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ABSTRACT 

Floods are recurring disasters in Bayelsa State, Nigeria, causing significant damage to infrastructure, 

displacement of people, and loss of livelihoods. The research aims to develop an accurate and efficient method 

for identifying flood-affected areas using satellite imagery and deep learning techniques. The U-Net 

architecture, a convolutional neural network designed for image segmentation tasks, was adapted and trained 

on a dataset of high-resolution satellite images including both flood and non-flood periods. The model's 

performance was evaluated using various metrics, including precision, recall, and F1-score. Results 

demonstrate that the U-Net-based approach achieves high accuracy in delineating flood extents, outperforming 

traditional methods. The study also explores the model's ability to detect flood progression over time and its 

potential for real-time flood monitoring. The model achieved an accuracy of 88.66%, Recall of 0.90, Loss of 

0.2846, Dice of 0.90, and IoU of 0.75. This research contributes to the development of advanced flood detection 

systems, which can aid in disaster management and mitigation efforts in Bayelsa State and similar flood-prone 

regions. 
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INTRODUCTION 

Floods are a recurring natural disaster in Bayelsa State. They 

are among the most devastating natural disasters, causing 

significant economic losses, displacement of people, and loss 

of life worldwide (IPCC, 2021). Bayelsa State’s unique 

geography, with its numerous rivers and low-lying terrain, 

makes it particularly vulnerable to flooding. Effective flood 

detection and management are crucial for mitigating the 

impact of these events. Uso and Onye (2025) carried out 

research on the Performance evaluation of five probability 

distribution models for the analysis of flood data at River 

Niger. Their study evaluates five statistical models to 

determine the most reliable method for predicting extreme 

flood events at River Niger, Onitsha. Climate change is 

increasingly linked to the intensification of flood disasters in 

coastal Nigeria (Adelekan, 2016). In Nigeria, particularly in 

Bayelsa State, floods are a recurring phenomenon, 

exacerbated by climate change, poor urban planning, and 

inadequate infrastructure (Nkwunonwo et al., (2020). The 

state's geographical location in the Niger Delta region makes 

it prone to flooding, with severe consequences on the 

environment, economy, and human lives (Ologunorisa, 

2004). To mitigate the impact of floods, early detection and 

mapping are crucial. Traditional methods of flood detection, 

such as ground-based sensors and manual surveys, have 

limitations in terms of coverage, accuracy, and timeliness 

(Wang et al., 2019).  

Remote sensing provides cost-effective, real-time monitoring 

of flood-prone areas, even in inaccessible regions (Schumann 

& Domeneghetti, 2016). Remote sensing and Geographic 

Information Systems (GIS) have emerged as crucial tools for 

flood detection and management. Satellite imagery, both 

optical and radar, plays a significant role in monitoring and 

mapping flood events (Lin et al., 2016; Opolot, 2013). These 

technologies offer cost-effective and timely access to spatial 

data, even in physically inaccessible areas. For instance, 

Sentinel-1 satellite imagery has been used to extract flooding 

information and develop machine learning models for flood 

detection (Tanim et al., 2022). Sentinel-1 SAR data have been 

increasingly applied for near real-time flood detection in 

developing countries (Twele et al., 2016). Interestingly, while 

advanced technologies are gaining prominence, traditional 

sensor-based monitoring techniques still retain significant 

advantages in practical applications. Future flood risk 

monitoring should focus on integrating multiple data sources 

to achieve real-time and accurate monitoring of urban 

flooding (Song et al., 2024). This approach could be 

particularly beneficial for regions like Bayelsa State, where a 

combination of traditional and modern techniques might yield 

the most comprehensive flood detection system. Early-

warning systems powered by AI reduce disaster response 

times significantly (Guo et al., 2020). Hence, the need to 

employ machine learning techniques in flood detection in 

Bayelsa State. Machine learning algorithms outperform 

traditional thresholding methods for flood detection in 

complex terrains (Shen et al., 2019). Recent studies show that 

convolutional neural networks have revolutionized image 

segmentation tasks in environmental monitoring (Zhang et al., 

2021).  

Convolutional neural network like U-Net can be employed. 

The use of U-Net in biomedical imaging has inspired its 

adaptation for environmental applications (Falk et al., 2019). 

Deep learning architectures such as U-Net and ResNet have 

been widely applied for geospatial image segmentation tasks 

(Zhu et al., 2019). This study applies the U-Net deep learning 

architecture to satellite imagery for accurate flood detection 

in Bayelsa State, aiming to enhance disaster preparedness, 

support real-time monitoring, and provide a reliable 

framework for effective flood risk management. 

 

Discussion on Techniques Used 

The research employed a combination of remote sensing, 

deep learning, and image preprocessing techniques to achieve 

effective flood detection. The primary methodological 

framework was built around the U-Net architecture, a 

convolutional neural network (CNN) tailored for image 

segmentation tasks. This choice was motivated by U-Net’s 

proven capability in capturing spatial details while preserving 
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contextual information through its encoder–decoder structure 

and skip connections. 

i. Dataset and Metadata: The dataset consisted of 290 

paired satellite images and binary flood masks sourced 

from the Segmentation_of_Flood_Area repository. 

Each image was standardized to 256×256 pixels for 

consistency. Metadata, including image paths and train-

test splits, was stored in a structured CSV file, ensuring 

smooth mapping between images and their 

corresponding masks. 

ii. Data Preprocessing: Input images were resized and 

normalized to fall within a [0,1] pixel value range to 

enhance gradient stability during training. Masks were 

thresholded and converted to Boolean arrays to preserve 

binary semantics. Bilinear interpolation was applied for 

resizing images, while nearest-neighbor interpolation 

maintained mask integrity. 

iii. U-Net Architecture Design: The segmentation model 

followed the traditional U-Net structure without a pre-

trained backbone. 

a. Encoder Path: Five down-sampling blocks 

progressively captured abstract spatial features, 

increasing filter depth from 16 to 256. Dropout 

layers were introduced to reduce overfitting. 

b. Bottleneck: A high-capacity block with 512 filters 

captured the most abstract representations of the 

flood-affected regions. 

c. Decoder Path: Symmetrical up-sampling blocks 

reconstructed image details, concatenating encoder 

features via skip connections to preserve spatial 

accuracy. 

d. Output Layer: A 1×1 convolution with sigmoid 

activation produced probability maps for per-pixel 

flood prediction. 

iv. Training Protocol: Training was conducted using the 

Adam optimizer and binary cross-entropy loss function, 

suitable for two-class pixel labeling. The dataset was 

split into 90% training and 10% validation. 

Hyperparameters included a batch size of 8, 50 epochs, 

and real-time performance monitoring through 

TensorBoard. Early stopping was considered but not 

activated, allowing the model to run the full 50 epochs. 

v. Evaluation Metrics: The model’s performance was 

measured using multiple segmentation metrics: 

a. Accuracy (88.66%):Pixel-wise correctness. 

b. Precision (0.80): Reliability in identifying true 

flood pixels. 

c. Recall (0.90): Ability to capture actual flood 

regions. 

d. Dice Coefficient (0.90): Overlap measure between 

predicted and true masks. 

e. Intersection over Union (IoU = 0.75): Robustness 

of flood boundary delineation. The IoU metric is 

widely adopted as a robust performance indicator in 

flood segmentation models (Rahman & Wang, 

2016) 

 

Related Works 

Recent developments have recorded application of machine 

learning in solving real life problems. Obasi and Timadi 

(2025) applied supervised machine learning algorithms, Feed 

Forward Neural Network and Random Forest with zero trust 

principles to prevent SQL and Malware attacks in a cloud 

database. A Feedforward Neural Network (FFNN) classified 

SQL queries as benign or malicious, achieving 98% accuracy 

with high precision in detecting SQL injection attempts. In 

parallel, a Random Forest classifier was used for malware 

traffic detection, attaining 99.37% accuracy by analyzing 

behavioral and statistical features. Their research was further 

expanded by combining high detection accuracy with 

explainable artificial intelligence (XAI) techniques, providing 

both transparency and reliability for modern cybersecurity 

defense systems. Obasi and Nlerum (2023) developed a 

model for the Detection and Prevention of Backdoor Attacks 

using CNN with Federated Learning. Timadi and Obasi 

(2025) researched on Integrating Zero-Trust Architecture 

with Deep Learning Algorithm to Prevent Structured Query 

Language Injection Attack in Cloud Database. Nnodi and 

Obasi (2025) researched on Leveraging Artificial Intelligence 

for Detecting Insider Threats in Corporate Networks. Obasi 

and Stow (2023) formulated a Predictive Model for 

Uncertainty Analysis Pertaining to Big Data through the 

Utilization of a Bayesian Convolutional Neural Network 

(CNN). Machine learning models can predict reaction yields 

with high accuracy, guilding chemists in selecting high-

yielding reactions and optimizing synthesis routes. As a result 

of that, research on Leveraging Machine Learning Algorithms 

for Enhanced Prediction of Product Yields and Purity in 

Chemical Reactions was developed (Obasi and Abosede, 

2025). In infectious disease testing, ML algorithms are 

capable of processing large datasets beyond human analytical 

capabilities, providing predictive and actionable insights 

(Tran et al., 2021). For malaria detection, ML models have 

been utilized to automate the analysis of medical images, 

including the classification of blood smear images, thereby 

reducing reliance on subjective human interpretation 

(Pattanaik et al., 2020). An interpretable Early Warning 

System for Malaria Outbreak in Bayelsa State using Deep 

Learning and Climate Data was developed in 2025(Stow and 

Obasi, 2025). 

Again, Satellite imagery and deep learning algorithms can be 

used to detect flood events and provide early warnings. An 

Early Warning System using Satellite Imagery and Deep 

Learning Algorithm was developed (Obasi et. al, 2025). 

Effective flood detection and management require a 

multidisciplinary approach, combining various technologies 

such as remote sensing, GIS, LiDAR, and machine learning 

(Jain, 2024). Recent advancements in deep learning and 

remote sensing have enabled the development of more 

effective flood detection systems (Li et al., 2020). The U-Net 

architecture, a type of convolutional neural network (CNN), 

has shown remarkable performance in image segmentation 

tasks, including flood detection (Ronneberger et al., 2015). By 

leveraging satellite imagery and geospatial data, the U-Net 

model can accurately identify and map flood-prone areas, 

providing valuable insights for flood risk management and 

emergency response Mateo-Garcia, G., et al. (2020). For 

Bayelsa State, implementing a comprehensive flood detection 

system that integrates satellite imagery, ground-based 

sensors, and advanced machine learning algorithm like U-Net 

could significantly enhance flood preparedness and response 

capabilities. The architecture of U-Net is unique in that it 

consists of a contracting path and an expansive path. The 

contracting path contains encoder layers that capture 

contextual information and reduce the spatial resolution of the 

input, while the expansive path contains decoder layers that 

decode the encoded data and use the information from the 

contracting path via skip connections to generate a 

segmentation map as shown in figure 1. 

Flood detection using U-Net is a deep learning approach that 

leverages the U-Net architecture to identify and map flood-

prone areas from satellite imagery. By leveraging U-Net’s 

strengths, researchers and practitioners can develop effective 
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flood detection systems, enhancing situational awareness and 

supporting disaster response. 

This study aims to apply the U-Net architecture for flood 

detection in Bayelsa State, utilizing satellite imagery and 

geospatial data. The research seeks to evaluate the 

performance of the U-Net model in detecting floods and to 

explore its potential applications in flood risk management 

and mitigation strategies. 

 

 
Figure 1: U-Net Architecture 

 

MATERIALS AND METHODS 

The methodology describes in detail the experimental 

procedures and architectural design adopted for flood‐area 

segmentation using a U-Net model without any pre‐trained 

backbone. The methodology is organized into the following 

sections: (1) Dataset and Metadata, (2) Data Preprocessing, 

(3) U-Net Architecture, (4) Training Protocol, and (5) 

Evaluation Metrics and Validation Strategy as shown in figure 

2. The imagery and corresponding binary masks were 

obtained from the “Segmentation_of_Flood_Area” 

repository, comprising satellite or aerial photographs of size 

256×256 pixels and their pixel wise flood labels. Metadata 

(e.g., file paths, train/test splits) were stored in a CSV file 

(metadata.csv), which mapped each image filename to its 

mask counterpart. Dataset comprises of 290 image–mask 

pairs, RGB (3 channels) and single‐channel binary masks, 

where “1” denotes flooded pixels and “0” denotes 

background. A 90:10 random split was applied at training 

time (via validation_split=0.1 in model.fit()) to reserve 10% 

of the data for validation in each epoch, ensuring the model’s 

generalization capacity is continually monitored. During data 

processing, each raw image (originally varying in dimension) 

was loaded using Pillow and converted to a NumPy array. 

Both images and masks were resized to 256×256 to enforce 

uniform input dimensions. Resizing employed bilinear 

interpolation for images and nearest neighbor or constant 

padding for mask arrays to preserve binary semantics. 
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Figure 2: Architecture of the Flood Detection Model 

 

Pixel values of input images were scaled to the range [0,1] via 

a Lambda layer (x → x/256) immediately upon input, 

facilitating stable gradient flow. Masks were read in 

grayscale, thresholded (automatically by resize preserving 

range), and stored as Boolean arrays (dtype=bool). An explicit 

channel dimension was appended (shape: 256×256×1). 

The core segmentation model follows the classical U Net 

design, comprising a contracting path (encoder) and an 

expanding path (decoder), but constructed entirely from 

scratch, without leveraging any pre trained encoder backbone. 

 

Input Layer 

Shape: 256×256×3 (RGB), Initial normalization via a 

Lambda layer. 

 

Encoder (Downsampling Path) 

Five encoding blocks (Blocks 1–5) gradually increase feature 

depth while halving spatial resolution via MaxPooling: 

Block 1: Three Conv2D layers (16 filters, 3×3, ReLU), 

Dropout(0.1), followed by MaxPool.  

Block 2: Similar structure with 32 filters, Dropout(0.1). 

Block 3: 64 filters, Dropout(0.2). 

Block 4: 128 filters, Dropout(0.2). 

Block 5: 256 filters, Dropout(0.3). 

 

Bottleneck (Block 6) 

Two Conv2D layers (512 filters, 3×3, ReLU), Dropout(0.3), 

capturing the most abstract representations. 

 

Decoder (Upsampling Path) 

Five decoding blocks (Blocks 7–11) symmetrically mirror the 

encoder: 

Each block begins with Conv2DTranspose (up‐sampling by 

factor 2), concatenation with the corresponding encoder 

feature maps (skip connection), followed by two or three 

Conv2D + ReLU layers and Dropout matching the encoder’s 

dropout rate. 

Output Layer 

A final Conv2D (1×1, 1 filter) with sigmoid activation 

produces a 256×256×1 per‐pixel probability map for the flood 

class. 

 

Model Compilation 

Optimizer: Adam (default learning rate). The Adam optimizer 

is among the most reliable for training deep segmentation 

models (Kingma & Ba, 2015). 

Loss function: Binary cross‐entropy (appropriate for two‐

class pixel labeling). 

Metrics: Accuracy (pixel‐wise). 

 

Training Protocol 

Hyperparameters (Batch size: 8, Epochs: 50, Validation split: 

10%) 

Callbacks: TensorBoard for real time monitoring (optional 

EarlyStopping commented out). 

 

Training Workflow 

Initialize model weights with Glorot uniform (default for 

Conv2D). 

Fit on (X,Y) with validation_split=0.1. 

Monitor training and validation loss/accuracy curves to 

identify potential overfitting. 

While early stopping was configured at patience=2 

(monitoring val_loss), it remained commented; model 

checkpoints were not explicitly saved, but TensorBoard logs 

enabled manual selection of best epochs. 

 

RESULTS AND DISCUSSION 

The plot_training () function displays training and validation 

loss and accuracy across epochs as shown in figure 3, marking 

best epochs for both metrics. This aids in diagnosing 

convergence and selecting final model weights. 
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Figure 3: Training and Validation Loss 

 

The plots in figure 3 show the performance of your model 

(likely part of a "Real-time Anti-Sleep Alert Algorithm") 

during the training process of over 50 epochs.: Both the 

training loss (red line) and the validation loss (green line) 

decrease significantly in the initial epochs. This indicates that 

the model is learning and improving its ability to make 

predictions. For convergence, both loss curves appear to level 

off and become relatively stable after around 20-30 epochs. 

This suggests that the model's learning rate has slowed down, 

and it's approaching a minimum loss value. The validation 

loss is consistently slightly higher than the training loss, 

which is expected. The training loss measures performance on 

the data the model sees during training, while the validation 

loss measures performance on unseen data. The small gap is 

normal. There is no clear indication of significant overfitting 

in the plot. Overfitting would typically be characterized by the 

training loss continuing to decrease while the validation loss 

starts to increase after a certain point. The curves track each 

other reasonably well. The plot highlights "best epoch = 50" 

for the validation loss. This suggests that the model achieved 

its lowest validation loss at the end of the training process 

(epoch 50), or that early stopping was not triggered before 50 

epochs and the best performance up to that point was at epoch 

50. Again, both the training accuracy (red line) and the 

validation accuracy (green line) increase rapidly in the initial 

epochs, mirroring the decrease in loss. This shows the model 

is becoming better at correctly classifying or segmenting 

(depending on the task of the algorithm) the data. Similar to 

the loss curves, the accuracy curves start to level off after 

around 20-30 epochs, indicating that the model's 

improvement rate has decreased. There are some noticeable 

fluctuations in both the training and validation accuracy 

curves, particularly between epochs 20 and 40. This could be 

due to the stochastic nature of mini-batch gradient descent, 

the specific data batches encountered in those epochs, or the 

learning rate schedule. The validation accuracy is generally 

close to the training accuracy, with some minor variations. 

This again suggests that the model is generalizing reasonably 

well to unseen data. The plot highlights "best epoch = 50" for 

the validation accuracy. This indicates that the highest 

validation accuracy was achieved at epoch 50, or that early 

stopping was not triggered and this was the best performance 

reached. The accuracy values are around 0.85-0.86 at this 

point.  

Figure 4 provides a visual representation of your model's 

performance on a single example from the dataset. 
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Figure 4: Visual Representation of the Result 

 

The three panels in figure 4 show original image, original 

mask and pred mask. Original image is the input image 

provided to the model. Original mask is the ground truth mask 

corresponding to the original image. The segmentation mask 

predicted by our model for the original image is the Pred 

mask. It portrays the areas that our model identified as 

"flood". Similar to the original mask, the darker area 

represents the predicted flood pixels, and the lighter area is 

the predicted non-flood pixels. 

 

CONCLUSION 

By comparing the "pred mask" to the "original mask", one can 

visually assess how well the model performed on this specific 

image. The predicted mask captures the general shape and 

location of the flood area reasonably well compared to the 

original mask. The model achieved an accuracy of 88.66%, 

Precision = 0.80, Recall = 0.90, Loss = 0.2846, Dice = 0.90, 

IoU = 0.75. The high Dice score (0.90) and recall (0.90) show 

that the model reliably captures flooded regions, which is vital 

in disaster response. The lower precision (0.80) and IoU 

(0.75) point to occasional over segmentation. 
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