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ABSTRACT 

This study aims to develop and evaluate an embedded system for real-time monitoring of PM2.5 and 

meteorological variables, with the goal of improving machine learning predictions of particulate matter 

concentrations in Lagos, Nigeria. Given the detrimental health effects of PM2.5, understanding its interaction 

with environmental factors is crucial for effective air quality control.  Over two years (2021–2023), our 

innovative, custom-developed sensor system was deployed in Akoka, Lagos, to continuously and autonomously 

collected temperature, humidity, wind speed, atmospheric pressure, and PM2.5 data at two-minute intervals. 

Leveraging this robust data set, three machine learning algorithms: Random Forest (RF), Gradient Boosting 

(GB), and Support Vector Machine (SVM), were systematically evaluated for PM2.5 forecasting using R² and 

RMSE as performance metrics. The Random Forest model demonstrated the best performance (R² = 0.77; 

RMSE = 10.84 µg/m³), indicating high predictive capacity. Feature importance analysis revealed a limited 

impact of meteorological variables compared to unmeasured emission sources. This work demonstrates the 

feasibility of embedded real-time monitoring integrated with ML for urban air quality forecasting, supporting 

improved policy and public health strategies in rapidly urbanizing regions. 

 

Keywords: Particulate Matter, Embedded System, Machine Learning, Air Quality Prediction,  
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INTRODUCTION 

The adverse impacts of particulate matter (PM) on human 

health and the environment make air quality a major global 

public health problem. PM is classified according to its 

aerodynamic diameter, with PM2.5 (particles with a diameter 

of 2.5 micrometers or less) and PM10 (particles with a 

diameter of 10 micrometers or less) being the most studied 

components. Particularly in urban areas like Lagos, Nigeria, 

PM2.5 poses significant health risks, as these fine particles 

can penetrate the bloodstream and lungs, leading to 

respiratory ailments, cardiovascular disorders, and premature 

mortality (Nathaniel & Xiaoli, 2020; Manisalidis et al., 2020; 

World Health Organization, 2021; Thangavel et al., 2022). 

Vehicle emissions, industrial discharges, and natural events 

like dust storms and wildfires are major sources of PM 

(McDuffie et al., 2021; Thangavel et al., 2022). 

Understanding the complex relationships between PM 

pollution and various meteorological factors including 

temperature, humidity, wind speed, and atmospheric pressure 

is essential for effective air quality management (Chen et al., 

2020). Recognizing how these meteorological parameters 

interact with PM concentrations can enhance predictive 

models and inform regulatory actions. Hence, recent 

developments in sensor technology have enabled the creation 

of innovative embedded systems that gather environmental 

data in real-time. These devices can be deployed in various 

locations to continuously monitor air quality and weather 

conditions. By combining data from multiple sensors, 

researchers can build comprehensive databases that reflect the 

dynamic interplay between PM levels and meteorological 

conditions (Javaid et al., 2021). Machine learning (ML) has 

emerged as a powerful tool for analyzing large, complex 

datasets while traditional statistical methods often struggle to 

capture nonlinear relationships and interactions within the 

data. In contrast, ML algorithms such as Random Forest (RF), 

Support Vector Machine (SVM), and Gradient Boosting (GB) 

have shown promise in improving prediction accuracy (Cha 

et al., 2021; Tran et al., 2024; Krishna et al., 2024). For 

example, SVM excels in classification and regression tasks, 

making it suitable for predicting PM concentrations based on 

meteorological parameters (Suárez-Sánchez et al., 2011). In 

cities like Lagos, where rapid population growth and 

industrialization exacerbate air pollution levels, accurate 

predictions of PM2.5 concentrations are crucial for enhancing 

air quality management. This can inform community 

awareness campaigns, regulatory guidelines, and public 

health advisories. This work introduces a novel embedded 

system designed to collect data on meteorological parameters 

and PM concentrations, with a specific focus on PM2.5. 

Despite advances in PM monitoring and ML modeling, few 

studies in sub-Saharan Africa, particularly in Lagos, have 

combined real-time embedded systems with comparative ML 

evaluations for PM2.5 prediction. This study aimed to 

evaluate the prediction capabilities of three machine learning 

algorithms: SVM, RF, and GB using this data. Specifically, 

the research addressed the following research questions: 

Which meteorological parameters most significantly 

influence PM2.5 in Lagos? Which ML model provides the 

most accurate predictions for real-time PM2.5 data collected 

via embedded systems? By filling this knowledge gap, this 

research aims to advance the understanding of air quality 

prediction models and their implications for environmental 

regulations and public health outcomes. 

 

MATERIALS AND METHODS 

Description of the Study Areas 

The research was conducted in Akoka, a suburb of Lagos, 

Nigeria, which is notable for its high population density and 

prominent educational institutions, including the Federal 

College of Education (Technical). This region experiences a 

tropical climate characterized by distinct wet and dry seasons, 

which significantly impact PM2.5 levels. The study area is 

located between Longitude N06º31’10” and N06º31’30” and 

Latitude E3º22′55″ and E3º23′5.3″, as illustrated in Fig. 1. 
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Exact sensor placement was at 3.5 meters above ground level 

and at GPS coordinates (6°31′20.0″ N, 3°23′00.0″ E) chosen 

to represent ambient neighborhood conditions consistent with 

WHO and national environmental agency guidelines. 

 

 
Figure 1: Map of Nigeria showing Lagos State and Federal College of Education 

(Technical) in Akoka 

 

Instrument for Data Collection 

The study employed a self-developed, easy-to-operate, and 

well-validated automated embedded system designed for real-

time environmental monitoring of particulate matter (PM1, 

PM2.5, and PM10) and key meteorological parameters. The 

system was purpose-built for autonomous, long-term outdoor 

operation in Lagos’ urban environment, where reliability, 

resilience, and energy independence are essential. Sensor 

selection was informed by peer-reviewed validation studies 

and cost-effectiveness, prioritizing performance and 

suitability for extended urban deployments. The PMS7003 

(Plantower) was used for particulate matter measurement, 

BMP180 for temperature and pressure, HIH4000 for 

humidity, and DFR-12 for wind speed. These sensors provide 

accurate, real-time environmental data and were chosen to 

minimize calibration drift and optimize system durability. 

The system’s power architecture was designed for off-grid, 

continuous operation, comprising a 60W solar panel to 

harvest solar energy, a charge controller to regulate voltage 

and protect the battery and circuitry, and a 40AH lithium-ion 

battery to store energy and support operation during low 

sunlight conditions or overnight. This robust power 

configuration ensures that all system components, sensors, 

controller, and communication units remain fully operational 

without external power, even in extended periods of poor 

weather or grid outages. 

At the heart of the system are two integrated microcontrollers, 

each assigned distinct roles for modularity and performance. 

The ATSAMD21, a 32-bit ARM Cortex-M0+ 

microcontroller, handled real-time sensor sampling and data 

acquisition. The ESP8266-12E module, connected to the 

ATSAMD21 via UART, managed wireless data transmission 

to a remote station computer over Wi-Fi. The ESP8266 is a 

low-cost, low-power system-on-chip (SoC) with an integrated 

TCP/IP stack, making it ideal for Internet of Things (IoT) 

applications. By offloading network communication tasks to 

the ESP8266, the ATSAMD21 was able to focus fully on 

time-sensitive data acquisition and processing without 

network-induced latency, thereby improving overall system 

efficiency and stability. 

Sensor interfacing was achieved using protocol-specific 

communication lines. The BMP180 (temperature and 

pressure) operates over I²C. The HIH4000 and DFR-12 

(humidity and wind speed) provided analog outputs 

connected to the ADC channels of the ATSAMD21. The 

PMS7003 (particulate matter) communicated via UART, 

delivering digital output directly to the microcontroller. The 

PMS7003 sensor utilizes a laser scattering method based on 

Mie theory, wherein particles passing through a laser beam 

scatter light at various angles depending on size. The scattered 

light is analyzed to estimate concentrations of PM1.0, PM2.5, 

and PM10, offering high-precision particulate measurement in 

real time. 

A software was developed using Embedded C in the Arduino 

IDE for the ATSAMD21, which managed sensor data 

acquisition and time stamping. A Python script executed on 

the ESP8266-12E coordinated wireless data transfer to the 

station computer via Wi-Fi, where all received data were 

logged and stored for subsequent analysis. This setup 

provided real-time monitoring and centralized storage while 

relying on the station computer for persistent data logging. 

The system block diagram, design components’ flowchart, 

and the exterior and interior views of the installed device are 

shown in Figure 2, 3 and 4 confirming both the technical 

implementation and real-world usability of the designed 

embedded system. 
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Figure 2: Block Diagram of the Embedded System 

 

 
Figure 3: Flowchart of the Design Components 

 

 
Figure 4: Exterior and Interior View of the Installed Device 

 

Calibration and Validation of the Designed Instrument 

Calibration and validation were undertaken to ensure the 

reliability and accuracy of the system’s measurements in 

comparison to reference-grade instruments. The system was 

calibrated through a co-location exercise with certified 

meteorological instruments from the Department of 

Geography, University of Lagos, and a DM-106A handheld 

particulate matter monitor over a continuous 30-day period. 

During this period, data from the developed embedded system 

were simultaneously collected alongside standard 

instruments, capturing a broad range of ambient conditions, 

including morning and evening rush hours, midday heat, and 

varying humidity and wind profiles. 

Discrepancies between the system readings and those of the 

reference devices were statistically analyzed to determine 

appropriate correction factors for each parameter. These 

correction algorithms were implemented within the firmware 

of the ATSAMD21 microcontroller to automatically adjust all 

real-time measurements at the point of acquisition. This 
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firmware-level calibration ensured that future data collected 

would reflect corrected values without post-processing.  

Sensor mounting and orientation were optimized according to 

international best practices: placement at 3.5 meters above 

ground, away from direct emission sources, and shaded to 

prevent solar heating artifacts. Routine maintenance was 

conducted weekly to clean sensor inlets and ensure consistent 

performance throughout the calibration and validation period. 

Following the implementation of calibration adjustments, a 

three-month validation phase was carried out from April to 

June 2019. During this period, the developed instrument 

remained co-located with reference-grade instruments, and its 

data were compared to standard measurements through time 

series plots and regression analysis. Validation results were 

quantitatively assessed using Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and coefficient of 

determination (R²). The summarized results are presented in 

Table 3.1 and indicate a strong correlation and low error 

margins across all parameters.  

 

Table 1: Summary of The Instrument Validation Results 

Parameters Slope Intercept R R2 RMSE MAE 

Pressure 0.91 95.81 0.93 0.86 2.94 2.67 

Temperature 1.01 1.10 0.96 0.92 1.52 1.38 

RH 1.06 -5.75 0.96 0.92 1.95 1.37 

Wind Speed 0.89 0.92 0.96 0.92 0.52 0.23 

PM1 0.85 6.83 0.93 0.86 3.55 2.88 

PM2.5 1.04 5.4 0.96 0.92 4.33 2.48 

PM10 1.07 6.29 0.94 0.88 4.91 1.92 

 

These results confirm that the developed instrument meets 

international benchmarks for continuous air quality 

monitoring. 

 

Method of Data Collection 

Data were collected over a two-year period from May 1, 2021, 

to April 30, 2023, at a site located in the Federal College of 

Education (Technical), Akoka, Lagos. The embedded system 

captured PM concentrations (PM1, PM2.5, PM10) and 

meteorological parameters (temperature, humidity, pressure, 

wind speed) every two minutes. These readings were 

averaged into hourly, daily, and monthly intervals to support 

various analyses and model training. Temporal coverage and 

high-frequency sampling (two-minute interval) ensured 

weather and emission events were accurately captured across 

diurnal and seasonal cycles. 

 

Data Preprocessing 

All data preprocessing and modeling were implemented using 

Python 3.8 in a Jupyter Notebook environment, with key 

libraries including Pandas 1.1.5, NumPy 1.19.5, and Scikit-

learn 0.24.1. Outliers in the dataset were addressed using the 

Interquartile Range (IQR) method; data points falling outside 

the range defined by Q1 – 1.5×IQR and Q3 + 1.5×IQR were 

excluded to prevent their influence on model training and to 

ensure robust performance. 

To handle missing data, Little’s MCAR test was conducted to 

confirm that missingness occurred at random. Test results 

indicated the data were missing completely at random 

(MCAR), justifying the use of mean imputation for its 

simplicity and minimal distortion to underlying patterns. For 

model development, the dataset was split into 80% for 

training and 20% for testing, ensuring temporal continuity 

was preserved throughout. All evaluation metrics, including 

those for validation and performance comparison, were 

computed from the held-out test set to maintain an unbiased 

assessment of model generalization. 

 

Machine Learning Algorithms 

This study employed three machine learning algorithms: 

Random Forest (RF), Gradient Boosting (GB), and Support 

Vector Machine (SVM), to predict PM2.5 concentrations in 

Lagos. These algorithms were selected based on their proven 

effectiveness in capturing complex patterns within 

environmental datasets and their capacity to handle non-linear 

relationships, noisy data, and multivariate inputs. 

Random Forest was chosen for its ensemble learning 

approach, which constructs multiple decision trees during 

training and aggregates their outputs. This mechanism 

effectively reduces overfitting and increases model stability, 

making it especially suitable for modeling the complex 

interactions among meteorological variables that influence air 

quality. 

Gradient Boosting, another ensemble method, builds decision 

trees sequentially, where each new tree corrects the errors 

made by the previous one. Its additive learning framework 

allows it to model intricate non-linear relationships. It is 

widely known for delivering high predictive accuracy in 

environmental and atmospheric applications. 

Support Vector Machine was incorporated due to its capacity 

to handle high-dimensional datasets and its ability to find 

optimal hyperplanes for classification and regression tasks. 

With the use of appropriate kernel functions, SVM is capable 

of handling both linear and non-linear relationships, which is 

advantageous in air pollution modeling where interactions 

among features are often complex and non-linear. 

 

Model Selection, Training, and Optimization 

Following algorithm selection, a rigorous workflow was 

implemented to train, optimize, and evaluate the models. The 

process began with data preprocessing and was followed by 

model training using an 80/20 split for training and testing. To 

enhance reliability and avoid overfitting, K-fold cross-

validation was applied, where the dataset was partitioned into 

five folds and iteratively trained and validated across all 

subsets. This approach ensures robust performance estimation 

and generalizability, flowchart shown in Figure 5. 

To optimize each model’s performance, GridSearchCV from 

the Scikit-learn library was employed for hyperparameter 

tuning. This method performs an exhaustive search over 

specified parameter combinations to identify the best 

configuration. The search was conducted using 5-fold cross-

validation integrated within GridSearchCV, ensuring that 

hyperparameters were not only optimized for the training set 

but also validated consistently across multiple data partitions. 

For the Random Forest model, the final configuration used 

100 decision trees and a maximum depth of 10. The Gradient 

Boosting model employed 200 estimators and a learning rate 

of 0.1. The SVM model was optimized for kernel type and 
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regularization parameter. These hyperparameter choices were 

carefully selected to balance model complexity, computation 

time, and predictive performance. 

Each trained model was evaluated on the testing dataset using 

three core performance metrics: Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and R-squared (R²). 

These metrics allowed for a quantitative comparison of the 

models' predictive abilities and informed the final model 

selection, which favored Random Forest based on its superior 

balance of accuracy and generalization, as elaborated in the 

Results and Discussion section. 

Despite the robust methodology, some limitations were 

acknowledged. The study’s temporal scope, limited to two 

years, may not fully capture long-term or seasonal variations 

in PM2.5 concentrations, potentially affecting model 

generalizability. Moreover, mean imputation was used to 

handle missing values under the assumption of randomness, 

which, if violated, could introduce bias. Lastly, while cross-

validation and hyperparameter tuning strengthened model 

reliability, they also introduced substantial computational 

demands. 

Nevertheless, this modeling pipeline demonstrates a rigorous 

and scalable framework for real-time air quality prediction. It 

underscores the value of combining embedded sensing 

systems with advanced machine learning techniques to inform 

public health policies and urban air quality management. 

 

 
Figure 5: Machine Learning Flow Chart 

 

RESULTS AND DISCUSSION 

A.  PM2.5 Average Daily and Average Seasonal Concentration Levels 

 

Table 2: PM2.5 Average Daily and Average Seasonal Concentration Levels 

Statistic Value (µg/m³) 

Minimum Value 0.94 

Maximum Value 86.42 

Range 85.94 

Mean Value 37.39 

Standard Deviation 26.60 

Seasonal Mean (Dry) 37.48 

Seasonal Mean (Rainy) 31.83 
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Figure 6: Boxplots Representing Daily Average of PM2.5 Concentrations 

 

Lagos, Nigeria, is characterized by persistently high PM2.5 

concentrations, as demonstrated by the analysis in Table 2 and 

Figure 6. The daily PM2.5 levels fluctuate substantially, with 

values ranging from 0.94 µg/m³ to 86.42 µg/m³, and a mean 

daily concentration of 37.39 µg/m³, well above recommended 

air quality guidelines (World Health Organization, 2021). 

This finding is consistent with recent work by Yahaya et al. 

(2023), further substantiating the ongoing air quality 

challenges faced by Lagos. 

Seasonally, dry periods exhibit a slightly higher mean PM2.5 

(37.48 µg/m³) than rainy periods (31.83 µg/m³), which 

reinforces global trends of improved air quality during rainfall 

months due to the natural cleansing effect of precipitation 

(Shukla et al., 2008; Lala et al., 2023). The high standard 

deviation (26.60 µg/m³) highlights significant variability, 

likely driven by episodic events such as traffic build-ups and 

intermittent industrial emissions. Such patterns are illustrated 

by the interquartile range and outliers depicted in Figure 4’s 

boxplot. 

These observations align with the pattern of elevated PM2.5 

prevalent in rapidly urbanizing cities of the developing world 

(Okimiji et al., 2021; Obike–Martins et al., 2022; Atou et al., 

2022; Okudo et al., 2022; Emekwuru et al., 2023; Odubanjo 

et al., 2024). Major sources in such environments include 

rapid urban expansion, dense traffic, industrial activity, and 

frequent combustion of fossil fuels. Given the observed levels 

and variances, the public health implications are severe, 

particularly concerning respiratory and cardiovascular health 

burdens (World Health Organization, 2021; Manisalidis et al., 

2020). 

These results directly address the first research question, 

highlighting not just the magnitude but also the variability of 

PM2.5 exposures in Lagos. Mitigating these risks will 

necessitate continuous monitoring, detailed source 

apportionment, and targeted interventions. 

 

Machine Learning Model Prediction for PM2.5 in Lagos 

Three machine learning models: Random Forest (RF), 

Support Vector Machine (SVM), and Gradient Boosting 

(GB), were robustly evaluated using key prediction metrics: 

Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and R-squared (R²). The results are summarized in 

Table 3. 

 

Table 3: Prediction Performance of RF, SVM, and GB Models for PM2.5 in Lagos 

Model  RMSE MAE R-Squared 

Random Forest 10.84 6.62 0.77 

Support Vector Machine 22.81 17.79 0.24 

Gradient Boosting 11.89 7.73 0.72 

 

The Random Forest model achieved the best predictive 

performance, explaining 77% of the variance in PM2.5 levels 

(R² = 0.77, RMSE = 10.84). This outperformance is 

attributable to RF’s capacity to model complex, nonlinear 

relationships through ensemble averaging (Ameer et al., 

2019; Fang et al., 2021). In contrast, SVM’s poor results (R² 

= 0.24, highest RMSE and MAE) suggest its limitations—

possibly related to kernel or scaling sensitivity and data 

complexities typical in urban air environments (Rodríguez-

Pérez et al., 2022). The GB model provided intermediate 

results and, like RF, leveraged tree-based learning to achieve 

substantial predictive accuracy (R² = 0.72). 

These findings are also consistent with prior air quality 

modeling studies in similar contexts (Gupta et al., 2023; 

Mahmud et al., 2022; Vignesh et al., 2023). Thus, in direct 

response to the second research question, RF is confirmed as 

the preferred algorithm for this embedded system application. 

 

 

 

 

PM2.5 Prediction Visualization and Residual Diagnostics 

Figure 7 shows a combined scatter and line plot of actual and 

RF-predicted PM2.5 values. Blue dots denote observed, orange 

dots predicted, and smoothed trend lines for both are also 

presented. 

Visual inspection of Figure 5 reveals that RF effectively 

captures temporal variation in PM2.5, though brief divergences 

during extreme pollution events are apparent. Residual 

diagnostics (Figures 8 and 9) indicate that prediction errors 

(actual minus predicted) cluster around zero but show heavier 

tails and greater variance during episodes of high PM2.5. 

A Shapiro-Wilk test (p < 0.05) confirmed the non-normality 

of residuals, indicating persistent challenges in accurately 

forecasting rare or extreme pollution spikes. This is a known 

limitation in environmental time series where underlying 

drivers (e.g., sudden traffic surges, industrial releases) are not 

directly measured. 

Further, the residual distribution pattern underscores a need 

for hybrid/ensemble models or error forecasting frameworks 

for improved handling of such variability, as recommended in 

the recent literature. 
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Figure 7: Visualization of scatter plot and line Graph of actual PM2.5 and Predicted PM2.5 for the RF Algorithm in Lagos 

 

 
Figure 8: PM2.5 Residual Scatter Plots 

 

 
Figure 9: PM2.5 Residual Distribution Plot 

 

Feature Importance Analysis for RF Model 

Table 4: Feature Importance Analysis for the Random Forest Algorithm in PM2.5 Prediction 

Input Variables Importance (%)  

Humidity 10.92 

Temperature 9.38 

Wind Speed 8.24 

Pressure 5.86 

 

Meteorological conditions contribute only partially to 

explaining PM2.5 variability. This finding aligns with previous 

research in tropical megacities, which highlights that air 

pollution levels are shaped more by local, often unmeasured 

sources such as traffic, industrial activity, and open burning 

than by meteorological dynamics alone (Theogene et al., 

2020; Khalis et al., 2022). The analysis further indicates that 

relying solely on meteorological measurements may overlook 

rapid changes in local emissions, such as those caused by 

spikes in traffic or short-term combustion events, which 

standard weather data are unlikely to capture. Incorporating 

additional data types, such as real-time information on traffic 

volumes, land use, or emission inventories, could provide a 

more comprehensive basis for predicting PM2.5 

concentrations. 

The feature importance assessment directly addresses the first 

research question by showing that, while meteorological 

variables do have an effect on PM2.5 levels in Lagos, their 

impact is limited compared to that of unmeasured local 

emission sources. This underscores the need for future 

modeling efforts to integrate direct measurements of 

anthropogenic activities to better capture the underlying 

drivers of air pollution in the city. 

 

CONCLUSION 

This study developed and systematically evaluated a real-time 

embedded system for monitoring PM2.5 and meteorological 

variables in Lagos, Nigeria, a city confronting severe and 

persistent air quality challenges. By combining cost-effective 

sensor technologies with ML-based forecasting, the work 
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presents a replicable framework for high-frequency, 

continuous pollution monitoring in resource-constrained 

settings. 

Among the tested ML models, Random Forest emerged as the 

most accurate (RMSE = 10.84, R² = 0.77), validating the 

strength of ensemble learning for complex, noisy 

environmental datasets. Feature analysis confirmed that 

meteorological factors, while significant, do not solely 

determine PM2.5 dynamics in urban Lagos; substantial 

variance remains unaccounted for, likely due to non-

meteorological emissions not measured here. This 

underscores the urgent need for future studies to integrate 

traffic, industrial, and other anthropogenic activity data for 

greater explanatory and forecasting power. 

The present analysis did not employ formal statistical 

hypothesis testing (e.g., ANOVA, Kruskal-Wallis) to 

evaluate model differences, and did not generate confidence 

intervals for error metrics. Addressing these in future work 

will enhance model interpretability and reliability. Further, 

generalizability to other settings—beyond Lagos or across 

various West African cities—remains an important research 

direction. 

Despite these acknowledged limitations, this work provides 

an important foundation for scalable, intelligent air quality 

management. By enabling granular, real-time, and predictive 

air quality assessment, the proposed system can inform public 

health planning, early warning, and regulatory action in 

rapidly developing urban centers. 
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