate flood detection
in Bayelsa State, aiming to enhance disaster preparedness,
support real-time monitoring, and provide a reliable
framework for effective flood risk management.

Discussion on Techniques Used

The research employed a combination of remote sensing,
deep learning, and image preprocessing techniques to achieve
effective flood detection. The primary methodological
framework was built around the U-Net architecture, a
convolutional neural network (CNN) tailored for image
segmentation tasks. This choice was motivated by U-Net’s
proven capability in capturing spatial details while preserving
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contextual information through its encoder—decoder structure

and skip connections.

i. Dataset and Metadata: The dataset consisted of 290
paired satellite images and binary flood masks sourced
from the Segmentation of Flood Area repository.
Each image was standardized to 256x256 pixels for
consistency. Metadata, including image paths and train-
test splits, was stored in a structured CSV file, ensuring
smooth mapping between images and their
corresponding masks.

ii. Data Preprocessing: Input images were resized and
normalized to fall within a [0,1] pixel value range to
enhance gradient stability during training. Masks were
thresholded and converted to Boolean arrays to preserve
binary semantics. Bilinear interpolation was applied for
resizing images, while nearest-neighbor interpolation
maintained mask integrity.

U-Net Architecture Design: The segmentation model

followed the traditional U-Net structure without a pre-

trained backbone.

a. Encoder Path: Five down-sampling blocks
progressively captured abstract spatial features,
increasing filter depth from 16 to 256. Dropout
layers were introduced to reduce overfitting.

b. Bottleneck: A high-capacity block with 512 filters
captured the most abstract representations of the
flood-affected regions.

c. Decoder Path: Symmetrical up-sampling blocks
reconstructed image details, concatenating encoder
features via skip connections to preserve spatial
accuracy.

d. Output Layer: A 1x1 convolution with sigmoid
activation produced probability maps for per-pixel
flood prediction.

Training Protocol: Training was conducted using the

Adam optimizer and binary cross-entropy loss function,

suitable for two-class pixel labeling. The dataset was

split into 90% training and 10% validation.

Hyperparameters included a batch size of 8, 50 epochs,

and real-time performance monitoring through

TensorBoard. Early stopping was considered but not

activated, allowing the model to run the full 50 epochs.

v. Evaluation Metrics: The model’s performance was
measured using multiple segmentation metrics:

a. Accuracy (88.66%):Pixel-wise correctness.

b. Precision (0.80): Reliability in identifying true
flood pixels.

c. Recall (0.90): Ability to capture actual flood
regions.

d. Dice Coefficient (0.90): Overlap measure between
predicted and true masks.

e. Intersection over Union (IoU = 0.75): Robustness
of flood boundary delineation. The IoU metric is
widely adopted as a robust performance indicator in
flood segmentation models (Rahman & Wang,
2016)

iii.

iv.

Related Works

Recent developments have recorded application of machine
learning in solving real life problems. Obasi and Timadi
(2025) applied supervised machine learning algorithms, Feed
Forward Neural Network and Random Forest with zero trust
principles to prevent SQL and Malware attacks in a cloud
database. A Feedforward Neural Network (FFNN) classified
SQL queries as benign or malicious, achieving 98% accuracy
with high precision in detecting SQL injection attempts. In
parallel, a Random Forest classifier was used for malware
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traffic detection, attaining 99.37% accuracy by analyzing
behavioral and statistical features. Their research was further
expanded by combining high detection accuracy with
explainable artificial intelligence (XAI) techniques, providing
both transparency and reliability for modern cybersecurity
defense systems. Obasi and Nlerum (2023) developed a
model for the Detection and Prevention of Backdoor Attacks
using CNN with Federated Learning. Timadi and Obasi
(2025) researched on Integrating Zero-Trust Architecture
with Deep Learning Algorithm to Prevent Structured Query
Language Injection Attack in Cloud Database. Nnodi and
Obasi (2025) researched on Leveraging Artificial Intelligence
for Detecting Insider Threats in Corporate Networks. Obasi
and Stow (2023) formulated a Predictive Model for
Uncertainty Analysis Pertaining to Big Data through the
Utilization of a Bayesian Convolutional Neural Network
(CNN). Machine learning models can predict reaction yields
with high accuracy, guilding chemists in selecting high-
yielding reactions and optimizing synthesis routes. As a result
of that, research on Leveraging Machine Learning Algorithms
for Enhanced Prediction of Product Yields and Purity in
Chemical Reactions was developed (Obasi and Abosede,
2025). In infectious disease testing, ML algorithms are
capable of processing large datasets beyond human analytical
capabilities, providing predictive and actionable insights
(Tran et al., 2021). For malaria detection, ML models have
been utilized to automate the analysis of medical images,
including the classification of blood smear images, thereby
reducing reliance on subjective human interpretation
(Pattanaik et al., 2020). An interpretable Early Warning
System for Malaria Outbreak in Bayelsa State using Deep
Learning and Climate Data was developed in 2025(Stow and
Obeasi, 2025).

Again, Satellite imagery and deep learning algorithms can be
used to detect flood events and provide early warnings. An
Early Warning System using Satellite Imagery and Deep
Learning Algorithm was developed (Obasi et. al, 2025).
Effective flood detection and management require a
multidisciplinary approach, combining various technologies
such as remote sensing, GIS, LiDAR, and machine learning
(Jain, 2024). Recent advancements in deep learning and
remote sensing have enabled the development of more
effective flood detection systems (Li et al., 2020). The U-Net
architecture, a type of convolutional neural network (CNN),
has shown remarkable performance in image segmentation
tasks, including flood detection (Ronneberger et al., 2015). By
leveraging satellite imagery and geospatial data, the U-Net
model can accurately identify and map flood-prone areas,
providing valuable insights for flood risk management and
emergency response Mateo-Garcia, G., et al. (2020). For
Bayelsa State, implementing a comprehensive flood detection
system that integrates satellite imagery, ground-based
sensors, and advanced machine learning algorithm like U-Net
could significantly enhance flood preparedness and response
capabilities. The architecture of U-Net is unique in that it
consists of a contracting path and an expansive path. The
contracting path contains encoder layers that capture
contextual information and reduce the spatial resolution of the
input, while the expansive path contains decoder layers that
decode the encoded data and use the information from the
contracting path via skip connections to generate a
segmentation map as shown in figure 1.

Flood detection using U-Net is a deep learning approach that
leverages the U-Net architecture to identify and map flood-
prone areas from satellite imagery. By leveraging U-Net’s
strengths, researchers and practitioners can develop effective
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flood detection systems, enhancing situational awareness and
supporting disaster response.

This study aims to apply the U-Net architecture for flood
detection in Bayelsa State, utilizing satellite imagery and
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Figure 1: U-Net Architecture

MATERIALS AND METHODS

The methodology describes in detail the experimental
procedures and architectural design adopted for flood-area
segmentation using a U-Net model without any pre-trained
backbone. The methodology is organized into the following
sections: (1) Dataset and Metadata, (2) Data Preprocessing,
(3) U-Net Architecture, (4) Training Protocol, and (5)
Evaluation Metrics and Validation Strategy as shown in figure
2. The imagery and corresponding binary masks were
obtained from the  “Segmentation of Flood Area”
repository, comprising satellite or aerial photographs of size
256x256 pixels and their pixel wise flood labels. Metadata
(e.g., file paths, train/test splits) were stored in a CSV file
(metadata.csv), which mapped each image filename to its
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geospatial data. The research seeks to evaluate the
performance of the U-Net model in detecting floods and to
explore its potential applications in flood risk management
and mitigation strategies.
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mask counterpart. Dataset comprises of 290 image—mask
pairs, RGB (3 channels) and single-channel binary masks,
where “1” denotes flooded pixels and “0” denotes
background. A 90:10 random split was applied at training
time (via validation_split=0.1 in model.fit()) to reserve 10%
of the data for validation in each epoch, ensuring the model’s
generalization capacity is continually monitored. During data
processing, each raw image (originally varying in dimension)
was loaded using Pillow and converted to a NumPy array.
Both images and masks were resized to 256x256 to enforce
uniform input dimensions. Resizing employed bilinear
interpolation for images and nearest neighbor or constant
padding for mask arrays to preserve binary semantics.
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Figure 2: Architecture of the Flood Detection Model
Pixel values of input images were scaled to the range [0,1] via Output Layer

a Lambda layer (x — x/256) immediately upon input,
facilitating stable gradient flow. Masks were read in
grayscale, thresholded (automatically by resize preserving
range), and stored as Boolean arrays (dtype=bool). An explicit
channel dimension was appended (shape: 256x256x%1).

The core segmentation model follows the classical U Net
design, comprising a contracting path (encoder) and an
expanding path (decoder), but constructed entirely from
scratch, without leveraging any pre trained encoder backbone.

Input Layer
Shape: 256x256x3 (RGB), Initial normalization via a
Lambda layer.

Encoder (Downsampling Path)

Five encoding blocks (Blocks 1-5) gradually increase feature
depth while halving spatial resolution via MaxPooling:
Block 1: Three Conv2D layers (16 filters, 3x3, ReLU),
Dropout(0.1), followed by MaxPool.

Block 2: Similar structure with 32 filters, Dropout(0.1).
Block 3: 64 filters, Dropout(0.2).

Block 4: 128 filters, Dropout(0.2).

Block 5: 256 filters, Dropout(0.3).

Bottleneck (Block 6)
Two Conv2D layers (512 filters, 3x3, ReLU), Dropout(0.3),
capturing the most abstract representations.

Decoder (Upsampling Path)

Five decoding blocks (Blocks 7-11) symmetrically mirror the
encoder:

Each block begins with Conv2DTranspose (up-sampling by
factor 2), concatenation with the corresponding encoder
feature maps (skip connection), followed by two or three
Conv2D + ReLU layers and Dropout matching the encoder’s
dropout rate.

A final Conv2D (1x1, 1 filter) with sigmoid activation
produces a 256x256x%1 per-pixel probability map for the flood
class.

Model Compilation

Optimizer: Adam (default learning rate). The Adam optimizer
is among the most reliable for training deep segmentation
models (Kingma & Ba, 2015).

Loss function: Binary cross-entropy (appropriate for two-
class pixel labeling).

Metrics: Accuracy (pixel-wise).

Training Protocol

Hyperparameters (Batch size: 8, Epochs: 50, Validation split:
10%)

Callbacks: TensorBoard for real time monitoring (optional
EarlyStopping commented out).

Training Workflow

Initialize model weights with Glorot uniform (default for
Conv2D).

Fit on (X,Y) with validation_split=0.1.

Monitor training and validation loss/accuracy curves to
identify potential overfitting.

While early stopping was configured at patience=2
(monitoring val loss), it remained commented; model
checkpoints were not explicitly saved, but TensorBoard logs
enabled manual selection of best epochs.

RESULTS AND DISCUSSION

The plot_training () function displays training and validation
loss and accuracy across epochs as shown in figure 3, marking
best epochs for both metrics. This aids in diagnosing
convergence and selecting final model weights.

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December (Special Issue), 2025, pp 304 — 310

07



APPLICATION OF U-NET ARCHITECTURE...  Obasi et al., FJS
Training and Validation Loss Training and Validation Accuracy
2.5 === Training loss
we \alidation loss
@ Dbest epoch= 50 085
20 050
0.75
>
31.5 9070
3
<065
10
0.60
N
0.55
05 === Training Accuracy
w— \/alidation Accuracy
050 @ best epoch= 50
0 10 20 30 40 50 0 10 2 30 40 50

Epochs

Figure 3: Training and Validation Loss

The plots in figure 3 show the performance of your model
(likely part of a "Real-time Anti-Sleep Alert Algorithm")
during the training process of over 50 epochs.: Both the
training loss (red line) and the validation loss (green line)
decrease significantly in the initial epochs. This indicates that
the model is learning and improving its ability to make
predictions. For convergence, both loss curves appear to level
off and become relatively stable after around 20-30 epochs.
This suggests that the model's learning rate has slowed down,
and it's approaching a minimum loss value. The validation
loss is consistently slightly higher than the training loss,
which is expected. The training loss measures performance on
the data the model sees during training, while the validation
loss measures performance on unseen data. The small gap is
normal. There is no clear indication of significant overfitting
in the plot. Overfitting would typically be characterized by the
training loss continuing to decrease while the validation loss
starts to increase after a certain point. The curves track each
other reasonably well. The plot highlights "best epoch = 50"
for the validation loss. This suggests that the model achieved
its lowest validation loss at the end of the training process
(epoch 50), or that early stopping was not triggered before 50
epochs and the best performance up to that point was at epoch

Epochs

50. Again, both the training accuracy (red line) and the
validation accuracy (green line) increase rapidly in the initial
epochs, mirroring the decrease in loss. This shows the model
is becoming better at correctly classifying or segmenting
(depending on the task of the algorithm) the data. Similar to
the loss curves, the accuracy curves start to level off after
around 20-30 epochs, indicating that the model's
improvement rate has decreased. There are some noticeable
fluctuations in both the training and validation accuracy
curves, particularly between epochs 20 and 40. This could be
due to the stochastic nature of mini-batch gradient descent,
the specific data batches encountered in those epochs, or the
learning rate schedule. The validation accuracy is generally
close to the training accuracy, with some minor variations.
This again suggests that the model is generalizing reasonably
well to unseen data. The plot highlights "best epoch = 50" for
the validation accuracy. This indicates that the highest
validation accuracy was achieved at epoch 50, or that early
stopping was not triggered and this was the best performance
reached. The accuracy values are around 0.85-0.86 at this
point.

Figure 4 provides a visual representation of your model's
performance on a single example from the dataset.

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December (Special Issue), 2025, pp 304 — 310

308



APPLICATION OF U-NET ARCHITECTURE... Obasi et al., FJS
original image original mask pred mask
J
4 /
a ;
- -»

100

200

0 200 0

Figure 4: Visual Representation of the Result

The three panels in figure 4 show original image, original
mask and pred mask. Original image is the input image
provided to the model. Original mask is the ground truth mask
corresponding to the original image. The segmentation mask
predicted by our model for the original image is the Pred
mask. It portrays the areas that our model identified as
"flood". Similar to the original mask, the darker area
represents the predicted flood pixels, and the lighter area is
the predicted non-flood pixels.

CONCLUSION

By comparing the "pred mask" to the "original mask", one can
visually assess how well the model performed on this specific
image. The predicted mask captures the general shape and
location of the flood area reasonably well compared to the
original mask. The model achieved an accuracy of 88.66%,
Precision = 0.80, Recall = 0.90, Loss = 0.2846, Dice = 0.90,
IoU =0.75. The high Dice score (0.90) and recall (0.90) show
that the model reliably captures flooded regions, which is vital
in disaster response. The lower precision (0.80) and IoU
(0.75) point to occasional over segmentation.
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