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ABSTRACT 

Partial Volterra integro-differential equations are equations that mix partial derivatives with Volterra-type 

integral terms, representing process where the current state depends on both local changes and the accumulated 

history. This study presents a numerical method for solving two-dimensional Partial Volterra Integro 

Differential Equations (PVIDEs) using a polynomial collocation with matrix formulation. The original integro-

differential equation is first reformulated into a continuous time-integrated form through the Fundamental 

Theorem of Calculus (FTC). This reformulated equation is then discretized on a hybrid space-time collocation 

grid. A polynomial collocation scheme is constructed using standard basis functions over the grid points to 

transform the problem into a solvable system of algebraic equations. The method incorporates consistent 

numerical quadrature for time-integration of the nonlinear kernel ensuring computational efficiency through 

matrix formulation. Theoretical analysis demonstrates the method's consistency, stability, and convergence 

using Lax-Richtmyer equivalence theorem and discrete Grönwall inequality. Numerical examples including 

both linear and nonlinear 2D PVIDEs implemented in MATLAB confirm the validity and accuracy of the 

method. The approach gives a close form solution, which show its consistency, stability and accuracy. This 

approach offers a robust and efficient solution of 2D PVIDEs, extending the applicability of polynomial 

collocation methods to integro differential equations. 

 

Keywords: Consistency, Stability, Convergence, Numerical Solution, Partial Volterra Integro  

Differential Equations, Polynomial Collocation Method 

 

INTRODUCTION 

Mathematical models that describe the physical, biological, 

and engineering phenomena often result in functional 

equations such as ordinary differential equations (ODEs), 

partial differential equations (PDEs), integral equations, and 

integro-differential equations (IDEs) (Noori & Taghizadeh, 

2020; Adamu, Aduroja & Kefas, 2023). Volterra introduced 

IDEs in 1908 in the study of population dynamics where 

hereditary effects are significant (Volterra, 1982). The general 

form of an IDE is given by:  

𝑢(𝑛)(𝑥) = 𝑓(𝑥) + 𝜆 ∫
𝑞(𝑥)

𝑎
𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡 (1) 

where 𝑓(𝑥) is a continuous function, 𝜆 is a constant, and 

𝑘(𝑥, 𝑡) is the kernel. 

These equations appear in numerous applications including 

fluid dynamics, viscoelasticity, thermal conduction, and 

biological systems (Rahidinia & Tahmasebi, 2012; Osilagun 

et al., 2023; Mohamed & Majid, 2016). PDEs, in particular, 

describe processes involving several independent variables 

and are fundamental in mathematical physics (Ivrii, 2017). 

When memory effects are present, integral terms are 

incorporated, resulting in PVIDEs. 

In this work, we focus on two-dimensional PVIDEs of the 

form:  
∂𝑢(𝑥,𝑡)

∂𝑡
= 𝑔(𝑥, 𝑡) +

∫
𝑥

0 ∫
𝑡

0
𝑘(𝑡, 𝑠, 𝑥, 𝑦)𝑢(𝑠, 𝑦)𝑑𝑦𝑑𝑠,   𝑥, 𝑡 ∈ [0,1] (2) 

with initial condition:  

𝑢(𝑥, 0) = 𝑢0(𝑥)    (3) 

where 𝑘(𝑡, 𝑠, 𝑥, 𝑦) is a given kernel and 𝑔(𝑥, 𝑡) is the source 

term. 

PVIDEs such as equation (2) are used in modeling diffusion 

processes with memory, reaction diffusion systems, and 

epidemic modeling (Zhao & Zhao, 2021; Pachpatte, 2011). 

While one-dimensional PVIDEs have been tackled with 

various numerical methods, two-dimensional cases have seen 

fewer investigations. Prior works include Euler backward 

schemes (Soliman et al., 2012), Laplace transform methods 

(Zhao & Zhao, 2021), and finite difference methods (Sameeh 

& Elsaid, 2016). Rostami and Maleknejad (2022a, 2022b) 

introduced operational matrix-based methods utilizing two-

dimensional hybrid Taylor polynomials and block-pulse 

functions, demonstrating high accuracy in solving two-

dimensional nonlinear mixed Volterra Fredholm partial 

integro differential equations with initial conditions. 

Recent efforts have continued to enhance both computational 

efficiency and solution accuracy for various classes of 

integro-differential equations. Osilagun et al. (2023) proposed 

a polynomial collocation method for the initial value problem 

of mixed integro-differential equations. Adesanya et al. 

(2024) developed an approximate solution approach for high-

order linear Fredholm integro-differential difference 

equations with variable coefficients, employing the Legendre 

collocation method. In a related contribution, Otaide and 

Oluwayemi (2024) addressed linear Volterra integro-

differential equations using a combination of fourth-kind 

Chebyshev polynomials and the variational iteration 

algorithm integrated with collocation techniques. 

Furthermore, Eashel et al. (2025) conducted a convergence 

analysis of a multi-step collocation method for first-order 

Volterra integro-differential equations with non-vanishing 

delay. Tedjani et al. (2025) adopted an operational approach 

for solving one- and two-dimensional high-order multi-

pantograph Volterra integro-differential equations. Similarly, 

Mahdy et al. (2023) presented computational strategies for 

handling higher-order (1+1) - dimensional mixed difference 

integro differential equations with variable coefficients. 

The polynomial collocation method approximates the 
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solution 𝑢(𝑥, 𝑡) by a combination of basis functions 𝜑𝑖(𝑥) 

and 𝛾𝑗(𝑡) as:  

𝑢(𝑥, 𝑡) ≈ ∑𝑛
𝑖=0 ∑𝑚

𝑗=0 𝐶𝑖𝑗𝜑𝑖(𝑥)𝛾𝑗(𝑡) (4) 

The equation is enforced at selected collocation points 

resulting in a solvable algebraic system (Chen, 2017; Adamu, 

Aduroja & Kefas, 2023). This study extends the polynomial 

collocation method to solve 2D PVIDEs, offering high 

accuracy, stability, and applicability to complex kernel 

structures. 

The use of a polynomial matrix based collocation method 

aligns with modern approaches that emphasize both 

computational simplicity and robustness. This method avoids 

the need for direct multiple integration by transforming the 

problem into an algebraic system. Our approach builds on 

Brunner's (2017) recommendation of spectral methods for 

smooth solutions and leverages Zhao and Zhao's (2021) 

observation that structured grid-based collocation offers a 

feasible trade-off between accuracy and speed in two-

dimensional memory-dependent systems. 

 

Preliminaries 

Definition (Lipschitz Continuity) 

A function 𝑓  :   𝐷 ⊂ 𝑅𝑛 → 𝑅 is said to satisfy a Lipschitz 

condition (or is Lipschitz continuous) on a domain 𝐷 if there 

exists a constant 𝐿 > 0 such that for all 𝑥, 𝑦 ∈ 𝐷 
|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿|𝑥 − 𝑦|.    

The constant 𝐿 is called the Lipschitz constant (Burden & 

Faires, 2011; Evans, 2010). 

 

Theorem (Lax-Richtmyer Equivalence Theorem) 

For a well-posed initial value problem and a consistent 

difference scheme approximating it, stability is a necessary 

and sufficient condition for convergence (Lax & Richtmyer, 

1956). 

 

Theorem (Discrete Gronwall Inequality) 

Let {𝑎𝑛}, {𝑏𝑛} and {𝑐𝑛} be sequence of non-negative real 

numbers. If  

𝑎𝑛 ≤ 𝑏𝑛 + ∑

𝑛−1

𝑚=0

𝑏𝑚𝑐𝑚 𝑒𝑥𝑝 ( ∑

𝑛−1

𝑘=𝑚+1

𝑐𝑘) , for all 𝑛 ≥ 0. 

In particular, if 𝑏𝑛 = 𝐵 ≥ 0 and 𝑐𝑛 ≥ 0 are constant, then 

𝑎𝑛 ≤ 𝐵 𝑒𝑥𝑝(𝑐𝑛) , for all 𝑛 ≥ 0.  

See (Hundsdorfer & Verwer, 2003; Thomas, 1995). 

 

MATERIALS AND METHODS 

To integrate partial derivative of the definite integral of 

equation (2) with respect to 𝑡 from 0 to 𝑡, the principle of the 

Fundamental Theorem of Calculus is (Anton, Bivens & 

Davis, 2015) applied to the left hand side of equation (2) to 

have  

∫
𝑡

0

∂𝑢(𝑥,𝜉)

∂𝜉
∂𝜉 = 𝑢(𝑥, 𝑡) − 𝑢(𝑥, 0)    

Now the complete integration of equation (2) is  

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + ∫
𝑡

0
𝑔(𝑥, 𝜉)𝑑𝜉 +

∫
𝑡

0
{∫

𝑥

0 ∫
𝜉

0
𝑘(𝜉, 𝑠, 𝑥, 𝑦)𝑓(𝑢(𝑠, 𝑦))𝑑𝑦𝑑𝑠} 𝑑𝜉  

     (5) 

Since 𝑠 ∈ [0, 𝜉], 𝜉 ∈ [𝑠, 𝑡], we can rewrite the triple integral 

as 

∫
𝑡

0 ∫
𝑥

0 ∫
𝜉

0
𝑘(𝜉, 𝑠, 𝑥, 𝑦)𝑓(𝑢(𝑠, 𝑦))𝑑𝑦𝑑𝑠𝑑𝜉 =

∫
𝑥

0 ∫
𝑡

0 ∫
𝑡

𝑠
𝑘(𝜉, 𝑠, 𝑥, 𝑦)𝑑𝜉. 𝑓(𝑢(𝑠, 𝑦))𝑑𝑠𝑑𝑦  

 

Now equation (5) becomes  

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + ∫
𝑡

0
𝑔(𝑥, 𝜉)𝑑𝜉 +

∫
𝑥

0
∫

𝑡

0
{∫

𝑡

𝑠
𝑘(𝜉, 𝑠, 𝑥, 𝑦)𝑑𝜉} . 𝑓(𝑢(𝑠, 𝑦))𝑑𝑠𝑑𝑦 

     (6) 

which is the continuous time-integrated form of equation (2). 

Now constructing a discretization method using a uniform 

hybrid grid of collocation points in both space and time, 

consider (6). Assume the spatial domain is 𝑥 ∈ [0, 𝑋], and 

time is 𝑡 ∈ [0, 𝑇].  

Let 𝑥𝑖 = 𝑖. Δ𝑥 where Δ𝑥 =
𝑋

𝑁𝑥−1
, 𝑖 = 0,1,2, . . . , 𝑁𝑥 − 1, 𝑡𝑛 =

𝑛. Δ𝑡  where Δ𝑡 =
𝑇

𝑁𝑡−1
, 𝑛 = 0,1,2, . . . , 𝑁𝑡 − 1.  

Let the collocation points be the Cartesian product of a subset 

of space-time grid points, i.e. choose 𝑁𝑐 collocation point 
(𝑥𝑖 , 𝑡𝑛) where  𝑖, 𝑛 ∈ {0,1,2, . . . , 𝑁𝑥 − 1} × {0,1,2, . . . , 𝑁𝑡 −
1}. 𝐼𝑐 can be defined based on desired resolution or 

application. 

Consider these Discretized variables:𝑢𝑖,𝑛 ≈ 𝑢(𝑥𝑖 , 𝑡𝑛)at each 

collocation point, 𝑔𝑖,𝑛 = 𝑔(𝑥𝑖 , 𝑡𝑛), 𝑓𝑗,𝑚 = 𝑓(𝑢𝑗,𝑚), 𝐾𝑛,𝑚,𝑖,𝑗 ≈

∫
𝑡𝑛

𝑠𝑚
𝑘(𝜉, 𝑠𝑚, 𝑥𝑖 , 𝑦𝑗)𝑑𝜉 - Computed numerically. 

Therefore, the Discrete Time-Integration Equation is  

𝑢𝑖,𝑛 = 𝑢𝑖,0 + Δ𝑡 ∑𝑛
𝑚=0 𝑔𝑖,𝑚 +

Δ𝑥Δ𝑡 ∑𝑖
𝑗=0 ∑𝑛

𝑚=0 𝐾𝑛,𝑚,𝑖,𝑗 . 𝑓(𝑢𝑗,𝑚)  (7) 

Now the matrix form at the collocation points is  

u𝑖,𝑛 = u𝑖,0 + Δ𝑡 ∑𝑛
𝑚=0 g𝑖,𝑚 +

Δ𝑥Δ𝑡 ∑𝑖
𝑗=0 ∑𝑛

𝑚=0 K𝑛,𝑚,𝑖,𝑗 . 𝑓(u𝑗,𝑚)  (8) 

where u𝑖,𝑛 is the solution at collocation points, u𝑖,0 is the 

initial condition, g𝑖,𝑚 is the source term, and K𝑛,𝑚,𝑖,𝑗  is the 

kernel weights. 

The variable 𝑥 represents the spatial collocation points: This 

generates 𝑁𝑥 points evenly distributed between 0 and 1. These 

points serve as the locations where the solution 𝑢(𝑥, 𝑡) is 

evaluated. The variable 𝑡 represents the temporal collocation 

points: This generates 𝑁𝑡 points evenly distributed between 0 

and 1, indicating the times at which the solution is computed. 

 

Convergence Analysis of the Discrete Time-Integrated 

Scheme 

Assumptions: 

Let ℎ  : = 𝑚𝑎𝑥{Δ𝑥,Δ𝑡}. We make the following 

assumptions: 

(A1) The functions 𝑔(𝑥, 𝑡), 𝑘(𝜉, 𝑠, 𝑥, 𝑦), and 𝑢(𝑥, 𝑡) are 

continuous and sufficiently smooth. 

(A2) The nonlinearity 𝑓: 𝑅 → 𝑅 is Lipschitz continuous with 

constant 𝐿 > 0. 

(A3) The kernel integral is uniformly bounded:  

|∫
𝑡

𝑠

𝑘(𝜉, 𝑠, 𝑥, 𝑦)𝑑𝜉| ≤ 𝑀  ∀(𝑥, 𝑦, 𝑠, 𝑡) ∈ [0, 𝑋]2 × [0, 𝑇]2 

 

Consistency of the Discrete Time-Integrated Scheme 

Lemma 1 (Consistency). Let 𝑢(𝑥, 𝑡) be the exact solution to 

equation (2). Then the local truncation error 𝜏𝑖,𝑛 defined by  

 

𝜏𝑖,𝑛  : = 𝑢(𝑥𝑖 , 𝑡𝑛) − (𝑢(𝑥𝑖 , 0) + Δ𝑡 ∑𝑛
𝑚=0 𝑔(𝑥𝑖 , 𝑡𝑚) + Δ𝑥Δ𝑡 ∑𝑖

𝑗=0 ∑𝑛
𝑚=0 𝐾𝑛,𝑚,𝑖,𝑗𝑓(𝑢(𝑥𝑗 , 𝑡𝑚)))  

satisfies |𝜏𝑖,𝑛| = O(ℎ).  

Proof: Define Local Truncation Error 𝜏𝑖,𝑛 as 

𝜏𝑖,𝑛 = 𝑢(𝑥𝑖 , 𝑡𝑛) − (𝑢(𝑥𝑖 , 0) + Δ𝑡 ∑𝑛
𝑚=0 𝑔(𝑥𝑖 , 𝑡𝑚) + Δ𝑥Δ𝑡 ∑𝑖

𝑗=0 ∑𝑛
𝑚=0 𝐾𝑛,𝑚,𝑖,𝑗𝑓(𝑢(𝑥𝑗 , 𝑡𝑚))).  
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Analysing each term of 𝜏𝑖,𝑛  

We approximate ∫
𝑡

0
𝑔(𝑥, 𝜉)𝑑𝜉 using the composite 

trapezoidal or midpoint rule: 

∫
𝑡𝑛

0
𝑔(𝑥𝑖 , 𝜉)𝑑𝜉?Δ𝑡 ∑𝑛

𝑚=0 𝑔(𝑥𝑖 , 𝑡𝑚) + 𝑂(Δ𝑡𝑝)  

with 𝑝 = 2 for trapezoidal rule, and the truncation error is 

𝑂(Δ𝑡𝑝).  
The triple integral 

∫
𝑥

0 ∫
𝑡𝑛

0
(∫

𝑡𝑛

𝑠
𝑘(𝜉, 𝑠, 𝑥, 𝑦)𝑑𝜉) 𝑓(𝑢(𝑠, 𝑦))𝑑𝑠𝑑𝑦  

is approximated by 

Δ𝑥Δ𝑡 ∑𝑖
𝑗=0 ∑𝑛

𝑚=0 𝐾𝑛,𝑚,𝑖,𝑗𝑓(𝑢(𝑥𝑗 , 𝑡𝑚)) + 𝑂(Δ𝑡𝑞 +

Δ𝑡𝑟).where 𝑞 and 𝑟 are the orders of the error terms. 

The truncation error terms: 

i. The integral ∫
𝑥

0
𝑑𝑦 is approximated using quadrature 

rule that introduces error of order 𝑂(Δ𝑡𝑞).  

ii. Similarly, the integral ∫
𝑡

0
𝑑𝑠 is approximated and 

introduces an error of order  𝑂(Δ𝑡𝑟). 

iii.  The integral ∫
𝑥

0
𝑘(⋅)𝑑𝜉 is also evaluated using 

quadrature of known accuracy order. 

So total local truncation error from this terms is 

𝜏𝑖,𝑛 = 𝑂(Δ𝑡𝑞 + Δ𝑡𝑟)  

which satisfies 𝑙𝑖𝑚
Δ𝑥Δ𝑡→0

𝜏𝑖,𝑛 = 0. 

Hence the proof. 

 

Stability of the Discrete Time-Integrated Scheme 

Lemma 2 (Stability). Let 𝑢𝑖,𝑛 and 𝑢̃𝑖,𝑛 be numerical solutions 

corresponding to different initial data with difference 𝜀𝑖,𝑛  : =
𝑢𝑖,𝑛 − 𝑢̃𝑖,𝑛. Then:  

|𝜀𝑖,𝑛| ≤ 𝐶𝑒𝜆𝑡𝑛𝑚𝑎𝑥

𝑗,𝑚

|𝜀𝑗,𝑚|  

for constants 𝐶, 𝜆 > 0 depending on 𝐿, 𝑀, 𝑇, and ℎ . 

Proof: We want to show the small changes in input (initial 

data or source data) lead to small changes in output. Let 𝑢𝑖,𝑛 

and 𝑢̃𝑖,𝑛 be numerical solutions to the same problem with 

possibly different initial data or perturbed values. 

The error is the difference between analytical solution and the 

approximate solution given as 

𝜀𝑖,𝑛 = 𝑢𝑖,𝑛 − 𝑢̃𝑖,𝑛 

From (8), the difference gives 

𝜀𝑖,𝑛 = 𝑢𝑖,0 − 𝑢̃𝑖,0 + Δ𝑡 ∑𝑛
𝑚=0 (𝑔𝑖,𝑚 − 𝑔̃𝑖,𝑚) +

Δ𝑥Δ𝑡 ∑𝑖
𝑗=0 ∑𝑛

𝑚=0 𝐾𝑛,𝑚,𝑖,𝑗[𝑓(𝑢𝑗,𝑚) − 𝑓(𝑢̃𝑗,𝑚)]  

 Assume 𝑢𝑖,0 = 𝑢̃𝑖,0 and  𝑔𝑖,𝑚 = 𝑔̃𝑖,𝑚  i.e. only 

nonlinearity 𝑓(𝑢) is causing deviation. Then 

𝜀𝑖,𝑛 = Δ𝑥Δ𝑡 ∑𝑖
𝑗=0 ∑𝑛

𝑚=0 𝐾𝑛,𝑚,𝑖,𝑗[𝑓(𝑢𝑗,𝑚) − 𝑓(𝑢̃𝑗,𝑚)].  

Using Lipschitz property of 𝑓 : Assume 𝑓 is Lipschitz with 

constant 𝐿 > 0, i.e. 
|𝑓(𝑢) − 𝑓(𝑢̃)| ≤ 𝐿|𝑢 − 𝑢̃|.  

Then  

|𝜀𝑖,𝑛| = Δ𝑥Δ𝑡 ∑𝑖
𝑗=0 ∑𝑛

𝑚=0 |𝐾𝑛,𝑚,𝑖,𝑗| ⋅ 𝐿|𝜀𝑗,𝑚|.  

Let 

𝑀 = 𝑚𝑎𝑥|𝐾𝑛,𝑚,𝑖,𝑗|  

Then  

|𝜀𝑖,𝑛| = 𝐿𝑀Δ𝑥Δ𝑡 ∑𝑖
𝑗=0 ∑𝑛

𝑚=0 |𝜀𝑗,𝑚|.  

Let 𝐶 = 𝐿𝑀, then 

|𝜀𝑖,𝑛| = 𝐶Δ𝑥Δ𝑡 ∑𝑖
𝑗=0 ∑𝑛

𝑚=0 |𝜀𝑗,𝑚|.  

Applying Discrete Gronwall's Inequality, let  

𝐸𝑛 = 𝑚𝑎𝑥
𝑖

|𝜀𝑖,𝑛|  

then 

𝐸𝑛 ≤ 𝐶Δ𝑥Δ𝑡 ∑𝑛
𝑚=0 ∑𝑁𝑥

𝑗=0 𝐸𝑚 = 𝐶Δ𝑥𝑁𝑥Δ𝑡 ∑𝑛
𝑚=0 𝐸𝑚  

Let 𝐶1 ≤ 𝐶Δ𝑥𝑁𝑥  

𝐸𝑛 ≤ 𝐶1Δ𝑡 ∑𝑛
𝑚=0 𝐸𝑚.  

This is a discrete form of Gronwall's inequality. If 𝐸0 = 0, it 

implies 𝐸𝑛 = 0 (stability). If 𝐸0 ≠ 0 then 

𝐸𝑛 ≤ 𝐸0𝑒𝐶1𝑡𝑛 .  

The error at time step 𝑛 grows at most exponentially in time. 

Hence, the method is stable under Lipschitz nonlinearity. 

 

Convergence of the Discrete Time-Integrated Scheme 

Theorem (Convergence). Under assumptions (A1) - (A3), the 

discrete scheme (8) is consistent and stable. Therefore, the 

numerical solution 𝑢𝑖,𝑛 converges to the exact solution 

𝑢(𝑥𝑖 , 𝑡𝑛) at the collocation points with first-order accuracy:  

𝑚𝑎𝑥

𝑖,𝑛

|𝑢(𝑥𝑖 , 𝑡𝑛) − 𝑢𝑖,𝑛| ≤ 𝐶ℎ → 0  as ℎ → 0  

Proof: This follows from the standard Lax-Richtmyer 

Equivalence Theorem: consistency plus stability implies 

convergence. 

 

RESULTS AND DISCUSSION 

In this section, numerical examples are used to illustrate the 

new concept, efficiency, accuracy and simplicity of the new 

method. Let 𝑢𝑁(𝑡) and 𝑢(𝑡) be the approximate and 

numerical solution respectively, then 𝑎𝑏𝑠 − 𝑒𝑁 = |𝑢𝑁(𝑡) −
𝑢(𝑡)| is the absolute error of 𝑁. All numerical solutions are 

presented in a figure. All computations in this section are 

performed using MATLAB. For all the examples, initial 

condition problems are considered. 

Example 1 (Hussain et al., 2016): Consider the linear partial 

integro differential two dimensional equation 
∂𝑢(𝑥,𝑡)

∂𝑡
= 𝑥 +

𝑡𝑥(𝑡−𝑥)

6
(𝑡𝑥 + 3) + ∫

𝑥

0 ∫
𝑡

0
(𝑠 −

𝑦)𝑢(𝑠, 𝑦)𝑑𝑦𝑑𝑠, (𝑥, 𝑡) ∈ [0,1] × [0,1]  

with initial condition  

𝑢(𝑥, 0) = 1,0 ≤ 𝑥 ≤ 1  

and exact solution  

𝑢(𝑥, 𝑡) = 1 + 𝑥𝑡.  
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Figure 1: Results and Absolute Error 

 

Table 1: Numerical Results for Example 1 

Spatial point Time point Exact Hussain et al., (2016) Numerical Result Error 

0.00 0.00 1 1 1 0 

0.00 0.50 1 1 1 0 

0.00 1.00 1 1 1 0 

0.25 0.00 1 1 1 0 

0.25 0.50 1.125 1.125 1.125 0 

0.25 1.00 1.25 1.25 1.25 0 

0.50 0.00 1 1 1 0 

0.50 0.50 1.25 1.25 1.25 0 

0.50 1.00 1.5 1.5 1.5 0 

0.75 0.00 1 1 1 0 

0.75 0.50 1.375 1.375 1.375 0 

0.75 1.00 1.75 1.75 1.75 0 

1.00 0.00 1 1 1 0 

1.00 0.50 1.5 1.5 1.5 0 

1.00 1.00 2 2 2 0 

 

Figure 1 presents the depict the 3D numerical results for the 

approximate and exact solutions for different values of 𝑥 and 

t between 0 and 1, as well as the absolute error. Table 1 clearly 

show that this approach approximates to zero just like that of 

(Hussain et al., 2016). 

Example 2 (Hussain et al., 2016): Consider the nonlinear 

partial two dimensional integro differential equation 

∂𝑢(𝑥,𝑡)

∂𝑡
= 𝑥 −

𝑡2𝑥2

36
(4𝑡𝑥 + 9) + ∫

𝑥

0 ∫
𝑡

0
[𝑠𝑦 +

𝑢2(𝑠, 𝑦)]𝑑𝑦𝑑𝑠, (𝑥, 𝑡) ∈ [0,1] × [0,1]  

with initial condition  

𝑢(𝑥, 0) = 1,0 ≤ 𝑥 ≤ 1   

and exact solution  

𝑢(𝑥, 𝑡) = 𝑥𝑡.  
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Figure 2: Results and Absolute Error 

 

Table 2: Result of Example 2 

Spatial point Time point Exact Hussain et al., 2016 Numerical Error 

0.00 0.00 0 0 0 0 

0.00 0.50 0 0 0 0 

0.00 1.00 0 0 0 0 

0.25 0.00 0 0 0 0 

0.25 0.50 0.125 0.125 0.125 0 

0.25 1.00 0.25 0.25 0.25 0 

0.50 0.00 0 0 0 0 

0.50 0.50 0.25 0.25 0.25 0 

0.50 1.00 0.5 0.5 0.5 0 

0.75 0.00 0 0 0 0 

0.75 0.50 0.375 0.375 0.375 0 

0.75 1.00 0.75 0.75 0.75 0 

1.00 0.00 0 0 0 0 

1.00 0.50 0.5 0.5 0.5 0 

1.00 1.00 1 1 1 0 

 

Figure 2 presents the 3D numerical view of the results for the 

approximate and exact solutions for different values of 𝑥 and 

t between 0 and 1, and also the absolute error. Table 2 clearly 

show that this approach approximates to zero just like that of 

(Hussain et al., 2016). 

 

CONCLUSION 

In this research, a polynomial collocation method was 

developed for the numerical solution of two-dimensional 

Partial Volterra Integro-Differential Equations (PVIDEs). 

The method involved transforming the integro-differential 

problem into a continuous time-integrated formulation, which 

was then discretized using a structured hybrid grid of 

collocation points in both space and time. This discretization 

allowed the conversion of the continuous model into a system 

of algebraic equations, efficiently handled via MATLAB 

implementation. 

The theoretical analysis confirmed the method's consistency, 

ensuring that the numerical formulation accurately reflects the 

original mathematical structure of the PVIDEs. The stability 

of the scheme was also proven under the assumption of a 

Lipschitz continuous nonlinearity and bounded kernel, 

thereby confirming that errors do not amplify as the mesh is 

refined. The convergence of the approximate solution to the 

exact solution was shown using the Lax-Richtmyer 

equivalence theorem and the discrete Grönwall inequality. 

The results presented shows that, the method is reliable, 

offering accurate approximations as the grid becomes finer. 

The scheme is robust, making it suitable for simulating 

physical processes governed by memory effects, such as heat 

conduction and population dynamics. The convergence 

behaviour ensures that increasing spatial and temporal 

resolutions leads to improved numerical accuracy, which 

justifies its adoption in scientific and engineering 

applications. 

Overall, the polynomial collocation method is simple to 

implement, computationally efficient, and highly accurate. It 

avoids restrictive transformations and preserves the physical 
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behaviour of the original problem. Numerical experiments 

validated the performance of the method by showing excellent 

agreement between the exact and approximate solutions. This 

work adds a powerful and reliable numerical approach for 

solving Volterra-type PVIDEs, offering a promising tool for 

future modeling of real-world dynamical systems with 

memory.  
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