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ABSTRACT 

Due to the rising fuel prices, there is a global shift towards the adoption of hybrid electric vehicles (HEVs) 

because of their environmental benefits, lower maintenance needs, and alignment with green technology. In 

HEVs, the energy management system (EMS) is crucial for ensuring efficient energy storage and managing the 

power flow between the different energy sources, such as the internal combustion engine, battery, and electric 

motor. The EMS optimizes energy usage, enhances overall vehicle efficiency, and contributes to reducing fuel 

consumption and emissions, playing a pivotal role in the performance and sustainability of HEVs. This research 

work proposes an electric vehicle concept powered by multiple energy sources. The design will integrate solar 

photovoltaic (PV) energy, wind turbine and a fuel cell (FC), (PV + FC) to generate electrical energy. The 

vehicle will incorporate onboard solar panels, wind energy systems, proton exchange membrane (PEM) fuel 

cell and supercapacitor units to ensure uninterrupted energy supply during operation which can be achieved 

with fuzzy-based EMS. Poor design of the EMS will have effect on the performance limitations of the battery 

state of charge (SOC), and not fully optimizing energy recovery during braking will result in lower overall 

energy efficiency. This work addresses the above challenges by using fuzzy-EMS. The Simulation results 

showcase the system’s ability to achieve zero emissions, reduce operational costs, and promote environmental 

sustainability.  
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INTRODUCTION 

The electric vehicle is not a recent invention of the 21st 

century. In the early 1900s, at the dawn of the automotive 

industry, three main types of vehicles dominated the market: 

40% were steam-powered, 38% were electric, and only 22% 

used gasoline. Electric vehicles were favored for their 

convenience as they were quiet, free from vibrations and 

fumes, and easy to start without the need for cranking 

(Albatayneh et al., 2020). However, they had limitations such 

as a limited range of 50-65 km, a top speed of about 30 km/h, 

and long recharge times. These challenges are similar to those 

faced by modern EVs. Consequently, despite their initial 

success, particularly in urban areas, electric vehicles were 

eventually replaced almost entirely by internal combustion 

engine (ICE) vehicles, like Benz's models and Ford's 

ubiquitous Model T. For many decades, the electric vehicle 

market was virtually nonexistent, except for specific 

applications and a few rare instances (de Carvalho Pinheiro, 

2023). Despite advancements in EV energy management, 

existing EMS implementations struggle with real-time 

decision-making under uncertainty and fail to integrate 

multiple renewable sources in a scalable framework 

Additionally, according to a report by the European Union, 

the transport sector is responsible for nearly 28% of total 

carbon dioxide (CO2) emissions, with road transport 

accounting for over 70% of these emissions. As a result, 

authorities in most developed countries are advocating for the 

use of Electric Vehicles (EVs) to reduce the concentration of 

air pollutants, CO2, and other greenhouse gases (Sanguesa et 

al., 2021). They are promoting sustainable and efficient 

mobility through various initiatives, including tax incentives, 

purchase aids, and special measures like free public parking 

and free use of motorways. EVs offer several advantages over 

traditional vehicles (Gultom et al., 2023): 

 

Table 1: Advantages of EV 

Category Benefit 

Environment Zero emissions, lower pollution 

Efficiency Higher energy conversion, regenerative braking 

Cost Lower fuel and maintenance costs 

Performance Instant torque, smooth ride 

Sustainability Supports renewable energy and energy independence 

Grid Integration Smart charging and vehicle-to-grid (V2G) capabilities 

Social Impact Improved air quality, innovation, and job creation 
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Figure 1: Comparison of savings in cost per kilometer offered by vehicles powered by different sources 

(Sanguesa et al., 2021) 

 

Various researchers have attempted to address the energy 

management problem of hybrid electric vehicle but are faced 

with some of the following challenges like, the actual energy 

efficiency been impacted by factors like power losses in the 

converters or the performance limitations of the battery and 

supercapacitor, not fully optimizing energy recovery during 

braking resulting in lower overall energy efficiency, and 

suboptimal performance in energy distribution. In this 

research work, the integration of multiple energy sources into 

Zero EVs represents a transformative step in the evolution of 

sustainable transport systems, combining environmental 

benefits, enhanced energy flexibility, cost-efficiency, and 

technological innovation. It lays the foundation for future 

smart mobility solutions aligned with green energy transitions 

and zero-carbon targets. 

The main contributions of this work are as follows: 

i. Development an integrated architecture that combines 

various renewable energy sources (e.g., photovoltaic 

panels, wind turbine and fuel cell) with energy storage 

systems, enabling continuous zero-emission operation 

regardless of environmental variability. 

ii. Implementation of a fuzzy logic controller (FLC) for the 

dynamic allocation and switching between energy 

sources based on real-time inputs such as battery state 

of charge (SOC), power demand, and environmental 

conditions (solar irradiance) and wind speed. 

iii. The fuzzy logic EMS is designed to be scalable and 

adaptable, allowing integration into various types of 

electric vehicles (two-wheelers, passenger cars, or 

delivery vans), thus contributing toward future smart 

mobility solutions. 

 

Review of Similar Works 

(Chen et al., 2015), introduces an energy management 

strategy utilizing a particle swarm optimization (PSO) 

algorithm. The primary objective is to minimize the total 

energy cost, encompassing both fuel and electricity, during 

vehicle operation. To address the common challenge of 

optimal strategies being impractical for real-time control, the 

authors propose a rule-based strategy with three distinct 

operation modes. The PSO algorithm is then applied to 

optimize four threshold values within this rule-based 

framework, enhancing its efficiency and applicability. 

However, the approach assumes specific energy cost 

structures and may not adapt well to fluctuating electricity and 

fuel prices or renewable energy contributions. The integration 

of PSO for threshold optimization could require significant 

computational resources during initial setup or recalibration, 

which might not be feasible for all vehicles. (Rafael & Carri, 

2015), focuses on examining the operational impacts of 

integrating a significant number of plug-in electric vehicles 

into a power system primarily supported by renewable 

energy. It explores various approaches to coordinate the 

interaction between the power system operator and the 

charging process of plug-in electric vehicles within a smart 

grid framework. The system's operation is represented 

through a network-constrained stochastic economic dispatch 

model. The problem is formulated using a two-stage 

stochastic programming model, accounting for uncertainties 

related to the charging behavior of plug-in electric vehicles 

and the availability of renewable energy sources, both of 

which are modeled as stochastic processes. However, the two-

stage stochastic programming model used in the study may 

become computationally intensive as the number of variables 

and scenarios increases, which could limit its practicality for 

real-time or large-scale applications. The effectiveness of the 

proposed model might be restricted to certain types of power 

systems or grid configurations. Applying the same approach 

to different grid setups or varying levels of renewable 

penetration might require adjustments or additional 

considerations. (Yin et al., 2015), presents an Adaptive Fuzzy 

Logic-Based Energy Management Strategy (AFEMS) 

designed to optimize the power split between a battery pack 

and an ultracapacitor (UC) pack in hybrid energy storage 

systems. The strategy leverages fuzzy logic to dynamically 

adapt to varying operating conditions, ensuring efficient 

energy distribution and enhanced system performance. 

However, if the AFEMS is not designed to interact seamlessly 

with other vehicle control systems (e.g., engine control, 

regenerative braking), it may lead to conflicts or suboptimal 

performance in energy distribution. (Hu et al., 2016), 

discusses a multi-objective optimization approach for the 

powertrain system of a passenger car, focusing on fuel 

economy and system durability. Based on an analysis of the 

optimal results obtained through dynamic programming, a 

soft-run strategy is proposed for designing a real-time, multi-

objective control algorithm. The soft-run strategy is further 

optimized by considering the size of the lithium battery and 
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implemented using two real-time algorithms. Compared to the 

dynamic programming results, the power demand-based 

control method is found to be more suitable for powertrain 

systems with larger capacity batteries, while the state of 

charge-based control method performs better in other 

scenarios. However, while two real-time algorithms are 

proposed, their performance under varying real-world 

conditions, such as temperature changes or unpredictable 

driving patterns, may not match the idealized simulations. 

(Ravichandran et al., 2016), presents an online optimal 

control strategy aimed at managing power flow in microgrids 

equipped with on-site batteries, renewable energy sources, 

and integrated electric vehicles (EVs). It formulates an 

optimization problem as a mixed-integer linear program, 

executed over a rolling time horizon. The optimization 

process utilizes predicted values for microgrid electricity 

demand, renewable energy generation, EV connection and 

disconnection times, and the state of charge of EVs at the time 

of their connection. The solution to this optimization problem 

determines the charge and discharge powers for both the on-

site battery and the electric vehicles. The strategy considers 

both bidirectional and unidirectional charging scenarios for 

EVs. The proposed optimal controller aims to maximize 

economic benefits while ensuring that user-specified charge 

levels are achieved by the time EVs disconnect from the 

microgrid. However, the effectiveness of the control strategy 

hinges on the accuracy of the predicted values for electricity 

demand, renewable generation, and EV connection times. 

Inaccurate predictions could lead to suboptimal energy 

management and reduced economic benefits. Frequent charge 

and discharge cycles, particularly in bidirectional scenarios, 

can accelerate battery degradation. The strategy may not 

account for the long-term impacts of battery cycling on 

performance and lifespan. (Horrein et al., 2016), examine how 

the heating system affects fuel consumption in a Hybrid 

Electric Vehicle (HEV). Since the internal combustion engine 

(ICE) is used less frequently in an HEV compared to a 

traditional vehicle, cabin heating is partially provided by 

electric resistances. However, because the battery's state of 

charge (SoC) is primarily maintained through the ICE's 

charging function, the use of electrical heating influences the 

vehicle's overall fuel consumption. (Rahbari et al., 2017), 

presents a practical approach to address the challenges of 

integrating renewable energy sources and electric vehicles 

into the electric grid. It focuses on handling the intermittency 

of power generation and inconsistencies in energy 

consumption through a new adaptive intelligent controller. 

The research outlines a smart grid composed of power plants 

and distributed generation units, powered by photovoltaic 

panels and wind turbines, and enhanced with electric vehicles 

functioning as power storage systems. The use of parking lots 

to manage challenges like the limited penetration of electric 

vehicles equipped with Vehicle-to-Grid (V2G) capabilities 

presents two main difficulties: determining optimal 

installation locations and effectively modeling bi-directional 

power flow among electric vehicles, the grid, and the 

distributed generation system. However, the smart grid 

described relies heavily on photovoltaic panels and wind 

turbines. However, fluctuations in weather and environmental 

conditions can impact the consistency of power supply, 

introducing reliability issues that the intelligent controller 

may not be fully equipped to handle. (Li et al., 2017), 

examines challenges related to vehicle battery technology, 

focusing on energy consumption and environmental impact, 

while also emphasizing the role of nanotechnologies and 

system design. It outlines the current state and future 

development trends of batteries, highlighting that graphene 

batteries offer advantages such as higher specific energy, 

greater capacity, and lower costs compared to traditional 

batteries. If nanographene technology can further enhance 

battery performance and lifespan, it holds promising potential 

for advancing electric vehicle applications. Despite 

improvements in lifespan, maintaining the stability of 

graphene-based batteries over prolonged use can be 

challenging. Additional graphene batteries are more eco-

friendly than conventional options, the processes for 

extracting and synthesizing graphene might still have 

environmental implications. However, the two-stage 

stochastic programming model can be computationally 

intensive, particularly for large-scale systems with numerous 

plug-in electric vehicles and renewable sources, potentially 

limiting its practical implementation. (Zheng et al., 2018), 

introduces an optimal energy management strategy based on 

Pontryagin’s Minimum Principle (PMP). The strategy 

dynamically allocates the required propulsion power between 

two energy storage systems (ESSs) during vehicle propulsion 

and distributes regenerative braking energy between the ESSs 

during braking. The primary goals of the strategy are to 

minimize the electricity consumption of the electric vehicle 

(EV) and to extend the battery's lifespan. A simulation study 

compares the proposed strategy with a rule-based energy 

management approach. Results demonstrate that the proposed 

strategy achieves greater electricity savings than the rule-

based method and single ESS systems across three typical 

driving cycles analyzed in the study. However, Pontryagin’s 

Minimum Principle requires precise system modeling and can 

be computationally intensive, which may pose challenges for 

real-time implementation. (Wu et al., 2018), introduces a 

novel real-time energy management strategy (R-EMS) 

designed to enhance the fuel economy performance of power-

split hybrid electric vehicles (HEVs). The proposed strategy 

focuses on optimizing energy allocation between the internal 

combustion engine and the electric motor in real-time, 

ensuring efficient operation and improved fuel efficiency 

under varying driving conditions. However, the R-EMS may 

not fully optimize energy recovery during braking, resulting 

in lower overall energy efficiency. (Eseye et al., 2019), 

explores the benefits of demand resources in buildings for 

optimal energy trading in day-ahead and real-time energy 

markets. The building flexible demand resources considered 

are electric vehicles and batteries. The research work 

examines the combined optimization of EVs and batteries in 

the day-ahead and regulation electricity markets with the 

objective of maximizing the total profit of the building 

microgrid. It takes EVs driving pattern into consideration. The 

major contribution of the paper is the exploitation of the 

energy flexibility of buildings using EVs as dynamic energy 

storage device and batteries as manageable demand facility. 

The devised optimization problem is formulated as a double-

stage mixed-integer linear programming (MILP) problem, 

and solved using the CPLEX solver. However, the double-

stage MILP formulation may involve a significant number of 

decision variables and constraints, making the optimization 

process computationally intensive, particularly for large-scale 

microgrids. Integrating the optimization strategy into existing 

building energy management systems and scaling it for larger 

networks or multiple buildings may require additional efforts 

and technical adaptations. (Marzougui et al., 2019), presents 

an analysis of energy management for a hybrid power system 

composed of a fuel cell, ultra-capacitor, and battery, 

specifically designed for electric vehicles. An energy 

management strategy is applied to efficiently distribute the 

energy flow among the three power sources. However, 

efficiently managing the energy flow between three different 
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power sources (fuel cell, ultra-capacitor, and battery) can be 

complex, requiring advanced algorithms and precise control 

to ensure optimal performance under varying conditions. 

(Kandidayeni et al., 2020), introduces a framework for online 

parameter identification of a proton exchange membrane fuel 

cell (PEMFC) model during vehicle operation. The proposed 

method integrates seamlessly with energy management 

systems (EMS) of any type. A Kalman filter (KF) is used to 

extract the PEMFC model parameters online, with special 

emphasis placed on the initialization process, distinguishing 

this work from similar studies. To initialize the KF 

effectively, the shuffled frog-leaping algorithm (SFLA) is 

employed. Initially, the SFLA operates offline to determine 

optimal initial values for the PEMFC model parameters using 

the polarization curve. These values are then utilized to tune 

the covariance matrices of the KF. Once tuned, the KF is 

applied online for real-time parameter updates. The results 

demonstrate high accuracy and improved convergence in 

estimating PEMFC characteristics, validating the efficacy of 

the proposed framework. However, the integration of the 

shuffled frog-leaping algorithm (SFLA) and Kalman filter 

(KF) may introduce computational overhead, potentially 

challenging real-time implementation, especially in resource-

constrained systems. (Mou et al., 2020), introduces a novel 

adaptive dynamic wireless charging approach that allows 

mobile electric vehicles (EVs) to be powered by renewable 

wind energy. This system leverages a traffic flow-based 

charging demand prediction program to anticipate charging 

needs efficiently. However, wireless charging technology 

inherently faces energy transfer losses due to distance and 

alignment issues between transmitters and receivers. These 

losses may reduce the overall efficiency of the system and 

could require additional energy input to achieve desired 

charging outcomes. While the system aims for dynamic 

wireless charging, there could be limitations in the range or 

coverage of wireless charging stations. This may restrict its 

applicability to specific routes or densely populated areas with 

sufficient infrastructure. (Gupta et al., 2020), presents a 

probabilistic approach for optimal reactive power planning, 

considering uncertainties in renewable energy generation 

(specifically wind and photovoltaic systems), fluctuating 

loads, and electric vehicle (EV) charging demand. The 

proposed methodology uses a probabilistic AC/DC load flow 

analysis to address the uncertainties and connections between 

offshore wind farms and the grid. However, the analysis of 

AC/DC load flow includes offshore wind farm connections, 

which may present challenges related to grid integration, 

transmission losses, and stability, particularly in regions with 

significant offshore wind penetration. (Chandrasekar et al., 

2020), design and analyze a proposed triple-port DC-DC 

buck-boost converter for high step-up/step-down 

applications. The converter features two unidirectional ports 

(port-1 and port-3) and one bi-directional port (port-2) for 

harnessing photovoltaic (PV) energy and charging a battery. 

At port-1, a combined buck and buck-boost converter 

structure is used, featuring a specific arrangement of switches 

and inductors. This configuration offers a higher step-up/step-

down voltage conversion ratio compared to traditional buck-

boost converters, while maintaining a positive output voltage 

polarity. The bi-directional port (port-2) facilitates energy 

storage by integrating a bi-directional boost converter to 

charge or discharge the battery. The switches operate 

synchronously in most modes, simplifying the control 

strategy and enhancing the overall system efficiency. 

However, the high step-up/step-down voltage conversion 

ratio and bi-directional energy flow can place significant 

stress on the switches, inductors, and capacitors, potentially 

reducing efficiency and reliability, especially under high load 

or fluctuating input conditions. (Binkowski, 2020), introduces 

a novel maximum power point tracking (MPPT) method for 

photovoltaic (PV) inverters connected to a single-phase 

400Hz vehicle or aircraft grid, supplying drives operating in 

critical mode. The method addresses the issue of power 

fluctuations that cause voltage ripples at the terminals of 

photovoltaic panels, which are connected to the DC-link 

capacitor. The proposed solution utilizes a conductance-based 

MPPT approach to mitigate the impact of varying voltage. 

This technique ensures a stable reference current for grid 

current calculation, effectively solving problems identified in 

previous studies related to voltage fluctuations. However, the 

conductance-based MPPT method may not perform optimally 

in rapidly changing environmental conditions, such as varying 

light intensity or temperature, potentially leading to slower 

adaptation to changing maximum power points. (Ishaque et 

al., 2021), focuses on the design, modeling, and results-driven 

approach for creating an Energy Management System (EMS) 

for Hybrid Electric Vehicles (HEVs) using a fuzzy logic 

controller (FLC). The system utilizes batteries as the primary 

energy storage and supercapacitors (SCs) as the secondary 

energy storage. The EMS integrates the Ultra-Power Transfer 

Algorithm (UPTA) and FLC methods to regulate power flow. 

The UPTA method is employed to charge the battery during 

regenerative braking mode with the assistance of a single-

ended primary inductor converter (SEPIC). However, the 

combination of fuzzy logic controllers and the Ultra-Power 

Transfer Algorithm (UPTA) could increase the complexity of 

the system, making it more challenging to implement and 

optimize in real-world applications. While the system aims to 

manage energy flow effectively, the actual energy efficiency 

may be impacted by factors like power losses in the converters 

or the performance limitations of the battery and 

supercapacitor. (Chakir et al., 2022), propose a management 

system for a future household equipped with controllable 

electric loads and an electric vehicle equipped with a PV–

Wind–Battery hybrid renewable system connected to the 

national grid. The proposed management system is based on 

a linear programming model with non-linear constraints 

solved with MATLAB toolboxes. The simulation is based on 

a database of meteorological conditions resulting from 

TRNSYS and processed to achieve a frequency of one hour. 

The system decisions provide switch control states of the 

connection architecture as well as the variation according to 

the V2H (vehicle to home), H2V (home to vehicle) and 

involved G2V (grid to vehicle) scenarios when grid comes 

into play during H2V mode. However, despite integrating PV 

panels and wind turbines, the system remains exposed to the 

inherent variability of renewable energy sources. During 

extended periods of low sunlight or wind, the reliance on 

battery storage and grid support may increase, reducing the 

system’s autonomy. (Mamun et al., 2022), presents a hybrid 

electric vehicle (HEV) concept powered by renewable energy 

resources (RERs), including solar photovoltaic (PV) energy, 

wind energy, a fuel cell (FC), and a supercapacitor (SC). The 

proposed design integrates these components (PV + WE + FC 

+ SC) to generate electrical energy via a proton exchange 

membrane (PEM) fuel cell and SC, addressing high torque 

requirements. A battery pack and SC cater to power demands, 

while the FC serves as a backup energy source. Additionally, 

a wind-driven alternator generates electricity to charge the 

battery when the vehicle is in motion. The design aims to 

achieve zero carbon emissions, enhance energy efficiency, 

and reduce vehicle weight by incorporating in-wheel motors 

to eliminate mechanical transmissions. Subsystem modeling 

and simulation were performed using MATLAB and 
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Simulink, while ANSYS Fluent was employed for wind 

energy analysis, including standard parameters like pressure, 

velocity, and vector contours. A rule-based supervisory 

controller manages the energy flow, prioritizing sources 

logically: the SC for stop-and-go situations, the battery as the 

primary source, the FC as backup, and wind and solar energy 

for recharging the battery. Solar charging is activated 

automatically when the vehicle is parked, with the alternator 

contributing to energy flow under the controller's regulation 

during movement. However, the supervisory controller 

follows a predefined logic, which might not adapt optimally 

to varying real-world conditions or unforeseen circumstances. 

The concept is validated through simulations, which may not 

account for practical challenges such as wear and tear, safety, 

or component integration in real-world conditions. (Pirpoor et 

al., 2022), proposes a high-gain, single-switch, and efficient 

DC-DC boost converter that integrates switched-capacitor 

and switched-inductor cells. These components enhance 

voltage levels while minimizing input current ripple. The 

design achieves this by repositioning the input inductors and 

employing a switched-inductor block, where inductors 

magnetize in parallel and demagnetize in series, reducing 

input current stress. The converter uses a single switch, 

simplifying the control circuitry and enabling stable DC 

output voltage for variable input voltages or load conditions. 

Voltage levels are further boosted using the switched-

capacitor cell, which can be expanded by adding diodes and 

capacitors, providing a modular and scalable design. This 

approach offers high efficiency, reduced complexity, and 

adaptability for diverse applications. However, while efficient 

at certain operating points, the converter's efficiency may 

decrease under heavy load conditions due to increased 

conduction and switching losses. (Xiaodong et al., 

2023) presents an adaptive energy management strategy 

(EMS) based on the equivalent consumption minimization 

strategy (ECMS), leveraging real-time traffic data 

characterized by average speed, average acceleration, and 

speed variability across road segments. The proposed system 

integrates offline and online components to enhance 

adaptability and efficiency. In the offline phase, velocity 

characteristic parameters are derived using vehicle data, and 

road segments are classified using the K-means clustering 

algorithm. Markov transition matrices are then constructed for 

different road types based on these parameters, enabling the 

prediction of future vehicle speeds for subsequent time 

intervals. In the online phase, the EMS utilizes the predicted 

vehicle speeds and road segment classifications to 

dynamically adjust the equivalent factors in the ECMS. By 

incorporating real-time traffic and road information, the 

strategy ensures adaptive and optimized power distribution 

between energy sources, aiming to improve fuel efficiency 

and overall system performance in hybrid electric vehicles. 

However, the EMS heavily depends on accurate speed and 

traffic predictions. Errors in the Markov-based speed 

prediction model could negatively impact the performance of 

the energy management strategy. (Ibrahim et al., 2023), 

introduces a hybrid maximum power point tracking (MPPT) 

algorithm that combines Particle Swarm Optimization (PSO) 

with two conventional methods: Perturb and Observe (PO) 

and Incremental Conductance (IC). The proposed PSO-based 

method optimizes the maximum power output of photovoltaic 

(PV) systems by dynamically adjusting the step size, which is 

traditionally fixed in the PO and IC methods. In this approach, 

the step size varies based on solar irradiance, improving 

tracking efficiency. To evaluate the hybrid MPPT algorithm, 

a single-stage grid-connected PV system is designed and 

tested under various weather scenarios. The performance of 

the hybrid algorithm is compared to that of the conventional 

PO and IC methods. The results show that the PSO+IC hybrid 

method outperforms the conventional methods, achieving a 

tracking time of only 43.4ms and an efficiency of 99.07% 

under standard test conditions. This demonstrates the 

enhanced performance of the hybrid MPPT algorithm in real-

world conditions. However, the PSO algorithm requires 

careful tuning of parameters (such as swarm size and inertia 

weight) for optimal performance. Incorrect parameter settings 

could reduce the efficiency and effectiveness of the algorithm, 

potentially leading to suboptimal power tracking. (Yilmaz et 

al., 2023), proposes an Artificial Neural Network (ANN)-

based Maximum Power Point Tracking (MPPT) method, 

called the ANN-based Adaptive Reference Voltage (ARV) 

method, to determine the optimal operating point of the 

photovoltaic (PV) panel. The ARV method is a voltage-

controlled approach that adapts to changing atmospheric 

conditions, offering an advantage in dynamic environments. 

The method's performance is evaluated using both a standard 

Proportional-Integral (PI) controller and an anti-windup PI 

controller. A comparative analysis is conducted against 

widely used methods like Perturb and Observe (P&O) and 

Incremental Conductance (INC) in a MATLAB/Simulink 

environment, considering three different atmospheric 

scenarios with varying radiation levels, in accordance with 

EN50530 standards. The results show that the proposed 

method achieves efficiencies of 99.4%, 95.9%, and 96% in 

scenarios 1, 2, and 3, respectively. Notably, the ANN-based 

ARV method demonstrates superior performance in rapidly 

changing atmospheric conditions, making it an efficient 

solution for real-world PV systems. However, the 

performance of the ANN-based ARV method is highly 

dependent on the quality and quantity of training data. If the 

training data does not adequately represent all possible 

atmospheric conditions, the network may not generalize well 

to real-world scenarios, leading to suboptimal performance. 

(Adedeji, 2024), explores the use of supervised machine 

learning techniques, including Random Forest (RF), K-

Nearest Neighbor (KNN), Multiple Linear Regression 

(MLR), and Artificial Neural Networks (ANNs), to predict 

energy parameters in plug-in hybrid electric vehicles 

(PHEVs). The primary goal is to develop a machine learning 

model capable of accurately estimating combined energy 

consumption for both city and highway driving. For 

predicting combined, city, and highway fuel consumption, the 

mean square error (MSE) ranges are as follows: KNN: 3.40–

6.13, MLR: 0.029–0.0625, RF: 0.030–0.091, ANN: 0.022–

0.038. The ANN model demonstrated the highest prediction 

accuracy among the techniques. Specifically: For combined 

fuel consumption, ANN was 183.51, 42.53, and 1.85 times 

more accurate than KNN, RF, and MLR, respectively. For 

city fuel consumption, ANN was 113.33, 19.75, and 2.06 

times more accurate than KNN, RF, and MLR, respectively. 

For highway fuel consumption, ANN was 34.58, 16.62, and 

1.17 times more accurate than KNN, RF, and MLR, 

respectively. However, the study focuses on combined, city, 

and highway fuel consumption but does not address other 

energy-related factors such as emissions, battery degradation, 

or energy recovery during braking and integration of other 

energy sources.Top of Form 

 

MATERIALS AND METHODS 

The aim and objectives of this research work was actualized 

by taking the following steps 
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Mathematical Model 

Electric Motor 

The electric motor in electric vehicles plays an important role. 

It provides all the necessary electrical energies to all 

components of the vehicle. The electric power of the motor is 

at a maximum if the motor obtains sufficient power energy 

from the battery (Khan & Samuilik, 2024). A mathematical 

equation of the electric motor power is represented by 

equation (1) 

𝑃𝐸𝑀 = 𝜂𝐸𝑀. 𝑃𝑏𝑎𝑡     (1) 

Where 𝑃𝐸𝑀 is the power output of an electric motor, 𝜂𝐸𝑀 

represents motor efficiency, and 𝑃𝑏𝑎𝑡 stands for battery 

power. 

Regenerative braking 

Regenerative braking tool captures the moving energy 

decrease of the vehicle and then converts it as an electrical 

energy in order to feed it back into the battery source. 

𝑊𝑐 =
1

𝜂𝑐
(

𝑚𝑣2

2
+ 𝑚𝑔ℎ)    (2) 

Where 𝑊𝑐 is Energy stored in the vehicle’s power source, m 

is Total vehicle mass, V is Vehicle speed, h is Maximum 

height difference of the BEV, and 𝜂𝑐  is Energy efficiency of 

the power source (Kasoju, 2021). 

 

Energy Storage System 

A battery that stores and provides electrical energy to the 

electric motor makes up the energy storage of a dynamic EV 

system. The battery state charge equation is defined as 

(Abulifa, 2017), 

𝑆𝑂𝐶(𝑡) =
𝐸𝑏𝑎𝑡(𝑡)

𝐸𝑚𝑎𝑥
     (3) 

Where 𝐸𝑏𝑎𝑡(𝑡) is the energy stored in the battery at time t, 

𝑆𝑂𝐶(𝑡) is the battery state of charge at time t, and 𝐸𝑚𝑎𝑥 is the 

battery’s maximum energy storage capacity (Jadhav & Nair, 

2019). The battery energy is shown in equation (2.4) 

𝐸𝑏𝑎𝑡(𝑡) = ∫ 𝑃𝑏𝑎𝑡(𝑡)𝑑𝑡 + 𝐸𝑏𝑎𝑡(𝑡0)
𝑡

𝑡0
   (4) 

Where 𝐸𝑏𝑎𝑡(𝑡) is the initial energy stored in the battery, 

𝑃𝑏𝑎𝑡(𝑡) is the battery power output at time t, and  𝑡0 is the 

initial time. 

 

Driver Model 

Aiming to develop an appropriate throttle and brake 

commands by PI controller, driver model considers the 

objective speed and the present real speed. Simulating the role 

of the driver and the vehicle is explained by this model. To 

guarantee having the exact reference speed tracking by the 

vehicle, a feedback control loop of a vehicle speed is utilized. 

Provided by the electric motor the throttle command from the 

driver model is transferred into torque and became an input to 

the transmission model. 

 

Vehicle Dynamic Model 

The movement and acceleration of the vehicle are described 

by the vehicle dynamics model. The following mathematical 

formulas provide the equations for the vehicle dynamics 

model (Khan & Samuilik, 2024). The vehicle acceleration 

equation is represented by equation (5): 

𝑎 =
𝑃𝑡𝑜𝑡𝑎𝑙

𝑚.𝑔
−

1

𝐶𝑟.𝑔
−

1

𝐶𝑑
.

1

2
. 𝜌. 𝐴. 𝑣2   (5) 

Where a is the vehicle acceleration, m is the mass, g is the 

acceleration caused by gravity, 𝐶𝑟 is the rolling resistance 

coefficient, 𝐶𝑑 is the aerodynamic drag coefficient, 𝜌 is the air 

density, A is the frontal area, and v is the speed. 

The vehicle speed v(t) at time t can be calculated as  

𝑣(𝑡) = ∫ 𝑎(𝑡)𝑑𝑡 + 𝑣(𝑡0)
𝑡

𝑡0
    (6) 

Where 𝑡0 is the initial time and 𝑣(𝑡0) is the vehicle initial 

speed. 

 

Electric Vehicle Simulink Model 

The mechanical transmission part of the electric vehicle is 

modelled as shown in Figure 2. The wind speed and the road 

inclination are set to zero. The motion speed sensor is 

incorporated to determine the speed of the motor.  Table 2 

shows the parameter for the Electric vehicle. 

 

 
Figure 2: Electric vehicle dynamic model 
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Table 2: Parameter of Electric vehicle model 

Parameters Symbol Values Units 

Vehicle total mass m 1300 kg 

Rolling resistance force constant fr 0.015  

Air density 𝜌𝑎𝑖𝑟 1.18 kg/m3 

Frontal surface area of the vehicle Af 2 m2 

Tire radius R 0.3 m 

Aerodynamic drag coefficient Cd 0.25  

 

PV Power Model 

A solar cell is an electronics device use for conversion of 

photon energy into pollution-free electricity. The connection 

of the device in series and parallel pattern forms a PV module. 

Furthermore, to build PV arrays these modules are coupled in 

series and parallel arrangement to generate clean and green 

electricity. Figure 4 shows a 7kW PV model with an inverter 

control incorporated with an MPPT. Maximum power point 

tracking (MPPT) is a control algorithm implanted in a DC–

DC power system converter with the function to extract 

maximum power from a PV array system. The main purpose 

of MPPT technique is to ensure that the maximum power to 

be extracted from a PV system always matches the peak value 

of the power and voltage characteristic curve under solar 

irradiation (G) and temperature (T) variations.   

The solar PV device can be represented as an ideal solar cell 

with a current source (𝐼𝑝ℎ) parallel to the diode as shown in 

Figure 3 excluding the series and parallel resistors. Applying 

Kirchhoff’s first law, the output current of an ideal solar cell 

is described in equation (6). 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑          (6) 

From semiconductor theory, the fundamental mathematical 

equation that describes the I-V characteristics of the PV solar 

cell is known as Shockey’s diode current equation as 

illustrated in equation (6) (Vinod et al., 2018). 

𝐼𝑑 = 𝐼𝑠 [𝑒𝑥𝑝 (
𝑞𝑉𝑜𝑐

𝑁𝑠𝐾𝐴𝑇𝑜
) − 1]       (7) 

Substituting equation (7) into equation (6), the output current 

I of an ideal solar cell can be described by equation (8) 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 [𝑒𝑥𝑝 (
𝑞𝑉𝑜𝑐

𝑁𝑠𝐾𝐴𝑇𝑜
) − 1]    (8) 

Figure3.1 shows a more realistic circuit model of solar PV cell 

with series resistance (𝑅𝑠) and parallel resistance(𝑅𝑝). 

Ideally 𝑅𝑠 and 𝑅𝑝 are ignored but in reality it is not possible 

to overlook these resistances, because efficiency of the PV 

solar cell is affected by these parameters (Vinod et al., 2018). 

So, 𝑅𝑠 is taken into consideration and   𝑅𝑝 is considered to be 

finite, then the diode current  𝐼𝑑 in equation (6) can be 

modified as shown in equation (9) 

𝐼𝑑 = 𝐼𝑠 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑁𝑠𝐾𝐴𝑇𝑜
) − 1]     (9) 

Equation (9) can also be modified taken 𝑅𝑠 into account 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑁𝑠𝐾𝐴𝑇𝑜
) − 1]  (10) 

If the PV cell is coupled in a series-parallel pattern, the output 

current I in equation (6) can be modified as illustrated in 

equation (11) 

𝐼 = 𝑁𝑝 ∗ 𝐼𝑝ℎ − 𝑁𝑝 ∗ 𝐼𝑠 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑁𝑠𝐾𝐴𝑇𝑜
) − 1] (11) 

𝐼𝑝ℎ = [𝐼𝑠𝑐 + 𝐾𝑖(𝑇𝑜 − 𝑇𝑟)] ∗
𝐺

𝐺𝑟𝑒𝑓
   (12) 

Equation (12) describes the photocurrent (𝐼𝑝ℎ) which is 

proportion to the incident flux and independent of V or 𝑅𝑠 but 

it linearly dependent on the solar radiation and also influence 

by the  

A single-diode PV model is mathematically modeled in this 

work. This is because of its accuracy and simplicity.  

 

V
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RsIp
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IIph

 
Figure 3: Ideal one-diode PV cell model (Abbassi et al., 2019) 
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Figure 4: Simulink model of a Photovoltaic Module 

 

The non-linear I-V characteristic of the PV module is written 

in equation 13. 

Where 𝐼𝑃𝑉 is the photovoltaic current, 𝐼𝑜, 𝛼 are the reverse 

bias current and ideality factor of the diode, 𝑅𝑠 and 𝑅𝑝 are the 

series and parallel resistances, and 𝑉𝑡 is the thermal voltage. 

The series-parallel connection scheme is applied to create a 

large-scale PV system. In general, PV modules are connected 

to the network through a combination of a boost converter and 

an inverter (Hasanien & El-Fergany, 2019). 

𝐼 = 𝐼𝑃𝑉 − 𝐼𝑂 [𝑒𝑥𝑝 (
𝑉+𝑅𝑠𝐼

𝑎𝑉𝑡
) − 1] −

𝑉+𝑅𝑠𝐼

𝑅𝑝
     (13) 

3.4 Wind Power Model 

A 7kW wind power is model using MATLAB/Simulink 

environment. The power captured from wind 𝑃𝑚 can be 

express mathematically as follows  

𝑃𝑚 = 0.5𝜌𝜋𝑟2𝑉𝑤
3𝐶𝑝(𝜆, 𝛽)     (14) 

Where 𝜌 equals air density, r represents blade radius, 𝑉𝑤 

represents wind speed, 𝜆 equal tip speed ratio, 𝛽 is blade pitch 

angle, R is radius of WT rotor, 𝜔𝐵 equals blade speed and the 

power coefficient 𝐶𝑝is given by the following equation  

𝜆 =
𝜔𝐵𝑅

𝑉𝑤
, 𝜆𝑖 =

3600𝑅

1609𝜆
       (15) 

𝐶𝑝 = 0.5(𝜆𝑖 − 0.022𝛽2 − 5.6)𝑒−0.17𝜆𝑖         (16) 

3.5 Proton Exchange Membrane Fuel cell (PEMFC) 

The model of the PEMFC stack as shown in Figure 5 is based 

on the FC stack detailed model included in Simulink. The 

mathematical model of PEMFC is shown in Equations (17 – 

24) (Huang & Zhang, 2019). The voltage of the FC stack VFC 

is: 

𝑉𝐹𝐶 = 𝐸𝑂𝐶 − 𝑁𝐴𝐼𝑛 (
𝑖𝐹𝐶

𝑖0
)

1
𝑠𝑇𝑑

3
+1

− 𝑅𝑖𝐹𝐶    (17) 

where EOC is open circuit voltage, iFC is the current of FC 

stack, A is the Tafel slope, i0 is the exchange current, N is the 

number of cells, Td is the reaction time, and R is the internal 

resistance. The open circuit voltage EOC is: 

𝐸𝑂𝐶 = 𝐾𝐶𝐸𝑛     (18) 

where KC is the voltage constant at the nominal condition of 

operation and En is Nernst voltage. The exchange current i0 

is calculated as: 

𝑖0 =
𝑧𝐹𝑘(𝑃𝐻2+𝑃𝑂2)

𝑅ℎ
𝑒

−Δ𝐺

𝑅𝑇
      (19) 

where z is the number of moving electrons, F is Faraday's 

constant, k is Boltzmann's constant, R is ideal gas constant, h 

is Planck's constant, T is the cell temperature (K), ΔG is the 

size of the activation barrier, PH2 is the partial pressure of 

hydrogen, and PO2 is the partial pressure of oxygen inside the 

stack (atm). The Tafel slope A is shown as: 

𝐴 =
𝑅𝑇

𝑧𝛼𝐹
      (20) 

where α is the charge transfer coefficient. The partial pressure 

of hydrogen and oxygen are expressed as: 

𝑃𝐻2
= (1 − 𝑈𝑓𝐻2

)𝑥%𝑃𝑓𝑢𝑒𝑙        (21) 

𝑃𝑓𝑂2
= (1 − 𝑈𝑓𝑂2

)𝑦%𝑃𝑎𝑖𝑟        (22) 

where Pfuel is the fuel pressure, 𝑈𝑓𝐻2
 (%) is the nominal 

utilization rate of hydrogen, x% is the percentage of hydrogen 

in the fuel, Pair is the air pressure, 𝑈𝑓𝑂2
(%) is the nominal 

utilization rate of oxygen, and y% is the percentage of oxygen. 

The utilization rates of hydrogen and oxygen are calculated as 

follows: 

𝑈𝑓𝐻2
=  

6000𝑅𝑇𝑁𝑖𝐹𝐶

𝑧𝐹𝑃𝑓𝑢𝑒𝑙𝑉𝑓𝑢𝑒𝑙𝑥%
         (23) 

𝑈𝑓𝐻2
=  

6000𝑅𝑇𝑁𝑖𝐹𝐶

2𝑧𝐹𝑃𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝑦%
           (24) 

where Vfuel(L/min) is the flow rate of hydrogen fuel and Vair 

is the airflow rate. 

 

 
Figure 5: Block diagram of a PEMFC 
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Induction Machine 

A permanent magnet synchronous machine (PMSM) is 

selected as the electric motor because of its high operation 

efficiency and reliability. Table 3 depict the induction motor 

parameters. 

 

Table 3: Induction Motor Parameter 

Parameters Symbol Values Units 

Shaft Power pu 6 kW 

Number of poles p 2  

Stator resistance Rs 7.14 Ω 

Rotor resistance Rr 4.12 Ω 

Mutual inductance M 0.1772 H 

Stator (rotor) self-inductance Ls=Lr 0.1891 H 

Inertia moment  J 0.0146 kg.m2 

Viscous friction f 0.00001 N.ms2 

 

Battery Model 

Comparing different battery technologies, Lithium–ion 

batteries is a suitable option for hybrid energy storage systems 

due to their high energy density and efficiency, light weight,  

good life cycle, and longer life (Jadhav & Nair, 2019). The 

generic Li–ion battery model is used. The battery state of 

charge (SOC) is an indication of the energy reserve and is 

expressed by equation (25), (Jadhav & Nair, 2019). 

𝑆𝑂𝐶 = 100 (1 −
∫ 𝑖𝑑𝑡

𝑡

0

𝑄
)      (25) 

where, i is the battery current (A) and Q is the battery capacity 

(Ah).  

The discharge and charge equation of the lithium-ion battery 

is given in equation (26) and (27). 

𝑓1(𝑖𝑡𝑖∗𝑖) = 𝐸𝑜 − (𝑘 + (
𝑄

𝑄−𝑖𝑡
) + 𝑖𝑡) + 𝑖𝑡 + 𝐴 + exp(−𝐵 +

𝑖𝑡)      (26) 

𝑓2(𝑖𝑡𝑖∗𝑖) = 𝐸𝑜 − (𝑘 + (
𝑄

𝑄−0.𝑖𝑄
) + 𝑖𝑡) + 𝑖𝑡 + 𝐴 + exp(−𝐵 +

𝑖𝑡)      (27) 

where 𝐸0 is initial voltage (V), K is polarization resistance 

(W), 𝑖∗ is low-frequency dynamic (A), it is the battery 

extraction capacity (Ah), A is exponential voltage (V), B is 

exponential capacity (𝐴ℎ)−1. A lithium-Ion battery is used in 

this work for energy storage. It has two modes of operation, 

charging and discharging modes. When the current to the 

battery is positive, the battery is in the charging mode. When 

the current to the battery is negative, the battery is in the 

discharging mode. To obtain the desired SOC, the fuzzy 

controller is designed to be in charging or discharging mode. 

3.8 Energy Management System (EMS) 

EV using batteries storage must be recharged regularly. Those 

using fuel cells for feeding electrical energy, a supply for 
hydrogen is necessary. And those equipped with PV panels, solar 

energy provides them energy only during sunshine period. 

Generally, EV uses batteries for storage, but due to the less 

autonomy, hydrogen or fuel cell vehicle, solar vehicle or a 

combination of solar, FC and battery bank can be a competitive 

solution. Power management control is necessary to make 

coordination between the different energy sources. In our work, 

we choose to use the battery bank system to starts producing 

energy. Then Hydrogen is used by the fuel cell to produce energy 

and at least photovoltaic system works to convert irradiation to 

electrical energy provided to a DC bus. The total power is 

calculated as in equation (28). The Energy management system 

(EMS) is developed based on a Fuzzy logic control (FLC) 

strategy. Since the PVWFCHEV is a highly nonlinear system, a 

fuzzy logic method is suitable for use because it is flexible and 

can work well without precise mathematical models. Moreover, 

fuzzy logic can incorporate the expert experience into the control 

strategy, which helps to deal with the complex environmental 

conditions such as the intermittent and stochastic characteristics 

of solar energy and wind energy. 

𝑃𝑙𝑜𝑎𝑑 = 𝑃𝑏𝑎𝑡𝑡 + 𝑃𝐹𝐶 + 𝑃𝑃𝑉 + 𝑃𝑤𝑖𝑛𝑑     (28) 

 

Fuzzy Logic Controller Design 

A FLC consists of five functional blocks. The rule base, the 

database, the fuzzifier, the inference engine and the defuzzifier. 

There are many different inference algorithms that can be used to 

produce the fuzzy set values for the output fuzzy variable. In the 

present work, Mamdani inference system is used. The demand 

power of the electric motor, the output power of the PV array, 

SOC of the battery and the wind power are considered as four 

input parameters to the fuzzy logic controller as shown in Figure 

6 to 9 respectively, and the output parameter is the reference 

power of the FC as shown in Figure 10.  

 

 
Figure 6: Electric motor input demand power 
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Figure 7: PV input demand power 

 

 
Figure 8: SOC of Battery 

 

 
Figure 9: Wind input demand power 
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Figure 10: Output demand power  

 

Multiple Energy Sources Model 

This multi-source HEV system represents an advanced 

approach to hybrid vehicle design, combining the strengths of 

various energy sources to create a vehicle that is both 

environmentally friendly and capable of meeting modern 

transportation demands. Figure 11 illustrates the proposed 

vehicle structure design, incorporating a combination of PV, 

WE, FC, and SC sources along with an Energy Storage 

System (ESS). A lithium-ion battery was used for this 

research work because of its light weight and enhancing 

performance.  

 

 
Figure 11: The electrical system of a PVWFCHEV 

 

RESULTS AND DISCUSSION 

Electric Vehicle with Battery Simulation Results 

Figure 12 shows the speed and speed feedback when using the 

FTP75 drive cycle source for 1500 second. Figure 12 

demonstrate the simulation driving cycle at different time for 

a simulation period of 1500 seconds. Figure 13 show the 

battery state of charge (SOC) as the vehicle move for a 

distance covered around 12.56 Km in 1500 Seconds as shown 

in Figure 14 that means Average Speed was around 30 km/ 

hr. The battery discharge with respect to the distance covered 

over a period of time.  
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Figure 12: Speed Vs Speed feedback plot 

 

 
Figure 13: Battery State of Charge 

 

 
Figure 14: Distance cover  
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Electric Vehicle with Battery and PV Simulation Results 

The output power from the PV panel is a function of the solar 

irradiance, Figure 15 shows different solar irradiance ranging 

from 200W/m2 to 1000W/m2. The higher the solar irradiance 

the higher the output power and vice versa. Figure 16 shows 

the battery current, whenever the current is positive at that 

point the battery is discharging and whenever the battery 

current is negative the battery is charging which clearly 

describes the state of charge of the battery as shown in Figure 

17. Figure 17 shows the effectiveness of the Fuzzy-EMS 

deployed in this work. 

 

 
Figure 15: Solar irradiance varation 

 

 
Figure 16: Battery current variation 
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Figure17: Battery State of Charge 

 

PVWFCHEV Simulation Results 

At t = 0 s, the FCV is stopped and the driver pushes the 

accelerator pedal to 70% as shown in Figure 18. The battery 

provides the motor power till the fuel cell starts. At t = 0.7 s, 

the fuel cell begins to provide power but is not able to reach 

the reference power due to its large time constant as seen in 

Figure 19. That's why the battery continues to provide the 

electrical power to the motor as depicted in Figure 19. At t = 

4 s, the accelerator pedal is released to 25%. The fuel cell 

cannot decrease its power instantaneously; therefore, the 

battery absorbs the fuel cell power in order to maintain the 

required torque.  At t = 8 s, the accelerator pedal is pushed to 

85%. The battery helps the fuel cell by providing an extra 

power at that point the battery is discharging. At t = 8.05 s, 

the total power (fuel cell and battery) cannot reach the 

required power due to the fuel cell response time. Hence the 

measured drive torque is not equal to the reference. At t = 8.45 

s, the measured torque reaches the reference. The fuel cell 

power increases so the battery power is progressively 

reduced. At t = 10.9 s, the battery SOC becomes lower, 

therefore the battery needs to be recharged. The fuel cell 

shares its power between the battery and the motor.  At t = 12 

s, the accelerator pedal is set to -70% (regenerative braking is 

simulated). The motor acts as a generator driven by the 

vehicle’s wheels. The kinetic energy of the FC is transformed 

into electrical energy which is stored in the battery.  

 

 
Figure 18: Pedal Position 
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Figure 19: Power flow of the PVWFCHEV 

 

Figure 20 demonstrates how the PVWFCHEV system adapts 

to low irradiance (200 W/m²) with a moderately charged 

battery (SOC = 75%). The PV panel contributes limited 

power, while the fuel cell and battery collaborate to meet load 

demands. The SOC trend, power split, and system efficiency 

in the figure provide insight into the control strategy’s 

effectiveness under suboptimal solar conditions. 

 

 
Figure 20: Performance of PVWFCHEV at 200W/m2 Solar irradiance and battery initial SOC of 75%   

 

Figure 21 highlights how the PVFCHEV system performs 

under high solar irradiance (1000 W/m²) with a low battery 

SOC (35%). The PV array delivers maximum power, 

allowing the battery to recharge rapidly while meeting the 

load. The fuel cell remains inactive or minimally active, 

illustrating an efficient renewable-dominant operational mode 

that promotes battery recovery and fuel economy. 
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Figure 21: Performance of PVWFCHEV at 1000W/m2 Solar irradiance and battery initial SOC of 35% 

 

Figure 22 shows the PVFCHEV system’s performance under 

challenging conditions: low solar irradiance (200 W/m²) and 

a depleted battery (SOC = 35%). The PV provides minimal 

power, and the battery is near its lower limit. Consequently, 

the fuel cell becomes the dominant power source, ensuring the 

load is met and possibly initiating battery recovery. This 

scenario demonstrates the hybrid system’s robustness and the 

importance of the fuel cell under low-renewable and low-

storage situations. 

 

 
Figure 22: Performance of PVWFCHEV at 200W/m2 Solar irradiance and battery initial SOC of 35%   

 

When the PVWFCHEV runs in the nighttime in which the PV 

array is off and only the FC and battery work in which there 

is a probability of the battery been low, the performance of a 

PVFCHEV using FLC based Energy Management System 

(EMS) can be compared with a simple FC EV using power-

following control (PFC) strategy. In Figure 23, the vehicle 

using Power Following Control (PFC) strategy consumes 

1.21-liter more amount of hydrogen than that using Fuzzy 

Logic Control (FLC) strategy in the driving cycle. The 

proposed EMS based on FLC possesses a better fuel economy 

than commonly used PFC, mainly because that FLC renders 

the FC working at the high-efficiency area, while the PFC 

merely regulates the FC to follow the motor power, thus 

reducing the energy efficiency of the system. 
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Figure 23: Hydrogen consumption comparison 

 

At night when the PV solar irradiance is zero, and the battery 

state of charge (SOC) is moderate, the wind energy will need 

to be high as shown in Figure 24. The FC acts as the primary 

power source and charges the battery to recover its SOC in a 

short time. Since wind velocity is intense, it is necessary to 

reserve some capacity of the battery for storing wind energy. 

Thus, when the motor reaches its peak power, the battery is 

set to provide a small part of the demand power, which also 

helps the FC work at relatively high efficiency. 

 

 
Figure 24: Performance of PVWFCHEV at 0W/m2 Solar irradiance and battery initial SOC of 35% 

 

CONCLUSION 

This research work proposes a Hybrid electric vehicle (HEV) 

concept powered by multiple energy sources. The design 

integrates solar photovoltaic (PV) energy, wind power, a fuel 

cell (FC), and a (PV + FC) to generate electrical energy. The 

system uses a proton exchange membrane (PEM) fuel cell and 

a supercapacitor to meet high torque demands. The vehicle 

also includes a battery pack paired with the supercapacitor to 

handle power requirements, while the fuel cell serves as a 

backup energy source. Additionally, an alternator is 

connected to the turbine blades to harness wind energy as the 

vehicle moves, generating electricity to recharge the battery. 

This design achieves zero carbon emissions and enhances 

energy efficiency. An energy management system based on 

fuzzy logic technique is employed for monitoring, controlling 

and optimizing energy usage. Modelling and simulation for 

each subsystem is carried on MATLAB/SIMULINK 2023a. 

This prototype demonstrates feasibility for localized 

deployment in urban or campus mobility applications. 
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