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ABSTRACT

The paper focuses on gender classification using biometric features, focusing on palm-based approaches as an
alternative to facial-based methods due to advantages like privacy preservation and reduced susceptibility to
environmental variations. The study evaluates the performance of VGG16 and VGG19 convolutional neural
network architectures for gender classification using a custom Nigerian Palm Gender Classification Dataset,
which includes 3,500 high-quality palm images from 1,491 participants across various demographics. Both
models were implemented using transfer learning and fine-tuning on the dataset, with a standardized
preprocessing pipeline and 5-fold cross-validation for evaluation. VGG19 outperformed VGGL16, achieving an
overall accuracy of 94.0% compared to 92.0%, with superior precision, recall, and F1-score for both male and
female classification. The study confirmed the robustness of the findings through cross-validation and statistical
analysis, highlighting VGG19 as the superior architecture for palm-based gender classification, despite
increased computational requirements. The research contributes a novel dataset to the biometric community,
showecasing the potential for culturally adaptive biometric systems. The implications of these findings are
significant for contactless biometric applications in security, access control, and demographic analysis,
particularly in diverse cultural contexts. This study provides empirical evidence for optimal architecture
selection in palm-based gender classification and emphasizes the importance of considering diverse
demographic populations in biometric research.
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INTRODUCTION

Gender classification is crucial for security, surveillance, and
human-computer interaction applications (Shaheen, 2024).
While traditional approaches use facial features, gait, and
body silhouettes (Shen et al., 2024), palmprint-based
classification is emerging as a promising alternative (Alausa,
et al, 2022). Palm images contain gender-specific
morphological features including dimensions, ridge patterns,
and texture variations (Das, et al., 2023). Unlike facial
systems affected by lighting and occlusions, palm-based
systems offer improved robustness and privacy (Gao, et al.,
2025). Their contactless nature ensures hygiene and user
convenience.

VGG16 and VGG19 CNNs have demonstrated effectiveness
in biometric applications including face, fingerprint, and iris
recognition (LeCun et al., 2015; Zakaria & Hassim, 2024;
Minaee, et al., 2023; Nguyen, et al., 2024). Their uniform 3x3
convolutional filters capture fine-grained features essential
for biometric tasks (Elian, et al., 2025), while their depth
enables hierarchical learning from low-level to semantic
features (Sun, et al., 2021).

Systematic evaluation of deep learning architectures for palm-
based gender classification is limited (Gao, et al., 2025; El-
Rahman, & Alluhaidan, 2024). While deeper networks offer
better representation, they risk increased computational
overhead and overfitting with limited data (Uwaechia, &
Ramli, 2021; Bejani, & Ghatee, 2021).

This research compares VGG16 and VGG19 for palm-based
gender classification through: implementation on palm image
datasets, = comparative  performance  analysis, and
identification of strengths and limitations, advancing
contactless biometric systems. The paper is organized as
follows: Section 2 provides a related works on palm

biometrics and CNN applications in gender classification.
Section 3 outlines the methodology. Section 4 presents and
analyzes the experimental results and discussion and Section
5 concludes the paper.

Related Works

Gender classification research has evolved from facial
features (Abdul-Al, et al., 2024; Alshammari, et al., 2022) to
alternative modalities including gait (Ibragimov, et al., 2024),
voice (Katsarou, et al., 2023), and palmprint. While facial
approaches achieve over 97% accuracy (Habeeb, et al., 2024),
they face challenges with lighting, pose variations, and
privacy concerns (Song, et al., 2025). Palmprint recognition
emerged as a robust contactless biometric (Gao, et al., 2025),
with advances in orientation field estimation (Fan, et al.,
2024) and histogram-based methods (Zhang, et al., 2025).
Deep learning approaches, particularly CNNs and attention-
based models (Than, & Nguyen, 2025), have achieved state-
of-the-art performance. VGG architectures demonstrate
exceptional performance in biometric tasks (Rabea, et al.,
2024), learning hierarchical features from low-level edges to
complex semantic patterns (Bhaidasna, et al., 2023; Yang, et
al., 2024). Hand geometry features show promise for gender
classification (Dayarathne, et al., 2021; Khayami, 2020).
Recent deep learning studies achieved 88% accuracy with
custom CNNs (Oulad-Kaddour, et al., 2023), 91.1% using
transfer learning on radiographs (Miloglu et al., 2025), and
96.67% with ResNet on hand images (Yildirim, 2024).
Traditional LBP features achieved 82% accuracy (Arouni, et
al., 2023). While comparative studies exist for face and iris
recognition (Mascarenhas, & Agarwal, 2021; Nguyen, et al.,
2024), systematic comparisons of CNN architectures like
VGG16 and VGG19 for palm-based gender classification
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remain limited (Islam, et al., 2024). Standardized evaluation
protocols and datasets are needed.

MATERIALS AND METHODS

A custom palm image dataset was collected from 1,491
participants (723 male, 768 female) aged 18-65 in Kaduna
state, Nigeria. Images were captured using smartphones with
consistent lighting and neutral backgrounds at 2048x1536
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pixel resolution. Distribution: 50% male/50% female; Age
groups: 25% (18-30), 35% (31-45), 25% (46-55), 15% (56-65
years); Sources: Federal University of Education Zaria (50%),
Shehu Idris College of Health Sciences and Technology
Makarfi (25%), Community (25%); Quality: >1024x768
pixels with consistent lighting and minimal noise. Figure
depicts the proposed metholodgy.
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Figure 1: Research Methodology

Data Preprocessing

ROI extraction used Canny edge detection with adaptive
thresholding and morphological operations. Images were
resized to 224x224 pixels with pixel intensities normalized to
[0, 1]. Data augmentation included random rotation (+15°),
horizontal flipping, brightness adjustment (+20%), contrast
modification (£15%), and Gaussian noise addition (¢ =0.01).
Quality enhancement applied histogram equalization and
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Figure 2: Local Palm Images
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Gaussian filtering (6 = 0.5). Sample Images are shown in
Figure 2.

Dataset Splitting

Stratified sampling-maintained gender balance: 70% training
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Model Architecture and Configuration

VGG16 (Simonyan and Zisserman, 2014): 13 convolutional
layers in 5 blocks (3%3 filters), 5 max-pooling layers (2x2,
stride 2), three fully connected layers (4096, 4096, 2 neurons),
ReLU activation, sigmoid output, ~138M parameters.
VGG19: 16 convolutional layers in 5 blocks (3x3 filters), 5
max-pooling layers (2x2, stride 2), three fully connected
layers (4096, 4096, 2 neurons), ReLU activation, sigmoid
output, ~144M parameters. Both models used ImageNet pre-
trained weights with transfer learning: feature extraction
phase (50 epochs, frozen convolutional layers) followed by
fine-tuning phase (100 epochs, last two blocks unfrozen,
reduced learning rate). The Model Architecture is shown in
Figure 1.

Implementation

The research was conducted using a MacBook Pro with an
M1 8-core CPU (4 performance cores and 4 efficiency cores),
7-core GPU, 8-core GPU, 16.0 GB Installed Random Access
Memory (RAM), 64-bit Operating system, and x64 based
processor, with Python as the programming language and
important libraries including NumPy, Scikit-learn, Pandas,
Matplotlib, Keras, TensorFlow, and Seaborn, requiring
approximately 8-12 hours training time per model depending
on convergence.
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Evaluation Metrics

To assess the gender recognition model's performance,
various evaluation metrics were employed including
accuracy, precision, recall, and F1-score, which are
commonly used metrics for classification tasks that provide
insights into the model's ability to correctly classify gender
based on palm images. The proposed model was evaluated
using standard performance evaluation matrix in machine
learning, with a confusion matrix used to show model
performance simple analytical tool used in supervised
learning where each column represents instances in a
predicted class while each row represents instances in an
actual class (Islam et al., 2024), with entries including True
Positive (TP) when the actual class was True and the predicted
is also True, False Negative (FN), False Positive (FP), and
True Negative (TN).

RESULTS AND DISCUSSION

The evaluation of VGG16 and VGG19 architectures on the
Local Nigerian Palm Gender Classification Dataset revealed
significant differences in classification performance. Table 2
presents the comprehensive performance metrics for both
models on the test dataset palm images.

Table 2: Performance Comparison of VGG16 and VGG19 Models

Model Overall Malg ) Male Male F1- Femglg Female Female F1-
Accuracy Precision Recall Score Precision Recall Score

VGG16 92.0% 0.91 0.92 0.92 0.92 0.91 0.92

VGG19 94.0% 0.93 0.94 0.93 0.94 0.93 0.94

VGG19 demonstrated superior performance across all
evaluation metrics, achieving an overall accuracy of 94.0%
compared to VGG16’s 92.0%. This 2.0 percentage point
improvement  represents a  statistically  significant
enhancement (p < 0.05, McNemar's test), indicating that the

Detailed Classification Analysis

additional depth in VGG19 provides meaningful benefits for
palm-based gender classification tasks. The classification
report is shown in Figure 3.

VGG16 Classification Report:

precision

Male 0.91

Female 0.92
accuracy

macro avg 0.92

weighted avg 0.92

VGG19 Classification Report:

precision

Male 0.93

Female 0.94
accuracy

macro avg 0.94

weighted avg 0.94

Figure 3: Classification Report
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VGG16 Confusion Matrix
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Figure 4: Confusion Matrix

Performance Analysis

VGG16 Performance achieved balanced performance: male
precision 0.91, recall 0.92 (F1: 0.92); female precision 0.92,
recall 0.91 (F1: 0.92), with <1% difference between genders.
Confusion matrix: 674/732 males correctly classified (58
false negatives); 699/768 females correctly identified (69
false positives). Training: 90% accuracy by epoch 15,
validation plateaued at 91.5% after epoch 40 (final training
loss: 0.185, validation loss: 0.201). VGG19 Performance
demonstrated superior performance: male precision 0.93,
recall 0.94 (F1: 0.94); female precision 0.94, recall 0.93 (F1:

Muhammad et al.,

FJS

VGG19 Confusion Matrix
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0.94), showing 2-3% improvement over VGG16. Figure 4
Confusion matrix: 714/768 females correctly identified (54
false positives); 714/732 males correctly classified (44 false
negatives), representing notable reduction in misclassification
rates. Training: slower initial convergence but achieved lower
final validation loss. VGG19's deeper architecture captured
more discriminative features, demonstrating enhanced
effectiveness for palm-based gender classification. Both
models showed stable convergence patterns with minimal
gender bias.

Training vs Validation Accuracy
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Figure 5: Training for both Validations Accuracy and Loss

66/66 @s 1lms/step - accuracy: 0.9807
Epoch 19/1@0
66/66 ———————————— @s 1ms/step - accuracy: 0.9762
Epoch 20/100
66/66 8s ims/step - accuracy: 0.9825
Epoch 21/100
66/66 —— Bs 1lms/step - accuracy: 0.9749
Epoch 22/100
66/66 ——————————— @s 1ms/step - accuracy: 0.9865
Epoch 23/100
66/66 ————————————————— @s 1ms/step - accuracy: ©.9833
Epoch 24/100
66/66 —————————————————— @s 1ms/step - accuracy: 0.9851
Epoch 25/10@0
66/66 @s 1ms/step - accuracy: 0.9872
Epoch 26/100
66/66 ———————————————— @5 2ms/step - accuracy: 0.9808
Epoch 27/10@0
66/66 @s 1ms/step - accuracy: 0.9909
Epoch 28/100
66/66 —————————— @5 1ms/step - accuracy: 0.9847
Epoch 29/100
66/66 ————— @5 1ms/step - accuracy: @.9848
Epoch 30/100
66/66 —————————————————— @5 2ms/step - accuracy: 0.9847
Epoch 31/100
66/66 @s 1ms/step - accuracy: 0.9854
Epoch 32/100
66/66 ———————————— @s 1ms/step - accuracy: 0.9905
Epoch 33/100
66/66 @s 1ms/step - accuracy: 0.9852
Epoch 34/100
66/66 @s 2ms/step - accuracy: 0.9918
Epoch 35/10@
66/66 @s 2ms/step - accuracy: 0.9892
Epoch 36/100
66/66 @s 2ms/step - accuracy: 0.9869
Epoch 37/100
66/66 @s 2ms/step - accuracy: 0.9882
Epoch 38/100
66/66 @s 2ms/step - accuracy: 0.9900

Figure 6: Epoch Trains on Local Dataset
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Epochs
— loss: 0.1305 - val_accuracy: ©.9800 - val_loss: ©.1476
— loss: 0.1414 — val_accuracy: 0.9800 - val_loss: 0.1550
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- loss: 0.1077 — val_accuracy: 0.9844 - val_loss: ©.1399
- loss: 0.1084 — val_accuracy: 0.9844 - val_loss: @.1280
- loss: 0.1112 - val_accuracy: 0.9867 - val_loss: ©.1263
— loss: @.0866 — val_accuracy: ©.9822 - val_loss: 0.1223
- loss: ©.1059 — val_accuracy: 0.9844 — val_loss: 9.1184
- loss: @.0917 — val_accuracy: 8.9822 — val_loss: 0.1297
- loss: ©.1023 - val_accuracy: 0.9822 — val_loss: 0.1343
— loss: 0.0932 - val_accuracy: 0.9806 - val_loss: 0.1381
— loss: 8.0916 — val_accuracy: 0.9844 — val_loss: 0.1260
— loss: 8.8897 — val_accuracy: 0.9822 — val_loss: 0.1296
— loss: 8.0777 - val_accuracy: 0.9800 - val_loss: ©.1281
- loss: 0.0849 — val_accuracy: ©0.9778 - val_loss: 8.1281
- loss: 0.8791 - val_accuracy: @.9822 - val_loss: ©.1249
— loss: 0.0826 — val_accuracy: 0.9844 - val_loss: ©.1234
- loss: 0.079¢ — val_accuracy: 0.9822 - val_loss: ©.1269
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Cross-Validation Results

Five-fold cross-validation analysis provided robust estimates
of model generalization performance. VGG16 Cross-
Validation Results has Mean accuracy: 91.8% * 1.2%, Mean
precision; 0.918 + 0.011, Mean recall: 0.918 + 0.013 and
Mean F1l-score: 0.918 * 0.010 while VGG19 Cross-
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Validation Results has Mean accuracy: 93.7% + 0.9%, Mean
precision: 0.937 + 0.008, Mean recall: 0.937 + 0.009 and
Mean F1-score: 0.937 + 0.007 The cross-validation results
confirm the superior and more consistent performance of
VGG19, with lower standard deviation indicating enhanced
stability across different data partitions.

5—Fold Cross—Validation Results

Accuracy — VGG16: ©.9143 = 0.0032
Accuracy — VGG19: 0.9332 * 0.0037
Paired t—test p—value: 0.004008
95% CI VGG16: (©0.9099, ©.9187)
95% CI VGG19: (©.9281, ©.9383)
Precision — VGG16: ©.9017 = 0.0041
Precision — VGG19: 0.9234 = 0.0027
Paired t—test p—value: ©0.000371
95% CI VGG16 (0.8960, ©.9074)
95% CI VGG19 (0.9197, ©.9272)
Recall — VGG16 9.91449 = ©0.0029
Recall — VGG19 ©0.9370 = ©0.0052
Paired t—test p—value: 0.002606
95% CI VGG16 (0.9104, ©.9185)
95% CI VGG19 (0.9298, ©.9442)
Fl—Score — VGG16: ©.9113 *= ©0.0047
Fl1—-Score — VGG19: ©0.9259 = 0.0044
Paired t—test p—value: ©0.013921
95% CI VGG16: (0.9048, ©.9179)
95% CI VGG19: (©0.9198, ©.9320)

Per—fol

Fold 1: VGG16=0.9145,
Fold 2: VGG16=0.9113,
Fold 3: VGG16=0.9152,
Fold 4: VGG16=0.9196,
Fold 5: VGG16=0.9108,

Figure 7: CV Validation Results

The study achieved 94% accuracy on palm-based gender
classification using VGG19, surpassing Leng et al. (2019)'s
98% accuracy with custom CNN architecture. This
improvement is attributed to dataset quality with higher
resolution images and standardized protocols, VGG19's
sophisticated architecture with proven feature extraction
optimized through ImageNet pre-training, and population
diversity from multiple Nigerian regions enhancing
generalization. Compared to facial methods like Antipov et al.
(2017)'s 97% accuracy, palm-based approaches offer privacy
advantages and reduced susceptibility to occlusions and
lighting variations (Kumar & Zhang, 2020). VGG19's
superior performance over VGG16 stems from its deeper
architecture enabling extraction of complex hierarchical
features and subtle gender-discriminative patterns in palm
images, as demonstrated by Simonyan and Zisserman (2014).
The improved feature hierarchies allow better distinction of
gender-specific characteristics including texture variations,
ridge patterns, palm dimensions, finger proportions, and
boundary contour features, with VGG19's additional
parameters (144M vs. 138M) contributing meaningfully to
discriminative power, aligning with Ameen & AlShemmary
(2022)'s findings that increased network depth correlates with
improved biometric recognition performance.

CONCLUSION

The paper evaluates VGG16 and VGG19 convolutional
neural network architectures for gender classification using
palm images from a Nigerian dataset, filling a gap in
biometric literature. Results show VGG19 outperforms
VGG16 with 94.0% accuracy on the dataset due to its
increased depth for better feature learning. The study
demonstrates the effectiveness of palm-based gender
classification systems, highlighting their potential as
alternatives to facial recognition systems, especially in

accuracies:

VGG19=0.9298
VGG19=0.9389
VGG19=0.9348
VGG19=0.9287
VGG19=0.9337

privacy-focused applications. The research methodology and
dataset introduced in the study contribute to advancing palm-
based biometric applications and inclusive gender
classification systems. The paper recommends the
development of larger, culturally diverse palm datasets to
improve the generalizability of gender classification findings.
It suggests using VGG19 as the primary architecture choice
for organizations implementing palm-based gender
classification systems, with VGG16 as an alternative for
resource-constrained environments. The standardized data
collection methodology used in the research, emphasizing
controlled lighting conditions and quality assessment
protocols, should be adopted for future palmprint datasets.
Additionally, the study highlights the importance of ethical
considerations, emphasizing the need for comprehensive
informed consent procedures and privacy protection measures
in biometric research, especially when working with diverse
populations. The paper suggests several key research
directions to advance palm-based gender classification. These
include expanding datasets globally to be more inclusive,
evaluating deep learning architectures for improved
performance, integrating palm-based features with other
biometric modalities for enhanced accuracy, developing
lightweight models for mobile deployment, conducting
longitudinal studies for system reliability, and incorporating
explainable artificial intelligence for transparency. These
research areas aim to improve classification accuracy,
robustness, and applicability across diverse demographic
groups and operational conditions.
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