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ABSTRACT 

Autism Spectrum Disorder (ASD) diagnosis is often delayed due to subjective assessments and heterogeneous 

symptoms. Current screening methods lack objectivity and scalability, highlighting the need for computational 

approaches that balance predictive accuracy with interpretability. To develop and validate a machine learning 

framework for ASD prediction by integrating ensemble learning, Synthetic Minority Oversampling Technique 

(SMOTE), and explainable artificial intelligence (XAI) to address class imbalance and ensure diagnostic 

transparency. Four UCI datasets comprising 3,743 instances across children, adolescents, young adults, and 

adults with 18 demographic, familial, and AQ-10 features were analysed. SMOTE balanced training data (1,593 

per class). Nine classifiers and two ensembles (Voting, Bagging) were evaluated using accuracy, precision, 

recall, F1-score, and AUC with five-fold cross-validation. Model interpretability was achieved through 

SHapley Additive exPlanations (SHAP). CatBoost achieved the highest performance (AUC 0.9987, accuracy 

0.9853) with balanced precision and recall. XGBoost (AUC 0.9986) and Voting Ensemble (AUC 0.9979) also 

performed strongly. Cross-validation confirmed stability (SD 0.0023). SHAP highlighted ethnicity (14.18%), 

age (11.71%), family ASD history (6.97%), and AQ items (A7, A9, A1, A6, A8, A2) as key predictors. The 

framework combines exceptional predictive accuracy (AUC > 0.99) with transparent interpretability. SHAP-

based insights align with clinical knowledge, while robust validation demonstrates strong generalisation, 

positioning this approach as a promising tool for early ASD screening. This study integrates ensemble learning, 

class balancing, and XAI into a scalable, objective ASD screening tool that preserves clinical interpretability. 

With ~99% sensitivity, it reduces missed cases and—by providing transparent, case-level explanations—can 

accelerate referrals and improve access to early intervention. 

 

Keywords: Autism Spectrum Disorder, Ensemble Learning, Explainable Artificial Intelligence (XAI),  

SHAP (SHapley Additive exPlanations), SMOTE (Synthetic Minority Oversampling Technique) 

 

INTRODUCTION 

Autism Spectrum Disorder (ASD) represents a complex 

neurodevelopmental condition characterised by persistent 

challenges in social communication, repetitive behaviours, 

and sensory sensitivities, affecting approximately 1 in 44 

children globally (Jyoti et al., 2025; Maenner et al., 2023). 

The heterogeneous nature of ASD manifestations, combined 

with the absence of definitive biomedical tests, creates 

significant diagnostic challenges that often result in delayed 

identification beyond the critical early intervention window 

(Benabdallah et al., 2023; Dick et al., 2025). Current 

diagnostic approaches rely heavily on subjective clinical 

assessments, behavioural observations, and standardised 

instruments, leading to substantial variability in diagnostic 

accuracy and timing across different healthcare settings 

(Cantin-Garside et al., 2020; Towle et al., 2009). Achieving 

robust generalisation remains a persistent challenge, as 

contemporary research continues to address the trade-off 

between maximising predictive accuracy—particularly 

through minimising false positives—and maintaining 

computational efficiency (Eguavoen et al., 2025). 

The economic and social burden of ASD extends far beyond 

individual families, with lifetime costs estimated at $1.4-2.4 

million per individual (Buescher et al., 2014). Early 

identification and intervention significantly improve long-

term outcomes, emphasising the critical need for objective, 

scalable, and accurate screening tools that can support clinical 

decision-making (Ben-Sasson et al., 2024; Rajagopalan et al., 

2024). Traditional screening instruments, while valuable, are 

constrained by subjective interpretation, cultural bias, and 

limited accessibility in resource-constrained environments 

(Erkan and Thanh, 2020). By integrating the strengths of 

multiple algorithms, machine learning models will enhance 

prediction accuracy, adaptability, and robustness (Eguavoen 

and Nwelih, 2025). 

Recent advances in artificial intelligence and machine 

learning offer unprecedented opportunities to address these 

diagnostic challenges through data-driven approaches capable 

of identifying subtle patterns in behavioural and demographic 

data (Bala et al., 2022; Eguavoen et al., 2024; Mahedy Hasan 

et al., 2023). However, the clinical adoption of AI-based 

diagnostic tools has been limited by two persistent challenges: 

class imbalance in medical datasets, which skews model 

performance toward majority classes, and the "black box" 

nature of complex algorithms that undermines clinical trust 

and interpretability (Alsbakhi et al., 2025; Magboo and 

Magboo, 2022). 

Ensemble learning techniques have emerged as powerful 

approaches for improving predictive accuracy by combining 

multiple base learners, potentially overcoming individual 

model limitations (Eldin Rashed et al., 2025; Karim et al., 

2025) by acquiring and analyzing data on a program’s 

features, operations, and results (Eguavoen and Nwelih, 

2023). The Synthetic Minority Oversampling Technique 

(SMOTE) has proven effective in addressing class imbalance 

by generating synthetic samples for minority classes, thereby 

improving model sensitivity (Jyoti et al., 2025; Wingfield et 

al., 2020). Furthermore, Explainable Artificial Intelligence 

(XAI) frameworks, particularly SHapley Additive 

exPlanations (SHAP), provide transparent insights into model 
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decision-making processes, enabling clinicians to understand 

and trust algorithmic recommendations (Jeon et al., 2024; 

Lundberg and Lee, 2017). 

Despite these technological advances, few studies have 

systematically integrated ensemble learning, class balancing 

techniques, and explainable AI for ASD prediction. The 

present study addresses this gap by developing and validating 

a comprehensive framework that combines these approaches 

to achieve both high predictive accuracy and clinical 

interpretability. Our primary objectives were to: (1) develop 

robust ensemble learning models enhanced with SMOTE for 

addressing class imbalance; (2) implement state-of-the-art 

XAI techniques for transparent model interpretation; (3) 

conduct rigorous evaluation using multiple performance 

metrics and cross-validation; and (4) identify clinically 

relevant predictors through feature importance analysis. 

 

Techniques Used  

Machine Learning Algorithm Implementation 

Nine distinct algorithms were implemented: Random Forest, 

Decision Tree, Gradient Boosting, AdaBoost, XGBoost, 

CatBoost, Support Vector Machine with RBF kernel, K-

Nearest Neighbors, and Logistic Regression. Each algorithm 

was configured with optimised hyperparameters and trained 

on the balanced dataset. 

Random Forest utilises bootstrap aggregating with random 

feature selection, generating predictions through majority 

voting for B trees: 

𝑦̂ = mode(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝐵(𝑥))  (1) 

Gradient Boosting constructs additive models through 

forward stagewise learning: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + γ𝑚ℎ𝑚(𝑥)   (2) 

where ℎ𝑚(𝑥) represents the weak learner and γ𝑚 Denotes the 

step size. 

XGBoost incorporates second-order derivatives and 

regularisation with the objective function: 

ℒ (𝓉) = ∑ 𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡−1)̂

+ 𝑓𝑡(𝑥𝑖))𝑛
𝑖=1 + Ω(𝑓𝑡) (3) 

where Ω(𝑓𝑡) = γ𝑇 +
1

2
λ ∑ 𝑤𝑗

2𝑇
𝑗=1  represents the 

regularisation term. 

Support Vector Machine with RBF kernel optimises margin 

maximisation through: 

min
𝑤,𝑏,ξ

1

2
|𝑤|2 + 𝐶 ∑ ξ𝑖

𝑛
𝑖=1    (4) 

with RBF kernel function 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−γ|𝑥𝑖 − 𝑥𝑗|
2

).   (5) 

 

Ensemble Methods 

Two ensemble techniques were implemented to enhance 

predictive performance. Voting Classifier employs soft voting 

methodology combining probability predictions from 

multiple base classifiers: 

𝑝̂(𝑥) =
1

𝑀
∑ 𝑝𝑚(𝑥)𝑀

𝑚=1    (6) 

Bagging Classifier creates multiple training subsets through 

bootstrap sampling with replacement, utilising majority 

voting for final predictions: 

𝑦̂ = mode(ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑀(𝑥))  (7) 

 

Model Evaluation and Validation 

The preprocessed dataset was partitioned using stratified 

sampling into training (80%, 2,994 samples) and testing 

(20%, 749 samples) subsets, maintaining original class 

distribution proportions. Five-fold stratified cross-validation 

assessed model stability and generalizability using Area 

Under the ROC Curve (AUC) as the primary evaluation 

metric due to its robustness against class imbalance. 

Performance evaluation employed accuracy, precision, recall, 

F1-score, and AUC-ROC metrics calculated according to 

standard formulations where TP, TN, FP, and FN represent 

true positives, true negatives, false positives, and false 

negatives, respectively. 

 

Explainable AI Implementation 

Model interpretability was enhanced through SHapley 

Additive exPlanations (SHAP) implementation, providing 

unified feature importance measures based on cooperative 

game theory principles (Shapley, 1953). SHAP values for 

individual features are calculated according to: 

ϕ𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
[𝑓(𝑆 ∪ 𝑖) − 𝑓(𝑆)]𝑆⊆𝐹∖𝑖   (8) 

where F represents the complete feature set, S denotes feature 

subsets excluding feature i, and f(S) represents model 

predictions using only features in subset S. 

Tree-based models provide intrinsic feature importance 

measures through impurity reduction calculations: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑗  =  ∑ 𝑝(𝑡)∆𝐺(𝑡, 𝑗, 𝑟 ∗)𝑡:𝑠𝑝𝑙𝑖𝑡 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑗  

     (9) 

where 𝑝(𝑡) represents the proportion of samples reaching 

node t. 

 

Related Works and Research Gaps 

Research on machine learning for autism spectrum disorder 

(ASD) prediction has grown significantly in recent years, with 

studies employing diverse algorithms ranging from classical 

classifiers to deep learning models. For instance, Omar et al. 

(2019) applied decision tree and support vector machine 

methods on questionnaire-based data, achieving moderate 

accuracy but lacking interpretability. Similarly, Wingfield et 

al. (2020) developed a predictive model for paediatric ASD 

screening, reporting promising sensitivity but highlighting 

challenges of dataset imbalance. 

More recent studies have leveraged ensemble learning. Eldin 

Rashed et al. (2025) demonstrated that combining classifiers 

across multiple datasets improved prediction accuracy 

compared to single models, while Karim et al. (2025) 

explored genomic data using ensemble models for early ASD 

detection. However, these approaches often neglected clinical 

interpretability, limiting their real-world applicability. 

Explainable AI has also been introduced into ASD research. 

Jeon et al. (2024) employed SHAP values to improve 

transparency in paediatric ASD diagnosis, while Jyoti et al. 

(2025) emphasised clinically interpretable frameworks using 

machine learning. Yet, these models still reported 

performance metrics (AUC ranging between 0.70–0.90) 

below the levels required for clinical deployment. 

Despite these advances, three main research gaps remain: 

i. Integration Gap: Few studies systematically integrate 

ensemble learning, class balancing (SMOTE), and 

explainable AI into a unified framework for ASD 

prediction. 

ii. Performance Gap: While existing models achieve 

reasonable accuracy, most fail to exceed AUC > 0.95 

consistently across diverse datasets. 

iii. Clinical Translation Gap: Many high-performing 

models remain “black boxes,” limiting clinician trust 

and adoption due to a lack of transparent 

interpretability. 

This study addresses these gaps by presenting a framework 

that combines ensemble learning, SMOTE-based balancing, 

and SHAP-based interpretability, aiming to achieve both 

exceptional predictive accuracy and clinical transparency. 



EXPLAINABLE AI FRAMEWORK FOR…          Eguavoen et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 209 – 216 211 

MATERIALS AND METHODS 

Study Design and Framework 

This study presents a comprehensive machine learning 

framework for autism spectrum disorder (ASD) detection, 

integrating ensemble learning techniques with explainable 

artificial intelligence methodologies. The proposed 

architecture encompasses data preprocessing, class imbalance 

mitigation through Synthetic Minority Oversampling 

Technique (SMOTE), multiple machine learning algorithm 

implementation, ensemble method development, and 

interpretability analysis through SHAP (SHapley Additive 

exPlanations) values. 

 

Dataset Acquisition and Characteristics 

Four datasets representing different age demographics were 

obtained from the UCI Machine Learning Repository: ASD 

Screening Data for Children (Thabtah, 2017c), Young 

individuals ((Thabtah et al., 2018) , Adolescents (Thabtah, 

2017b), and Adults (Thabtah, 2017a). These datasets 

collectively encompass 3,743 instances distributed across 

Children (2,226 instances: 1,323 positives, 903 negative), 

Young (382 instances: 285 positives, 97 negative), 

Adolescent (720 instances: 488 positives, 232 negative), and 

Adult (415 instances: 385 positives, 30 negative) cohorts. The 

detailed dataset characteristics and distribution are presented 

in Table 1. 

 

Table 1: Dataset Characteristics and Distribution Across Age Groups 

Dataset Attributes Instances ASD Positive ASD Negative Total 

Children 18 2,226 1,323 (59.4%) 903 (40.6%) 2,226 

Young 18 382 285 (74.6%) 97 (25.4%) 382 

Adolescent 18 720 488 (67.8%) 232 (32.2%) 720 

Adult 18 415 385 (92.8%) 30 (7.2%) 415 

Combined 18 3,743 2,481 (66.3%) 1,262 (33.7%) 3,743 

 

Each dataset contains 18 attributes, including ten binary 

responses from the Autism Spectrum Quotient-10 (AQ-10) 

screening questionnaire and eight demographic variables. The 

AQ-10 targets specific behavioural domains encompassing 

communication patterns, attention switching capabilities, 

attention to detail, social interaction preferences, 

responsiveness levels, expression abilities, and imaginative 

capacity. Demographic features include age, gender, 

ethnicity, jaundice history at birth, family history of Pervasive 

Developmental Disorder, country of residence, previous 

screening app usage, and relationship to the assessed 

individual. 

 

Data Preprocessing 

The four individual datasets were concatenated into a unified 

Data Frame using the panda’s library functions. Categorical 

variables, including gender, ethnicity, jaundice history, 

family ASD history, and test completion relationship, were 

transformed using LabelEncoder from the scikit-learn 

preprocessing module. The binary target variable 'ASD_traits' 

was encoded as 0 (No ASD traits) and 1 (ASD traits present). 

Data integrity verification included dimensionality validation, 

structural inspection, and systematic examination for missing 

values. Redundant index columns were removed to prevent 

erroneous feature inclusion. 

 

Class Imbalance Mitigation and Feature Standardisation 

The original dataset exhibited significant class imbalance 

with 2,481 positive cases (66.3%) and 1,262 negative cases 

(33.7%) for ASD traits, as illustrated in Figure 5. 

 

 
Figure 1: Original Class Distribution Showing Inherent Imbalance 

 

The dataset was partitioned using stratified sampling into 

training (80%, 2,994 samples) and testing (20%, 749 samples) 

sets to maintain original class proportions in both subsets. A 

fixed random state (42) was employed to ensure 

reproducibility across experiments. 

Class imbalance in the training set was addressed using the 

Synthetic Minority Oversampling Technique (SMOTE) 

(Chawla et al., 2023). SMOTE generates synthetic minority 

class samples by interpolating between existing minority 

instances and their k-nearest neighbors according to: 

𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝑥𝑖 + 𝜆 ∗ (𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑥𝑖)   (10) 

Where 𝑥𝑖 represents a minority class sample, 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is one 

of its k-nearest neighbors, and λ ∈ [0,1] is a random number. 

Following the SMOTE application, the training set achieved 

a perfect balance with 1,593 samples for each class, while the 

test set remained unchanged to provide unbiased evaluation 

metrics. The class distribution before and after SMOTE 

implementation is presented in Figure 6. 
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Figure 2: Class Distribution Before and After SMOTE Implementation, Demonstrating Balanced Training Set Achievement 

 

StandardScaler transformation was applied to the SMOTE-

balanced training data and subsequently used to transform the 

test set, ensuring consistent feature scaling across distance-

based algorithms while preventing data leakage. 

 

Statistical Analysis and Implementation 

All computational analyses were conducted using Python 

with scikit-learn (version 1.0.2), XGBoost (version 1.6.1), 

CatBoost (version 1.0.6), imbalanced-learn (version 0.9.1), 

and SHAP (version 0.41.0) libraries. Statistical significance 

of inter-model performance differences was assessed through 

paired t-tests applied to cross-validation scores. Random seed 

parameters were consistently set to 42 across all experiments 

to ensure reproducibility. The analysis framework-maintained 

version control for all dependencies and implemented 

systematic logging for comprehensive experimental tracking. 

 

RESULTS AND DISCUSSION 

Individual Model Performance 

Table 2 presents the comprehensive performance evaluation 

of nine individual machine learning classifiers on the held-out 

test set following SMOTE application. 

 

Table 2: Performance Metrics of Individual Machine Learning Models 

Model Accuracy Precision Recall F1-Score AUC 

Random Forest 0.9733 0.97 0.97 0.97 0.9963 

Decision Tree 0.9506 0.95 0.95 0.95 0.9501 

Gradient Boosting 0.9559 0.96 0.96 0.96 0.9929 

AdaBoost 0.8505 0.85 0.85 0.85 0.9633 

XGBoost 0.9786 0.98 0.98 0.98 0.9986 

CatBoost 0.9853 0.99 0.99 0.99 0.9987 

SVM 0.9813 0.98 0.98 0.98 0.9974 

KNN 0.9559 0.96 0.96 0.96 0.9893 

Logistic Regression 0.8117 0.81 0.81 0.81 0.9164 

 

Tree-based ensemble methods demonstrated superior 

performance, with CatBoost achieving the highest overall 

performance (AUC: 0.9987, Accuracy: 0.9853), followed 

closely by XGBoost (AUC: 0.9986) and Random Forest 

(AUC: 0.9963). Support Vector Machine also exhibited 

strong discriminative capability (AUC: 0.9974). 

Ensemble Model Performance 

Table 3 summarises the performance of ensemble learning 

approaches combining multiple base classifiers. 

 

Table 3: Performance Metrics of Ensemble Learning Models 

Ensemble Method Accuracy Precision Recall F1-Score AUC 

Voting Classifier 0.9733 0.97 0.97 0.97 0.9979 

Bagging Classifier 0.9653 0.97 0.96 0.97 0.9947 

 

The Voting Ensemble achieved exceptional performance 

(AUC: 0.9979), demonstrating the effectiveness of combining 

diverse algorithms. The Bagging Ensemble also performed 

strongly (AUC: 0.9947), validating the ensemble learning 

approach. 

Detailed Analysis of Best-Performing Model 

CatBoost was identified as the optimal classifier based on the 

highest AUC score. Table 4 provides a detailed classification 

report for CatBoost performance on the test set. 

 

Table 4: Detailed Classification Report for CatBoost Model 

Class Precision Recall F1-Score Support 

Non-ASD (0) 0.99 0.98 0.98 351 

ASD (1) 0.98 0.99 0.99 398 

Accuracy   0.99 749 

Macro Avg 0.99 0.99 0.99 749 

Weighted Avg 0.99 0.99 0.99 749 

 

The confusion matrix analysis revealed minimal classification 

errors: 5 false negatives (ASD cases misclassified as non-

ASD) and 7 false positives (non-ASD cases misclassified as 

ASD), demonstrating high diagnostic precision. 

Cross-Validation Analysis 

Five-fold cross-validation was conducted to assess model 

stability and generalizability. Table 5 presents the cross-

validation results for the top-performing models. 



EXPLAINABLE AI FRAMEWORK FOR…          Eguavoen et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 209 – 216 213 

Table 5: Cross-Validation Results for Top-Performing Models 

Model CV Fold 1 CV Fold 2 CV Fold 3 CV Fold 4 CV Fold 5 Mean AUC Std Dev 

CatBoost 0.9969 0.9983 0.9994 0.9988 0.9964 0.9980 0.0023 

XGBoost 0.9958 0.9971 0.9977 0.9985 0.9954 0.9969 0.0023 

Voting Ensemble 0.9952 0.9957 0.9970 0.9974 0.9930 0.9957 0.0031 

SVM 0.9601 0.9523 0.9511 0.9467 0.9477 0.9516 0.0094 

Random Forest 0.9912 0.9937 0.9965 0.9970 0.9880 0.9933 0.0067 

 

The cross-validation results demonstrate exceptional stability 

for tree-based models, particularly CatBoost and XGBoost, 

with minimal standard deviations (0.0023) indicating robust 

generalisation capabilities. 

 

Feature Importance Analysis 

Model-Based Feature Importance 

Table 6 presents the top 10 most important features identified 

by the CatBoost model's intrinsic feature importance 

mechanism. 

 

Table 6: Top 10 Most Important Features (CatBoost Model) 

Rank Feature Importance Score Description 

1 Ethnicity 14.18% Demographic characteristic 

2 Age_Years 11.71% Chronological age 

3 Family_mem_with_ASD 6.97% Family autism history 

4 A7 6.92% AQ-10 questionnaire item 7 

5 A9 6.70% AQ-10 questionnaire item 9 

6 A10_Autism_Spectrum_Quotient 5.80% Total AQ-10 score 

7 A1 5.72% AQ-10 questionnaire item 1 

8 A6 5.65% AQ-10 questionnaire item 6 

9 A8 5.64% AQ-10 questionnaire item 8 

10 A2 5.50% AQ-10 questionnaire item 2 

 

Demographic factors (ethnicity, age) and family history 

emerged as the most influential predictors, followed by 

specific behavioural assessment items from the AQ-10 

questionnaire. 

 

SHAP-Based Explainability Analysis 

SHAP analysis provided additional insights into feature 

contributions and model interpretability. The SHAP feature 

importance ranking largely corroborated the model-based 

importance scores, with age, ethnicity, and specific AQ-10 

items (A9, A6, A7) emerging as primary drivers of model 

predictions. 

SHAP summary plots revealed that higher age values 

predominantly contributed to positive ASD predictions, while 

ethnicity showed complex interaction patterns. The AQ-10 

behavioural items demonstrated clear directional 

relationships, with positive responses to specific questions 

(A7, A9, A6) strongly associated with ASD trait classification 

is presented in Figure 7. 

 

 
Figure 3: SHAP-Based Explainability Analysis Summary Plots 

 

Comparative Performance Analysis 

Figure 1 illustrates the comparative performance of all models 

using AUC scores, demonstrating the superior performance of 

tree-based ensemble methods and the effectiveness of the 

proposed framework. 
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The ROC curve analysis confirmed that CatBoost, XGBoost, 

and the Voting Ensemble achieved near-optimal 

discriminative performance, with curves closely approaching 

the top-left corner indicating excellent sensitivity-specificity 

balance. 

 

Discussion 

Principal Findings 

This study demonstrates that the integration of ensemble 

learning techniques with SMOTE class balancing and 

explainable AI can achieve exceptional performance in ASD 

prediction while maintaining clinical interpretability. The 

CatBoost model achieved state-of-the-art discriminative 

performance (AUC: 0.9987), establishing new benchmarks 

for automated ASD screening. The robust cross-validation 

results (mean AUC: 0.9980, SD: 0.0023) confirm strong 

generalisation capabilities essential for clinical deployment. 

 

Clinical Significance 

The identification of ethnicity, age, and family history as 

primary predictors aligns with established clinical knowledge 

while providing quantitative insights into their relative 

importance. The prominence of specific AQ-10 items (A7, 

A9, A6, A8) offers clinicians actionable guidance for 

prioritising assessment areas during screening encounters. 

The model's high recall (99%) minimises the risk of missing 

actual ASD cases, a critical consideration for screening 

applications where false negatives carries significant clinical 

consequences. 

 

Methodological Contributions 

The systematic integration of SMOTE, ensemble learning, 

and SHAP represents a significant methodological 

advancement in ASD prediction research. SMOTE 

application successfully addressed class imbalance, as 

evidenced by balanced precision and recall across both 

classes. The ensemble approach leveraged the complementary 

strengths of diverse algorithms, while SHAP analysis 

provided transparent insights essential for clinical trust and 

adoption. 

 

Comparison with Existing Literature 

Our results significantly exceed previously reported 

performance metrics in ASD prediction studies. While 

previous research has achieved AUC scores ranging from 

0.70-0.90 (Briguglio et al., 2023; Farooq et al., 2023; Omar et 

al., 2019), our framework consistently achieves AUC > 0.99 

across multiple models. The integration of explainable AI 

addresses a critical gap in existing literature, where high-

performing models often lack the interpretability necessary 

for clinical implementation. 

 

Limitations and Future Directions 

Several limitations warrant consideration. The reliance on 

questionnaire-based features may introduce cultural bias and 

limit generalizability across diverse populations. The 

exceptional performance metrics, while promising, require 

validation on independent, external datasets to confirm real-

world applicability. Future research should incorporate multi-

modal data sources (neuroimaging, genetic markers, 

behavioural videos) to enhance diagnostic robustness. 

The prominence of ethnicity as a predictor raises important 

questions about algorithmic fairness and bias that require 

systematic investigation through dedicated bias auditing and 

mitigation strategies. Longitudinal validation studies are 

needed to assess model performance over time and across 

different clinical settings. 

Clinical Implementation Considerations 

The deployment of this framework in clinical settings requires 

careful consideration of workflow integration, clinician 

training, and regulatory compliance. The development of 

user-friendly interfaces incorporating SHAP explanations 

could facilitate clinical adoption while maintaining 

interpretability. Federated learning approaches could enable 

collaborative model improvement while preserving patient 

privacy. 

 

CONCLUSION 

This study presents a comprehensive framework for ASD 

prediction that successfully integrates ensemble learning, 

class balancing, and explainable AI to achieve both 

exceptional predictive performance and clinical 

interpretability. The CatBoost model's outstanding 

discriminative capability (AUC: 0.9987), combined with 

transparent SHAP-based explanations, positions this 

approach as a promising decision-support tool for early ASD 

identification. 

The framework addresses critical limitations in current 

screening approaches by providing objective, scalable, and 

interpretable predictions that can augment clinical decision-

making. The identification of key predictive features offers 

valuable insights for both researchers and clinicians, 

potentially informing more targeted screening strategies and 

improved resource allocation. 

While the results are highly promising, careful validation in 

diverse clinical populations and systematic assessment of bias 

and fairness remain essential prerequisites for widespread 

clinical deployment. The integration of additional data 

modalities and the development of adaptive learning systems 

represent important directions for future research. 

This work demonstrates the transformative potential of 

interpretable AI in healthcare, offering a pathway toward 

more objective, efficient, and equitable ASD screening that 

could significantly improve early identification and 

intervention outcomes for individuals across the autism 

spectrum. 

The datasets used in this study are publicly available through 

the UCI Machine Learning Repository. Code and detailed 

implementation information are available upon reasonable 

request to the corresponding author. 
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