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ABSTRACT 

Phase-tuned perovskite materials have emerged as promising candidates for hydrogen production due to their 

excellent optoelectronic properties, flexible compositions, and structures. Phase engineering strategies, 

including strain induction, doping, and temperature-driven phase transformations, has significantly enhanced 

the tuning of bandgaps, charge transport, and catalytic activity. This review synthesizes current strategies for 

enhancing hydrogen evolution reactions (HER) efficiency in both oxide and halide perovskite systems through 

phase manipulation. The integration of machine learning (ML) into research accelerates the discovery of 

efficient HER catalysts by predicting optimal phase configurations, identifying novel compositions, and 

streamlining experimental efforts. Specifically, ML enhances phase tuning by analyzing vast compositional 

spaces, uncovering structure-property relationships, and guiding the design of phase-engineered perovskites 

with improved hydrogen evolution efficiency.  Particular attention is directed towards AI-assisted studies on 

materials such as La₁₋ₓSrₓFeO₃ and BaTiO₃, which demonstrate strong correlations between phase configuration 

and HER performance. This review uniquely bridges the gap between phase engineering and data-driven 

approaches, highlighting how ML augments rational design by reducing trial-and-error experimentation. This 

work also outlines key challenges, including phase stability, model interpretability, and data limitations while 

proposing future directions for the development of robust, scalable perovskite-based photocatalysts. The 

insights presented serve as a foundation for advancing clean and efficient hydrogen production technologies. 
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INTRODUCTION 

The increasing demand for renewable energy has driven 

attention towards hydrogen production via photocatalytic 

water splitting. Perovskite oxides and halides, characterized 

by their structural versatility and tunable electronic properties, 

hold significant promise for this application. It has been 

proven that strategies such as strain engineering, doping can 

substantially alter the photocatalytic performance of 

perovskite oxides, resulting to enhanced hydrogen evolution 

reaction (HER) efficiencies (Xiao et al., 2025). Furthermore, 

the leveraging of machine learning (ML) techniques has made 

easy the screening, optimization, and rational design of   

perovskite materials, as a result accelerating the discovery of 

efficient photocatalysts (Jacobs et al., 2023). 

Phase engineering is the deliberate manipulation of a 

material's crystal structure, it has been identified as a unique 

strategy for tailoring the electronic and optical properties of 

perovskite materials to enhance photocatalytic performance 

of perovskite based materials. By inducing phase transitions, 

the band gaps and charge carrier dynamics can be modulate, 

thereby improving light absorption and charge separation 

efficiency (Jianjian et al., 2023). For instance, Bi-doped 

LaFeO3 shows a phase-driven improvement in photocatalytic 

activity of over 30% compared to its undoped form (Cao et 

al., 2024). These phase changes also affect octahedral tilting 

and metal-oxygen bond angles, which are crucial in 

facilitating better light absorption and longer carrier lifetimes.  

To accelerate this design process, machine learning (ML) has 

become increasingly valuable. ML algorithms, including 

random forest regressors and neural networks, are used to 

predict bandgaps, phase stability, formation energy, and HER 

activity based on structural and compositional features. 

Trained on data from high-throughput DFT simulations and 

experimental databases, these models can screen thousands of 

compositions within hours, drastically reducing the cost and 

time of discovery compared to conventional trial-and-error 

methods (Jacobs et al., 2023; Deng et al., 2025). 

Notably, ML-guided screening has identified previously 

overlooked perovskites with predicted HER efficiencies 

above 85% theoretical solar-to-hydrogen (STH) conversion 

benchmarks. 

Despite these advances, several challenges persist. Stability 

under operational conditions, data quality variability, and the 

interpretability of ML models remain obstacles to 

implementation. Furthermore, vague classifications such as 

AI-assisted often overlook distinctions between supervised 

learning, deep learning, and model-experiment integration 

strategies. As the field evolves, addressing these limitations is 

crucial to fully unlocking the synergy between phase-tuned 

materials and ML-driven design. Additionally, the integration 

of AI and quantum computing holds promise for further 

accelerating the discovery and optimization of efficient 

photocatalysts (Wayo et al., 2024). 

This review seek to synthesize recent advances in phase 

engineering of perovskite materials for HER, with a particular 

focus on the integration of ML approaches. We examine how 

these strategies intersect, provide examples of successful 

applications and propose future directions for data-driven 

materials discovery. By articulating current trends, key 

challenges, and emerging opportunities, this review intends to 

contribute a comprehensive roadmap for the rational design 

of perovskite-based photocatalysts for hydrogen production. 

 

MATERIALS AND METHODS 

Review Methodology 

This review was conducted to synthesize recent advances at 

the intersection of phase engineering, perovskite 

photocatalysts and ML applications for hydrogen evolution. 

To ensure comprehensive and relevancy, literature was 

sourced from major scientific databases including Scopus, 
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Web of Science, ScienceDirect and IEE Xplore. Search terms 

used includes: Perovskite and phase engineering, 

photocatalytic hydrogen production, machine learning and 

perovskite, HER and AI and ML-assisted photocatalysis. A 

total of 70 articles were initially screened, from which 37 

studies were selected for full-text analysis based on their 

methodological rigor, novelty and relevance to the review 

themes. 

 

 
Figure 1: The flowchart of materials ML by Tao et al. (2021) 

 

Table 1: Comparison Table of ML Models, Perovskite Types and HER Outcome 

Work/Year ML Model Input Features Perovskite 

System 

Predicted 

Outcome 

HER 

Performance/ 

Accuracy 

Deng et al., 

(2025) 

Random Forest 

(RF) 

Bandgap, 

electronegativity, 

ionic radius 

ABO3 oxides 

(LaFeO3, 

SrTiO3) 

HER activity, 

band alignment 

~89% 

Hung et al., 

(2025) 

Convolutional 

Neural Network 

(CNN)  

XRD pattern images Mixed oxide 

perovskites 

Phase 

classification and 

HER phase 

prediction 

Accuracy ~93% 

Luhan et al., 

(2024) 

Neural Network 

(ANN) 

Atomic radii, 

coordination number, 

formation energy 

BiFeO3, 

BaTiO3 variants 

Stability and 

HER potential 

MAE ~0.12ev, 

30% phase driven 

HER 

improvement 

Jacobs et al., 

(2023) 

Support Vector 

Machine 

Structural descriptors 

+ DFT data 

Halide 

perovskites 

Phase 

classification and 

HER phase 

prediction 

Accuracy ~93% 

identified active 

mixed-phase 

BiFeO3 

Yang et al., 

(2021) 

Active Learning 

(AL) with RF 

Incremental DFT 

dataset 

La1-xSrxFeO3 Optimal doping 

level for best 

HER 

performance 

Reduced 

screening time by 

~80%; accurate 

up to 95% 

Zhou et al. 

(2018) 

Unsupervised 

PCA + Clustering 

DFT band structure 

vectors 

ABO3 

perovskites 

Grouped HER-

efficient 

structures by 

geometry 

Identified 5 new 

HER-relevant 

structural Motifs 

 

Fundamentals of Perovskite Materials for Hydrogen 

Evolution 

Perovskite materials have sparked intense attention over the 

years in the field of renewable energy conversion due to their 

unique structural versatility and excellent optoelectronic 

properties. The generic formula for perovskites is ABX₃, 

where A is a large cation (e.g., Cs⁺, MA⁺, or La³⁺), while B is 

a smaller cation (e.g., Ti⁴⁺, Fe³⁺), and X typically denotes an 

anion such as oxygen or a halide. This structure allows for 

extensive chemical substitutions, enabling the precise control 

over electronic and structural properties for specific 

functionalities such as the hydrogen evolution reaction (HER) 

(Doggali et al., 2015). 

In the field of photocatalytic hydrogen production, useful 

material parameters of perovskites include suitable bandgap 

energies (typically 1.5–2.5 eV), high carrier mobility, and 

band edge alignment with the redox potentials of water. For 

HER, the conduction band minimum (CBM) of the perovskite 

must lie above the hydrogen evolution potential (0 V vs. 

NHE), while the valence band maximum (VBM) should be 

below the oxygen evolution potential (+1.23 V vs. NHE) to 

facilitate overall water splitting (Shah et al., 2017). Materials 
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such as SrTiO₃, BiFeO₃, and LaFeO₃ have demonstrated 

potential in satisfying these conditions under visible light. 

However, despite these attractive properties, the practical 

integration of conventional perovskites is hampered in HER 

applications. These limitations include photocorrosion, poor 

chemical stability in aqueous environments, and charge 

carrier recombination. But, the structural phase of perovskites 

plays a crucial role in determining their photocatalytic 

performance, as phase changes can significantly alter 

material’s band structure and surface reactivity (Temerov et 

al., 2022) 

Addressing these limitations necessitates the incorporation of 

strategic material design approaches such as doping, 

compositional tuning, and more recently, phase engineering. 

These methods allow for precise control over lattice 

distortions, octahedral tilting, and electron distribution, 

ultimately inducing changes in both charge dynamics and 

catalytic activity (Feng et al., 2025). Notably, recent studies 

have demonstrated that subtle changes in the perovskite 

crystal phase can significantly affects HER efficiency by 

facilitating better charge mobility and creating more active 

surface sites. 

As research advances, the need for multiscale understanding 

and linking of atomic-scale features to macroscopic catalytic 

performance is becoming evident. Computational tools such 

as density functional theory (DFT), in combination with 

machine learning (ML) models, now play a important role in 

predicting and optimizing perovskite behavior under 

operational conditions (Nyangiwe et al., 2025). This has laid 

the foundation for a data-driven, rational design of high-

efficiency perovskite materials for hydrogen evolution. 

 

Phase Engineering Strategies in Perovskite Photocatalysts 

Phase engineering has emerged as a noble strategy to enhance 

the photocatalytic performance of perovskite materials, 

particularly for hydrogen evolution reactions (HER). 

Perovskites can exist in multiple structural phases such as 

orthorhombic, cubic, rhombohedral, and tetragonal, 

depending on factors like temperature, ionic radius mismatch, 

and doping concentration. These phase variations strongly 

influence the material’s electronic structure, charge transport 

properties, and surface reactivity (Dawa et al., 2024). 

The tuning of phase stability and transitions has proven 

effective in optimizing the band edge positions and improving 

charge carrier separation efficiency. For instance, studies on 

LaFeO₃ have demonstrated that by tuning the doping level of 

Bi, Ce or Y at the A-site (La3+), one can induce transitions 

between various crystallographic phases, resulting in 

enhanced light absorption and photocatalytic activity (Cao et 

al., 2024). In the same fashion, altering the B-site cation (e.g., 

Fe³⁺ replaced with Mn³⁺ or Ti⁴⁺) can modify the metal–oxygen 

bond angle, thereby regulating the perovskite's phase and 

electronic conductivity. 

One effective method of phase engineering is strain induction, 

which involves applying external or internal stress (via 

epitaxial growth or lattice mismatch) to distort the perovskite 

lattice. This strain effects can lead to change in electronic 

structure, shift in band edge, impact defect density, and 

improve charge mobility (Kahlaoui et al., 2020; Wang et al., 

2025). For example, tensile strain in SrTiO₃ thin films has 

been shown to induce a transition to a pseudo-cubic phase 

with improved charge transport and HER efficiency. 

Another strategy includes temperature- or pressure-driven 

phase transformations, which allow researchers to reversibly 

tune the crystal structure and correlate it with catalytic 

performance. Although such techniques are more challenging 

to implement in practical devices, they offer deep insight into 

the structure–property relationships that govern HER activity 

(Maciejewska et al., 2023; Jayakrishnan et al., 2023; Toriqul 

et al., 2024). 

Importantly, phase boundaries within mixed-phase 

perovskites can act as active sites or facilitate directional 

charge separation. For instance, BiFeO₃ with coexisting 

rhombohedral and tetragonal phases has shown superior 

hydrogen production under visible light compared to its 

single-phase counterparts (Chen et al., 2015; Baloni et al., 

2022). This is attributed to the internal electric fields and 

enhanced carrier dynamics at the phase interfaces. 

As a frontier approach, AI and machine learning techniques 

are now being integrated to predict favorable phase 

configurations for specific applications. Trained on high-

throughput computational data, ML models can identify 

composition to desired phase property relationships more 

efficiently than conventional trial and error approach 

(Alghadeer et al., 2024; Badini and Pugliese. 2023). This 

enables the targeted design of phase-engineered perovskites 

with optimal band alignment and catalytic activity for 

hydrogen evolution. 

 

AI and Machine Learning Approaches in Perovskite 

Photocatalysis 

The integration of artificial intelligence (AI) and machine 

learning (ML) into materials science has rapidly transformed 

the discovery and optimization of photocatalysts for hydrogen 

evolution, particularly within complex systems such as 

perovskites. Traditional trial and error experimental methods 

and even first-principles calculations are often time 

demanding when exploring vast compositional and structural 

design spaces. AI-driven approaches offer high-throughput, 

cost-effective pathways to accelerate the identification of 

efficient perovskite-oxides materials with desirable 

photocatalytic properties (Hung et al., 2025; Luhan et al., 

2024; Ali et al., 2020; Weng et al., 2020). 

Machine learning models such as random forest, support 

vector machines, and neural networks have been employed to 

predict key descriptors like band gap, conduction band 

position, formation energy, and hydrogen adsorption energy 

based on compositional and structural features of perovskites 

(Zhou et al., 2018; Deng et al., 2025; Hung et al., 2025 ). 

These models are trained on datasets derived from either 

density functional theory (DFT) calculations or experimental 

repositories such as the Materials Project or NOMAD. Once 

trained, the models can screen thousands of perovskite 

compositions rapidly for stability and photocatalytic 

efficiency prediction rapidly. 

In particular, AI has shown remarkable potential in guiding 

phase engineering through correlations between nature and 

type of dopant, lattice strain, phase and phase transitions 

(Abdullah et al., 2025). For instance, convolutional neural 

networks have been utilized to classify perovskite crystal 

phases based on XRD patterns and to predict phase transition 

pressures under different chemical environments. These 

capabilities enable researchers to virtually screen for phase-

tuned perovskite compositions that can maximize hydrogen 

evolution efficiency. 

Furthermore, unsupervised learning techniques such as 

principal component analysis (PCA) and clustering 

algorithms help in understanding the latent variables 

controlling HER activity across a broad materials landscape. 

These methods can group similar materials by performance 

and structural characteristics, unraveling hidden structure to 

property relationships (Chander and Vijaya, 2021; Tshitoyan 

et al., 2019). 
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Recent efforts have also focused on coupling ML with active 

learning frameworks where models are continuously refined 

through feedback from new experiments or simulations. This 

iterative process has led to the discovery of novel doped 

perovskites and heterostructures with enhanced light 

absorption and charge separation capabilities (yang et al., 

2021). Moreover, generative models such as variational 

autoencoders and generative adversarial networks are being 

explored to design new hypothetical perovskite compositions 

for tailored application. 

Also, explainable AI techniques are gaining attention in 

perovskite photocatalysis to ensure that predictions are 

interpretable and scientifically grounded. By quantifying 

feature importance and identifying causal relationships, 

researchers can better understand why a particular 

composition or phase yields high HER performance (Doshi-

Velez & Kim, 2017). AI/ML approaches are not just tools for 

prediction but are becoming integral to the rational design of 

next-generation perovskite photocatalysts. When combined 

with first-principles methods and experimental validation, 

they pave the way for data-driven discovery and rapid 

advancement of sustainable hydrogen production 

technologies. 

 

Challenges, Limitations, and Future Directions 

Despite the tremendous potential of phase-tuned perovskites 

for hydrogen evolution, several critical challenges remain. 

The table below provides a summary of the challenges, along 

with their corresponding implications and proposed solutions 

 

Table 2: Challenges, Implication and Proposed Solutions  

Challenges Implication Proposed Solution 

Lack of standardized ML datasets Limits model generalization Create shared benchmarking datasets 

for perovskite-HER research 

Poor phase stability under HER 

conditions 

Short catalyst lifetimes Develop hybrid phase systems with 

protective oxide layers 

Overfitting in ANN/CNN models Misleading performance metrics Apply dropout, cross-validation, and 

model explainability tools 

Difficulty in doping control during 

synthesis 

Limits reproducibility Use ML to predict optimal synthesis 

condition (e.g temperature, pH, etc.) 

Disconnect between ML and 

fabrication 

Slows experimental translation Encourage collaborative ML-materials 

labs: include fabrication data in 

training 

Lack of environmental impact 

analysis 

Risk of toxic byproducts or unstable 

materials 

Prioritizing lifecycle assessment 

during ML-based material selection 

 

CONCLUSION 

This review has synthesized the current state of research on 

phase-tuned perovskite materials for efficient hydrogen 

evolution reactions (HER), highlighting the synergy between 

phase engineering and machine learning (ML). The key 

contributions of this paper include the identification of phase 

engineering strategies that enhance HER performance in 

perovskite materials, the discussion of ML's role in 

accelerating the discovery of efficient HER catalysts and 

optimizing phase-tuned perovskites and finally, the outline of 

challenges and opportunities in scaling up synthesis methods 

and integrating phase-engineered perovskites into practical 

devices 

 

Future Research Directions 

To advance the field, future research should prioritize better 

data curation, development of explainable ML techniques, 

and scale-up synthesis methods. High-quality, standardized 

datasets are essential for training ML models and predicting 

HER performance. Explainable ML can uncover underlying 

structure-property relationships, improving model 

interpretability. Cost-effective, high-throughput synthesis 

methods are crucial for scaling up phase-engineered 

perovskites. 

 

Limitations of the Review 

This review has several limitations, including a focus on 

theoretical and computational studies, limited discussion of 

experimental data, and a regional bias towards research 

conducted in specific geographic areas. Future reviews could 

benefit from a more comprehensive inclusion of experimental 

studies and a broader geographic scope. 

By addressing these challenges and pursuing future research 

directions, we can accelerate the development of efficient, 

scalable, and sustainable HER systems based on phase-tuned 

perovskite materials. 
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