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ABSTRACT 

In this work, the concept of resonant states (RSs) in a finite square quantum well is presented. We first derive 

the analytic secular transcendental equations for even and odd states by applying the outgoing wave boundary 

conditions into the one-dimensional Schrödinger’s wave equation. The complex solution of these equations is 

found using the numerical Newton-Raphson method implemented in MATLAB. We can see in particular, that 

the RSs present a general class of Eigenstates, which includes bound states, anti-bound states, and normal 

RSs. 
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INTRODUCTION 
Resonant States (RSs) have been known in quantum mechanics 

for a quite long time, since the pioneering work of Gamow, 

1928 and Siegert, 1939. Theyappear, in the form of resonances, 

in almost every field of Physics, from classical mechanics and 

electrodynamics to quantum physics and gravity. Despite this 

fact, however, many fundamental aspect are still to be 

investigated. Also, resonant phenomena are of increasing 

importance in quantum mechanics especially given rapid 

progress in the physics of semiconductor nanostructures which 

can be described by various types of quantumpotentials. Many 

textbooks (Mandle, 2010) describe quantum resonances as 

singularities of theS-matrix. This is equivalent to solving the 

Schrödinger equationwith outgoing wave boundary conditions 

(Doost et al, 2012, Muljarov et al, 2010, Siegert, 1939). These 

boundary conditions strictly define RSs. These states have 

complex energy eigenvaluescausing them to decay 

exponentially in time, leaking out of the system (quantum 

well/barrier). There are numerous ideas as to how to investigate 

RSs in quantum- mechanical systems, however, there are 

certain problems to be overcome, such as knowing how the 

potential in the Schrödinger equation gives rise to resonances 

and how to treat and interpret them (Hatano, 2008). New 

method of finding RSs in an arbitrary called resonant-state 

expansion (RSE) has recently been introduced (Armitage et al, 

2014, Doost et al, 2012, Muljarov et al, 2010). In this work, the 

concept of RSs in a square quantum well is presented. We first 

obtain the analytic secular equations in terms of even and odd 

states by applying the outgoing wave boundary conditions. 

These equations are solved numerically using the Newton-

Raphson procedureimplemented in MATLAB. We consider all 

types of states (bound, anti-bound, and normal RSs) in such a 

system. We also calculated the wave functions of RSs. 

 

THEORY 

The formalism of Resonant States (RSs) 

The quantum-mechanical system we use in this work is 

described by a one-dimensional Schrödinger equation with a 

finite square well potential. We use this potential because of its 

simplicity and of practical importance for low dimensional 

structures such as quantum wells (Andrew, 2010). Quite 

generally, non-relativistic Schrödinger equation (Tanimu and 

Muljarov, 2018) for an arbitrary particle in a three-dimensional 

potential is 

 

𝐻(𝑟)𝜓𝑛(𝑟) = 𝐸𝑛𝜓𝑛(𝑟)                                     (1) 

 

The wave functions of RSs satisfy the outgoing waves 

boundary condition 

at 𝑟 → ∞. For a constant potential, this means that𝜓𝑛(𝑥 →
±∞) ∝ 𝑒𝑖𝑘|𝑥|.A one-dimensional form of Eq.(1)i.e. the time-

independent Schrödingerequation takes the form: 

 

[−
ℏ2

2𝑚

𝑑2

𝑑𝑥2 + 𝑉(𝑥)] 𝜓𝑛(𝑥) = 𝐸𝑛𝜓𝑛(𝑥)                   (2) 

Where  𝐸𝑛 =
ℏ2𝑘𝑛

2

2𝑚
 is the energy of theparticle. For convenience, 

we use in the following 𝑚 = 1/2 and ℏ = 1, so that 𝐸𝑛 = 𝑘𝑛
2, 

where 𝑘𝑛 is the eigen wave number of the particle, ℏ is the 

Planck’s constant, 𝑚 is the effective mass of the particle.  

The potential 𝑉(𝑥)of the particle is 

𝑉(𝑥) = {
−𝑉0, |𝑥| < 𝑎

0, |𝑥| > 𝑎
                                   (3) 

This potential has been covered in depth by many textbooks 

such as (Mandle, 2010). However, RSs in general are usually 

not considered in textbooks. Therefore, in this work, it is 

interesting to see how the RSs move in the complex k-plane as 

we increase the depth of the well. The solutions to equation (2) 

in terms of plane waves are 

𝜓𝑛(𝑥) = {

𝐴𝑒𝑖𝑘𝑛𝑥,                    𝑥 > 𝑎                                         

𝐶𝑒𝑖𝜉𝑛𝑥  + 𝐷𝑒−𝑖𝜉𝑛𝑥 ,      − 𝑎 < 𝑥 < 𝑎                

 𝐵𝑒−𝑖𝑘𝑛𝑥,          𝑥 < −𝑎                                           

(4) 

whereA,B,C and D depends on n, but we drop the index for the 

brevity of notations and also, 𝑘𝑛and 𝜉𝑛are the wavenumbers in 

their respective regions and are related as 
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𝜉𝑛 = √𝑘𝑛
2 + 𝑉0                                                                         (5) 

To find the eigenvalues, 𝑘𝑛we require that from equation (4) 

𝜓𝑛(𝑥) and𝜓𝑛
′ (𝑥) are continuous at 𝑥 = ±𝑎. Solving C and D 

in terms of A and B weobtain (dropping index n also, for the 

brevity of notations) 

𝐶 =
(𝜉 + 𝑘)

2𝜉
𝑒𝑖(𝑘−𝜉)𝑎𝐴                                                        (6) 

𝐷 =
(𝜉 − 𝑘)

2𝜉
𝑒𝑖(𝑘+𝜉)𝑎𝐴                                                      (7) 

and 

𝐶 =
(𝜉 − 𝑘)

2𝜉
𝑒𝑖(𝑘+𝜉)𝑎𝐵                                                            (8) 

𝐷 =
(𝜉 + 𝑘)

2𝜉
𝑒𝑖(𝑘−𝜉)𝑎𝐵.                                                             (9) 

This yield two equations for B in terms of A 

𝐵 =
(𝜉 + 𝑘)

(𝜉 − 𝑘)
𝑒−2𝑖𝜉𝑎𝐴                                                                    (10) 

and 

𝐵 =
(𝜉 − 𝑘)

(𝜉 + 𝑘)
𝑒2𝑖𝜉𝑎𝐴                                                                  (11) 

which can only be satisfied if  

(
𝜉 − 𝑘

𝜉 + 𝑘
)

2

=  𝑒4𝑖𝜉𝑎                                                                       (12) 

There are two possible solutions to equation (12): 

Solution 1 is 

𝜉 − 𝑘

𝜉 + 𝑘
= −𝑒2𝑖𝜉𝑎                                                                     (13) 

And solution 2 is 

𝜉 − 𝑘

𝜉 + 𝑘
= 𝑒2𝑖𝜉𝑎                                                                     (14) 

which after some algebra leads to 

𝑘𝑛 = −𝑖𝜉𝑛 cot(𝜉𝑛𝑎)                                                          (15) 

where we have restored index n. This solution is odd. 

And 

𝑘𝑛 = 𝑖𝜉𝑛 tan(𝜉𝑛𝑎)                                                                 (16)       

This solution is even. 

Equations (15) and (16) (secular transcendental equations) are 

solved together with equation (5) to find the Eigen wave 

numbers which are plottedin the complex 𝑘𝑛-plane fig. 1.These 

equations cannot be solved analytically. However, in this 

work,we employ the use of Newton-Raphson procedure in 

MATLAB, which istypically fast to converge to find their 

complex roots which give rise toall types of states. After we 

found our transcendental equations we thensubstitute 

𝜉 − 𝑘

𝜉 + 𝑘
= ±𝑒2𝑖𝜉𝑎                                                           (17) 

back into the equation giving the relations between the A, B, 

C,and D toobtain the wavefunctions. We found that: if 

𝜉 − 𝑘

𝜉 + 𝑘
= +𝑒2𝑖𝜉𝑎                                                             (18) 

then,C = D, A = B,  𝜓(−𝑥) = 𝜓(𝑥). The solutions are even and 

thewavefunctions are symmetric. If however, 

𝜉 − 𝑘

𝜉 + 𝑘
= −𝑒2𝑖𝜉𝑎                                                      (19) 

 

thenC = -D, A = -B, 𝜓(−𝑥) = −𝜓(𝑥). The solutions are odd 

and thewavefunctions are anti-symmetric.For both the even and 

odd solutions the wave functions have to be normalizedbut care 

has to be taken during the calculations. For bound states, this is 

aneasy task but for the resonant states which have 

exponentially increasing tails,an additional term must be 

considered to normalize them correctly. Anouter limit is 

required for their normalization and is given by R. It is 

foundthat the value of R can be taken arbitrarily and thus for 

convenience we arefree to choose the boundaries of the well as 

the limits of this normalization.The orthonormality condition is 

given as (Muljarov et al, 2010): 

 

𝛿𝑛𝑚

= ∫ 𝑑𝑥𝜓𝑛(𝑥)𝜓𝑚(𝑥)

𝑎

−𝑎

−
𝜓𝑛(𝑎)𝜓𝑚(𝑎) + 𝜓𝑛(−𝑎)𝜓𝑚(−𝑎)

𝑖(𝑘𝑛 + 𝑘𝑚)
 .                  (20) 

It can also show that this equation is suitable for the usual 

normalizationof bound states as it reduces to the standard 

normalization condition asR tends to infinity the condition 

tends towards  

𝛿𝑛𝑚 = ∫ 𝑑𝑥𝜓𝑛(𝑥)𝜓𝑚(𝑥)

∞

−∞

                                                      (21) 
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which is the standard approach to normalizing thebound states. 

The numerical procedure of finding the Eigen wave 

numbers. 

There are many numerical procedures for solving equations 

(15) and (16). While the equations cannot be solved 

analytically, they can be solved numerically up to any desired 

accuracy. Below are the few steps we used for the solutions: 

- We use the relation between 𝜉𝑛and 𝑘𝑛in eq.(5). This makes 

the final equations to solve written in terms of 𝑘𝑛only. 

- The second step defines the function 𝑓(𝑘𝑛) such that the 

equation we solve becomes𝑓(𝑘𝑛) = 0. 

- The third step sets the physical parameter values. 

- At the fourth step, we look at the function behavior, to choose 

the optimal guess values for the Newton-Raphson procedure. 

- Lastly, the solutions for 𝑘𝑛are plotted in complex k-plane (see 

fig.1), and the wave functions and energies are also calculated. 

RESULTS 

Eigen wave numbers of an RSs 

 

Figure 1: Solutions 𝑘𝑛for the square-well potential with outgoing waves boundary conditions plotted in the complex 𝑘𝑛-plane. 

Figure 1 shows the plot of the complex eigenvalues in 

equations (15) and (16) which gives rise to all types of states. 

As we can see the resonant states present a general class of 

Eigen states, which includes bound states, anti-bound states, 

and normal resonant states. For a shallow well, ( see for 

example, Hatano, 2008) there is only one bound state and the 

RSs are far down in the k-plane almost parallel to the real axis. 

When we increase the depth of the well, the RSs wave numbers 

move upwards parallel to the imaginary axis which also leads 

to an increase in the number of bound states. Similar results are 

found in (Tanimu and Muljarov, 2018) using different 

parameter. When the pair of conjugate RSs hits the imaginary 

axis it splits up into a bound-anti-bound states pair which gets 

more bound when increasing the depth further. The normal  

resonant states all have non-zero real and imaginary parts 

of 𝑘𝑛. Each normal resonant state with Re(𝑘𝑛) >0 has a partner 

in the negative real axis with Re(𝑘𝑛) <0. The positions of a 

normal resonant state and corresponding anti-resonant state are 

symmetric concerningthe imaginary axis. Their locations are 

mirror images for the imaginary axis. Depending on the system 

parameters, there are also discrete states on the imaginary axis. 

These states are called bound and anti-bound states. The bound 

states of the system considered are the ground state, 1st excited 

state, and 2nd excited state. The bound states are located on the 

positive imaginary axis Im(𝑘𝑛) >0 while anti-bound states are 

located in the negative imaginary axis Im(𝑘𝑛) < 0. 

 

Wave functions of RSs 

Bound states 

Stationary states of a system that correspond to discrete energy 

levels are called bound states. For bound states the energy is 

real. We can see for example in (Tanimu and E. A. Muljarov, 

2018) that the potential generate bound states since the solution 

of equation (22) have an exponentially decaying tail at the 
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boundaries. For potential vanishing at |𝑥| → ∞ the bound state 

energies are negative (Uma, 2010). Applying the asymptotic 

boundary conditions, the bound states wavefunctions has the 

asymptotic behavior as 

 

𝜓𝑛(𝑥) = ±𝑒−𝑖𝑘𝑛|𝑥| , |𝑥| → ∞                           (22) 

But with 𝜅𝑛 > 0 

𝑘𝑛 = 𝑖𝜅𝑛.                                                            (23) 

Therefore the bound state energy E is 

𝐸𝑛 = 𝑘𝑛
2 = −𝜅𝑛

2,                                          (24) 

which shows that the bound states can be presented as negative 

energy states. 

Normal RSs 

The resonant state can be defined as an Eigen state of the 

stationary Schrödinger equation with boundary conditions of 

outgoing waves only. 

 

𝜓𝑛(𝑥) = ±𝑒−𝑖𝑘𝑛|𝑥| , |𝑥| → ±∞                          (25)   

 

which is called Siegert condition (Siegert, 1939). For 

evaluation of resonant states, we seek a solution of equation (2) 

with complex energy 

 

𝑘𝑛
2 = (𝑘𝑛

′ − 𝑖𝑘𝑛
′′)2 = (𝑘𝑛

′2 − 𝑘𝑛
′′2) − 2𝑖𝑘𝑛

′ 𝑘𝑛
′′ = 𝐸𝑛    (26) 

 

with𝑘𝑛
′ > 0 and 𝑘𝑛

′′ > 0such that the wave functions behaves 

asymptotically as: 

 

𝜓𝑛(𝑥) = {
𝑒𝑖(𝑘𝑛

′ −𝑖𝑘𝑛
′′)𝑥 ,   𝑥 → +∞

±𝑒−𝑖(𝑘𝑛
′ −𝑖𝑘𝑛

′′)𝑥,   𝑥 → −∞
                    (27) 

 

This nature of the wavefunction shows a positive energy state. 

We can see from figures 2 and 3 that |𝜓𝑛|diverges 

exponentially as 𝑒𝑘𝑛
′′|𝑥|(Tanimu and Muljarov, 2018). However, 

this exponential growth is conjugated by time decaying. 

 

Anti-bound states 

An anti-bound state shares similar features with the bound 

states and resonant states but it is called a separate type of 

state. Unlike bound states, they have a solution for the 

continuous range of energies which satisfies E <0. It diverges 

exponentially for large | 𝑥 |(see fig.2). The solution inside the 

well is similar to that of the bound state. We can see the wave 

function is symmetric around the origin, which indicates that 

there must be solutions of defined parity also for anti-bound 

states.

 

 

 
Figure 2: Plots of the absolute values of the anti-bound state, 1st, 2nd, and 3rd resonant states wave functions. 
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Figure 3: Plots of the absolute values of the 5th and 10th RSs wave functions

 

 

Figure 2 shows the plots of the absolute values of the anti-bound 

state, 1st, 2nd,and 3rdnormal RSs wave functions while figure 3 shows 

the 5th and 10thnormal RSs wave functions. They show a similar 

behavior to the bound states wave functions having a defined parity 

within the well. Unlike the bound states, we can see that in a normal 

RSs and anti-bound states there is a leak on the boundaries of the 

origin. We can also see that there is only one zero of 1st, 3rd, and 5th 

RSs which is due to the odd nature of the wave function. However, 

there are two zeros of anti-bound, which are also due to the even 

nature of the wave function. For anti-bound states, the wave 

function is real while is essentially complex for normal RSs. 

 

SUMMARY AND CONCLUSION 

In this work, the concept of RSs was introduced and discussed in a 

one-dimensional finite square well potential. RSs were studied by 

seeking solutions to the time-independent Schrödinger’s equation 

with outgoing wave boundary conditions. After the application of 

boundary conditions to the problem, a system of equations was 

generated and written in terms of secular transcendental equations 

for even and odd states. Solutions of these equations were 

analytically solved using the Newton-Raphson method in 

MATLAB. The full spectrum obtained includes bound states 

associated with pure imaginary and positive wave numbers, the anti-

bound states associated with pure imaginary and negative 

wavenumbers, and the normal RSs with complex wavenumbers 

which lie in the lower half of the complex k-plane. The properties of 

RSs were considered and discussed in detail. The wave function of 

states of all types was plotted and compared with each other, 

demonstrating the probability leakage of anti-bound states and 

normal RSs. We demonstrate that for each RSs wave function 

contain asymmetric pair of states which are complex conjugate of 

each other. 
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