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ABSTRACT 

Augmented Reality (AR) offers promising applications in education, healthcare, and industry, but its adoption 

in low-resource settings is hindered by expensive hardware and complex interaction methods. This study 

presents a lightweight, gesture-driven AR interface designed to enable intuitive user interaction on low-cost 

devices. Using standard webcams and open-source tools, MediaPipe for hand landmark detection and OpenCV 

for visual overlays, a rule-based system was developed to recognize three core gestures (open palm, fist, point) 

and trigger real-time AR overlays. The system was optimized for latency and frame rate, achieving 81.8% 

accuracy in gesture recognition during user testing with 20 participants. Real-time performance averaged 44.8 

ms latency and 24.6 FPS, demonstrating responsive feedback on entry-level hardware. Despite limitations such 

as variable lighting and lack of depth sensing, the system proved intuitive and effective for immersive 

interaction. This work contributes a scalable AR interaction model that enhances accessibility in educational 

and low-cost environments. 
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INTRODUCTION 

Augmented Reality (AR) is a rapidly evolving technology that 

blends digital content with the physical world, enabling users 

to interact with virtual objects while maintaining awareness 

of their real environment (Vertucci et al., 2023). Unlike 

Virtual Reality (VR), which fully immerses the user in a 

simulated setting, AR overlays interactive elements onto the 

physical space, enhancing perception and interaction. Its 

unique capability to integrate virtual components into real-

world tasks has driven adoption across sectors such as 

education, healthcare, industrial training, manufacturing, and 

entertainment (Cao et al., 2022). 

Effective AR experiences depend heavily on intuitive user 

interaction. While traditional input methods such as 

touchscreens, handheld controllers, and voice commands 

have enabled basic engagement, they often fall short in 

delivering truly immersive, hands-free, and context-aware 

interaction. Gesture-driven interaction, which relies on 

natural human hand movements, offers a compelling 

alternative (Ghazwani and Smith, 2020). It reduces cognitive 

load, fosters immersion, and aligns closely with natural 

human behaviours (Syed et al., 2023). This is particularly 

valuable in mobile or head-mounted AR systems where 

maintaining freedom of movement is essential. 

However, implementing gesture-driven interfaces in low-cost 

AR systems presents significant challenges. High-end AR 

devices, such as Microsoft HoloLens and Magic Leap, 

leverage depth sensors and advanced processing capabilities 

to achieve accurate, real-time gesture recognition. In contrast, 

affordable platforms built on smartphones, laptops, or entry-

level AR headsets lack such hardware, making it difficult to 

achieve precise tracking and responsive overlays (Majdoub 

Bhiri et al., 2023). Additionally, variations in lighting, limited 

computational resources, and dependence on proprietary 

software further restrict the usability of low-cost solutions in 

resource-constrained environments. 

The growing need for accessible AR technologies in 

education, training, and developing regions highlights the 

importance of research into lightweight, hardware-agnostic 

interaction models (Shen et al., 2022). This study addresses 

these challenges by designing and evaluating a gesture-driven 

AR system that uses only standard webcams and open-source 

frameworks, Google’s MediaPipe for hand landmark 

detection and OpenCV for rendering visual overlays. The 

system is optimized for real-time performance on modest 

hardware, aiming to deliver an intuitive, scalable, and 

affordable interaction model that can democratize access to 

immersive AR experiences. 

 

Applied Techniques for Gesture-Driven Augmented 

Reality 

The design of the proposed gesture-driven AR system relied 

on a combination of well-established computer vision 

frameworks and lightweight rule-based classification 

strategies, chosen to balance performance, accessibility, and 

computational efficiency. Three major techniques 

underpinned the implementation: hand landmark detection 

using MediaPipe, image processing with OpenCV, and rule-

based gesture classification. 

 

Hand Landmark Detection with MediaPipe 

MediaPipe (Lugaresi et al., 2019) was employed as the core 

framework for real-time hand tracking. Its hand detection 

model is based on BlazePalm, which performs palm 

localization in images with high efficiency, followed by 

regression models that estimate 21 three-dimensional hand 

landmarks. MediaPipe’s design ensures robustness to 

variations in lighting, orientation, and background, making it 

well-suited for real-world deployments. Compared to sensor-

based hardware like Leap Motion (Guna et al., 2014) and 

Kinect (Sanna et al., 2013), MediaPipe provides markerless, 

camera-only tracking, reducing cost and complexity while 

retaining acceptable accuracy. 

 

Image Processing and Augmented Overlays with OpenCV 

The visualization and augmentation pipeline was 

implemented using the OpenCV library. OpenCV was 

responsible for drawing bounding boxes, lines, and overlays 

to represent detected gestures within the AR interface. The 

use of OpenCV ensured cross-platform compatibility, with 
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optimized performance on commodity hardware such as 

standard webcams and mid-range CPUs. This choice aligns 

with the study’s low-cost design philosophy, avoiding 

reliance on dedicated GPUs or specialized vision hardware. 

 

Rule-Based Gesture Classification 

Once hand landmarks were detected, gestures were classified 

using a rule-based approach (Zhou and Deng, 2017). The 

algorithm compared relative positions of key landmarks such 

as fingertip and joint coordinates to predefined thresholds 

representing specific gestures (e.g., open palm, closed fist, 

pointing). While deep learning-based classifiers (Zhang and 

Zhu, 2019) can offer higher accuracy, the rule-based approach 

was intentionally chosen for its transparency, interpretability, 

and computational efficiency. This decision ensured that the 

system remained deployable on devices with limited 

resources, without sacrificing real-time responsiveness. 

 

Rationale for Technique Selection 

The integration of these techniques reflects a deliberate trade-

off between accuracy, efficiency, and accessibility. Unlike 

hardware-dependent systems, the adopted pipeline requires 

only a standard webcam and mid-tier computing device, 

making it viable in educational, training, and low-resource 

environments. Furthermore, the reliance on open-source 

frameworks enhances reproducibility and reduces barriers for 

researchers and practitioners aiming to replicate or extend this 

work. 

 

Related Works 

Gesture recognition has been extensively explored as a natural 

mode of human–computer interaction, with applications 

spanning gaming, virtual environments, and assistive 

technologies. Early surveys such as Pavlovic et al. (1997) and 

Rautaray and Agrawal (2015) classify approaches into vision-

based and sensor-based methods. Vision-based systems 

leverage cameras to detect and track hands in RGB or depth 

data, while sensor-based systems rely on wearable devices or 

inertial measurement units (IMUs). Sensor-based approaches 

such as the Leap Motion Controller (Guna et al., 2014) and 

Kinect (Sanna et al., 2013) offer high precision but often 

require specialized hardware, limiting portability and 

increasing deployment costs. 

In vision-based gesture recognition, advances in machine 

learning and computer vision have enabled real-time, 

markerless tracking of hand positions and gestures. 

Frameworks like MediaPipe Hands (Lugaresi et al., 2019; 

Tati et al., 2019) provide efficient 2D and 3D landmark 

detection from monocular RGB video, eliminating the need 

for depth sensors. Rule-based classification methods (Zhou 

and Deng, 2017) remain attractive for lightweight systems 

due to their low computational overhead, although deep 

learning approaches (Zhang and Zhu, 2019) can offer higher 

accuracy when sufficient computational resources are 

available. 

Augmented Reality (AR) interaction research spans diverse 

application domains, from industrial maintenance to 

education. Foundational surveys by Azuma (1997), 

Carmigniani et al. (2011), and Billinghurst et al. (2015) 

highlight the importance of seamless, intuitive input 

modalities in enhancing immersion. Comparative studies on 

AR interfaces (Lee et al., 2018; Wang et al., 2013) show that 

gesture-based interaction increases user engagement and 

reduces the need for additional controllers, making it 

particularly appealing for training and educational contexts. 

However, much of the high-performance AR work relies on 

costly hardware configurations, leaving a gap in accessible 

solutions for resource-constrained settings. 

The present study builds on this body of work by designing a 

purely vision-based, gesture-driven AR system optimized for 

low-cost deployment. By combining MediaPipe’s robust hand 

landmark detection with a rule-based classifier and 

lightweight OpenCV overlays, the system achieves real-time 

performance on standard webcams without dedicated GPUs 

or depth sensors. This approach directly addresses the 

limitations of both sensor-dependent solutions and 

computationally heavy deep learning methods, contributing a 

replicable framework for affordable, accessible AR 

interaction. 

 

MATERIALS AND METHODS 

System Overview 

The proposed gesture-driven AR system was designed to 

function without specialized hardware, relying instead on 

standard webcams and open-source software frameworks. 

The development goal was to create a lightweight, real-time 

pipeline capable of recognizing intuitive hand gestures and 

translating them into responsive AR overlays, while 

maintaining compatibility with low-specification devices 

such as entry-level laptops and mobile platforms. The system 

architecture comprised three primary modules: hand 

landmark detection, gesture classification, and AR overlay 

rendering as depicted in  

 

 
Figure 1: System Architecture 

 

Gesture Detection and Tracking 

Hand landmark detection was implemented using MediaPipe 

Hands, an open-source framework developed by Google. 

MediaPipe detects 21 distinct 3D hand landmarks from 

monocular RGB input, allowing robust tracking even under 

moderate variations in hand orientation and lighting. The 

choice of MediaPipe was motivated by its low computational 

overhead and proven real-time performance on CPU-based 

systems, making it ideal for environments without discrete 

GPUs or depth sensors (Meng et al., 2024). 

 

Gesture Classification Approach 

A rule-based classification method was employed to ensure 

fast decision-making without the need for training machine 
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learning models. This approach interprets the spatial 

relationships between landmarks to classify gestures into 

three categories: Open Palm – all fingers extended; Fist – all 

fingers curled; Point – index finger extended with remaining 

fingers curled. Relative Euclidean distances between fingertip 

coordinates and the palm base (Landmark 9) formed the basis 

of classification logic. The simplicity of this approach ensured 

high interpretability and minimized processing delays. 

 

AR Overlay Logic 

 
Figure 2: AR Overlay Logic 

 

Recognized gestures triggered dynamic visual overlays 

rendered with OpenCV. Overlays were anchored to the palm 

base and updated frame-by-frame, maintaining spatial 

coherence with the user’s hand movement. For example, an 

Open Palm displayed a green circle, a Fist showed a red circle, 

and a Point gesture rendered a textual label as shown in Figure 

2. This visual feedback reinforced gesture recognition 

accuracy and provided a responsive user experience. 

 

Simulated Data Pipeline 

A synthetic data stream was implemented to simulate gesture 

inputs and system behavior during offline development or 

testing. This simulation mimicked real-world metrics as 

shown in Table 1. 

 

Table 1: Simulated Data Pipeline 

Simulated Gesture Inputs Values/Description 

Simulated Accuracy ~85% 

Latency ~45ms ± 10ms 

Frames per second (FPS) ~25 ± 2 

Gestures Randomized mix of Open Palm, Fist, Point, and Unknown 

 

This environment enabled early debugging, visualization 

(latency, FPS, frequency charts), and classifier refinement 

before live deployment. The synthetic gesture data stream was 

also used to: generate confusion matrices and gesture 

transition matrices. 

 

Performance Evaluation Metrics 

Three core technical metrics were used to assess system 

performance: (1) Latency per frame (ms) – the time from 

video capture to overlay display; (2) Frames per second 

(FPS) – the average processing throughput; (3) Classification 

Accuracy – this is measured using Precision, Recall, and F1 

scores from confusion matrix analysis. These metrics were 

evaluated under both simulated and real-world conditions to 

verify responsiveness and stability. 

 

 

 

User Study Protocol 

A usability evaluation was conducted with 20 participants 

representing diverse age ranges, handedness, and levels of 

technical familiarity. Each participant performed repeated 

instances of the three target gestures, along with a non-gesture 

“Unknown” state, yielding a dataset of 2,000 labeled gesture 

samples. Testing took place in a standard indoor setting with 

ambient lighting and a 720p webcam. Participants received 

minimal instruction to reflect realistic first-time usage 

scenarios. 

 

Data Analysis Tools 

Table 2 summarizes the tools and libraries used with 

justification for each. NumPy, Matplotlib, and Seaborn were 

used for numerical analysis and visualization of latency, FPS 

trends, and gesture frequency distributions. Scikit-learn was 

employed for classification performance evaluation, 

generating precision-recall metrics and confusion matrices. 

 

Table 2: Tools and Libraries used 

Component Tool/Library Justification 

Gesture Detection MediaPipe(Google) Offers real-time, lightweight hand tracking with 21 key landmarks 

per hand; ideal for low-latency interaction on mobile/embedded 

devices. 

Video Capture & AR 

Overlays 

OpenCV Enables real-time camera feed capture and dynamic overlay of AR 

elements, supporting fast prototyping and custom visualization. 

Performance Analysis NumPy, Matplotlib, 

Seaborn 

These Python libraries are used for numerical computation and 

visualization of performance data, such as gesture recognition 

timing and user interaction metrics. 

Classification 

Evaluation 

scikit-learn Provides tools to assess gesture classification performance, 

including confusion matrix, precision, recall, and F1 score metrics. 
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RESULTS AND DISCUSSION 

Technical Performance 

The gesture-driven AR system demonstrated strong real-time 

performance on low-specification hardware. Under real-

world testing with a laptop (Intel i5, 8GB RAM, integrated 

webcam), the system achieved an average latency of 44.8 ms 

and an average frame rate of 24.6 FPS as depicted in Figures 

3 and 4. Latency remained within an acceptable range (23–78 

ms), indicating consistent responsiveness for interactive 

applications. Although simulation-based testing yielded 

extremely high FPS values, these reflected ideal, non-

rendered conditions and were not considered representative of 

real-world performance. 

 

 
Figure 3: Simulated Latency per Frame for Real World Testing 

 

Table 3 summarizes the results. Gesture recognition accuracy 

was evaluated using the dataset of 2,000 labeled samples from 

the user study. The overall classification accuracy was 81.8%, 

with the Fist gesture achieving the highest reliability 

(Precision: 90%, Recall: 85%, F1-score: 87.4%). The Open 

Palm gesture, while the most frequently performed, exhibited 

slightly lower recall (76%), suggesting occasional 

misclassification when hand visibility or finger extension was 

partial. The Point gesture was recognized with reasonable 

accuracy (Precision: 72%, Recall: 82%) but showed 

susceptibility to misclassification as Unknown, particularly 

under varied lighting. 

 

 
Figure 4: Simulated FPS Over Time for Real World Testing 

 

Table 3: Gesture Classification Metrics (N=2000 samples) 

Gesture Precision Recall F1 Score Support 

Open Palm 88% 76% 81.6% 720 

Fist 90% 85% 87.4% 600 

Point 72% 82% 76.7% 400 

Unknown 65% 80% 71.7% 280 

Overall Accuracy — — 81.8% 2000 

 

Gesture frequency analysis revealed that Open Palm 

dominated usage patterns, functioning as a natural default 

hand state during interaction. This suggests it could serve as 

an activation or standby gesture in interface design. The Fist 

gesture’s high classification performance supports its 

inclusion for tasks requiring precise activation, while Point 

gestures, though slightly less reliable offer valuable 

directional input capability. The gesture classification 

confusion matrix is depicted in Figure 5, while Figure 6 shows 

the gesture frequency over 100 Frames. 
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Figure 5: Confusion Matrix Visualization 

 

 
Figure 6: Gesture Frequency Histogram 

 

Usability Outcomes 

To better understand gesture dynamics during actual use, a 

gesture transition matrix was generated as depicted in Figure 

7. This shows how often users shifted from gesture to another. 

It reveals patterns like “Fist →Open Palm → Point” which 

informs design of gesture-based menus and interaction logic. 

Frequent transitions between distinct gestures suggest the 

system’s potential for multi-stage interaction workflows. For 

example, activating a menu with one gesture and selecting 

with another. 

 

 
Figure 7: Gesture Transition Matrix 

 

Participants reported that gestures were easy to learn and did 

not require significant training. Most users adapted quickly to 

the system, with interaction becoming natural within minutes 

of engagement. Minimal cognitive load and the lack of 

external controllers contributed to an immersive experience. 

Visual feedback in the form of overlays directly tied to gesture 

recognition reinforced user confidence in system responses. 

Discussion 

The results confirm that a lightweight, rule-based gesture 

recognition system can enable effective and intuitive AR 

interaction on low-cost platforms without specialized 

hardware. Achieving sub-50 ms latency and maintaining over 

80% classification accuracy demonstrates that such systems 
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are viable for real-time applications, including educational 

simulations, training environments, and assistive technology. 

From a human-computer interaction perspective, the Open 

Palm gesture’s frequency underscores the importance of 

aligning gesture sets with natural resting states to minimize 

user fatigue. Its slightly lower recall rate, however, points to 

the need for adaptive thresholding or calibration features to 

accommodate individual differences in finger positioning. 

The Fist gesture’s high precision indicates that closed-hand 

configurations produce distinctive landmark patterns that are 

more reliably detected under varied conditions. 

The performance of the Point gesture highlights a key 

limitation of rule-based classifiers: their sensitivity to small 

variations in hand posture and environmental factors such as 

lighting. In practical terms, this means that while the system 

is suitable for well-lit indoor environments, deployment in 

outdoor or highly dynamic lighting conditions may require 

more robust recognition strategies potentially integrating 

machine learning for adaptability. 

The absence of depth sensing is another constraint, as it limits 

interaction to 2D overlays. While sufficient for the tested use 

cases, applications requiring spatial depth interaction such as 

object manipulation in 3D space, would require depth-aware 

inputs or stereo camera setups (Torres et al., 2024). This, 

however, must be balanced against cost and accessibility 

objectives. 

Importantly, the study demonstrates that accessibility and 

scalability need not be sacrificed for interactivity. The use of 

open-source tools like MediaPipe and OpenCV ensures that 

the system can be reproduced and customized without 

licensing costs, supporting equitable access to AR 

technologies in resource-constrained contexts. This aligns 

with broader digital inclusion goals and positions the system 

as a potential platform for education in developing regions. 

 

CONCLUSION 

This study set out to address the challenge of delivering 

intuitive, hands-free user interaction in low-cost Augmented 

Reality (AR) environments by developing a lightweight, 

gesture-driven AR system using only standard webcams and 

open-source tools. The system’s design rooted in rule-based 

gesture classification and optimized for minimal latency 

demonstrated that responsive, real-time AR experiences can 

be achieved without specialized hardware or high 

computational power. 

Technical evaluation confirmed that the system maintained an 

average latency of under 50 ms and a frame rate exceeding 24 

FPS in real-world testing, while delivering an overall gesture 

recognition accuracy of 81.8%. These performance levels 

meet the requirements for smooth AR interaction in 

educational, training, and general-purpose applications, even 

in resource-constrained settings. The user study validated the 

intuitiveness and usability of the selected gestures (Open 

Palm, Fist, and Point), with participants adapting quickly and 

interacting confidently without extensive instruction. 

The findings underscore that accessibility and affordability 

need not come at the expense of interaction quality. By 

relying entirely on open-source frameworks such as 

MediaPipe and OpenCV, the system eliminates licensing 

costs and supports reproducibility, making it a practical 

option for deployment in classrooms, community training 

programs, and emerging markets where high-end AR systems 

are financially and logistically inaccessible. 

Beyond its immediate technical success, the research 

contributes to the broader discourse on democratizing 

immersive technologies. It offers empirical performance 

benchmarks for gesture-based AR in low-cost environments 

and presents a replicable methodology that can serve as a 

foundation for further innovations. The system’s modular 

architecture allows for future enhancements, including the 

integration of adaptive machine learning classifiers, depth-

aware interaction, and multimodal input combining gesture 

with voice or gaze tracking. 

In conclusion, this work demonstrates that carefully 

engineered, resource-efficient solutions can bridge the gap 

between the aspirations of AR technology and the realities of 

limited-resource contexts. It not only advances the technical 

feasibility of low-cost gesture-driven AR but also reinforces 

its potential as an inclusive, scalable, and impactful 

interaction model for the next generation of accessible 

immersive systems. 
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