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ABSTRACT 

A potent tool for simulating models of physical, biological, and dynamic processes is well described by 

Fractional Partial Differential Equations (FPDE), which is due to their memory effect and non-local properties. 

The present study applies the Fractional Reduced Differential Transform Method (FRDTM), a semi-analytical 

technique, to solve Fractional Partial Differential Equations (FPDEs) relevant to advection-diffusion models. 

The study modifies an existing integer-order model by introducing fractional derivatives and analyzes the 

influence of these fractional parameters. The FRDTM is validated through comparison with the Fractional 

Variational Iteration Method (FVIM), thereby demonstrating its accuracy and computational efficiency. Results 

show that FRDTM performs well in finding an approximate solution for long-time simulations, especially at 

fractional order α < 1, and is preferable for high accuracy and low computational error, particularly for 

Advection-Diffusion problems. 
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INTRODUCTION 

Fractional Partial Differential Equations (FPDEs) are 

generalizations of classical integral-order Partial Differential 

Equations, providing some degree of freedom in varying the 

rate of change of physical, biological, and dynamic processes 

(Meerschaert and Tadjeran, 2006). Models of Physical, 

biological, and dynamic processes are well described by 

fractional partial differential equations due to their non-local 

properties than the corresponding integer-order partial 

differential equations (Yadav et al., 2022), in which their 

recent data depends completely on the data of the past time. 

There are several fractional derivative operators used in 

defining the FPDEs, such as the Riemann-Liouville Fractional 

Derivative, the Caputo Fractional Derivative, the Gruunwald-

Letnikov Fractional Derivative, and the Riesz Fractional 

Derivative (Li and Zeng, 2015). The Caputo Fractional Partial 

Derivatives allow for the natural interpretation of initial and 

boundary value problems. It is also useful in describing 

complex systems where the current state depends on the entire 

history of the system. The Caputo Fractional Partial derivative 

operator of order 𝛼 of a function 𝑢(𝑥, 𝑡)with respect to time 𝑡 
is defined as 

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
 =

1

Γ(1−α)
∫

𝜕𝑢(𝜏,𝑡)

𝜕𝜏
)

(𝑡−𝜏)𝛼−𝑛+1
 𝑑τ,    0 < 𝛼 ≤ 1

𝑡

𝑎
  

where  
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
 is the Caputo fractional derivative of order 0 <

𝛼 ≤ 1  and Γ(. ) is the gamma function. 

In recent years, the Caputo Fractional Partial Differential 

Equations (FPDEs) have been applied to model the dynamic 

behavior of so many physical phenomena, such as in Blood 

flow (Bansi et al., 2018), Biochemical reaction model (Akugl 

and Khoshnaw, 2019), Ebola epidemic model (Area et al., 

2015), economic growth model (Muhamad et al., 2021), 

filtration-consolidation processes (Bohaienko and 

Bulavatsky, 2020), and many more. 

Despite their potential, most Caputo fractional partial 

differential equations lack exact analytical solutions, 

requiring efficient numerical methods. Recent studies have 

explored various numerical schemes such as the Fractional 

Finite Element Method (Amattouch et al., (2023), the 

Fractional Differential Transform Method (Arikoglu and 

Ozkol, 2007), the Fractional Finite Difference Method ( Guo 

et al., 2020), the Laplace Adomian Fractional Decomposition 

Method (Jafari et al., 2011), the Fractional Reduced 

Differential Transform Method (Keskin and Oturanc, 2010), 

the Natural Homotopy Perturbation Method (Maitama and 

Abdullahi, 2016), the Fractional Variational Iteration Method 

(VIM) (Singh and Kumar, 2017). Nevertheless, many of these 

approaches involve linearization, discretization, or 

perturbation techniques, which may reduce accuracy or 

increase computational cost. 

The Fractional Reduced Differential Transform Method 

(FRDTM) has gained attention for its ability to handle 

nonlinearities and complex boundary conditions efficiently. 

The FRDTM is an extension of the Reduced Differential 

Transform Method modified by incorporating fractional 

derivatives (Keskin and Oturan, 2010). The solution is 

obtained as a convergent series and validated by comparing 

the result obtained with the results from existing methods 

such as the Fractional Variational Iteration Method (FVIM). 

FRDTM doesn't require dividing the problem domain into 

small intervals or linearizing the equations, and it provides 

solutions in the form of rapidly convergent series (Al-rabtah, 

2021). FRDTM applies the fractional transform in the Caputo 

sense to handle initial value problems directly, and this 

method is implemented by first transforming the original 

fractional partial differential equation into an algebraic 

equation in the transformed domain using the fractional 

differential transform. Secondly, the transformed equation is 

then solved using algebraic manipulations, and finally, the 

inverse transformation is applied to obtain the solution in the 

original domain, which is easily programmable in symbolic 

software like Maple or Mathematica. FRDTM has been 

successfully applied to a wide range of models such as 

Biological population model (Srivastava et al, 2020), 

homogeneous case of gas dynamics equations (Keskin and 

Oturan, 2010), diffusion model (Kenea, 2018), oil pollution 

in the water (Patel et al., 2023) and mutualism model 

(Abdallah, M. A. and Ishag, 2023). 

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 9 No. 10, October, 2025, pp 36 – 43 

DOI: https://doi.org/10.33003/fjs-2025-0910-3850   

mailto:lucyblex1@gmail.com
https://doi.org/10.33003/fjs-2025-0910-3850


A SEMI-ANALYTICAL SOLUTION TO…      Ogunfiditimi and Akogwu FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 36 – 43 37 

 In this study, we aimed to create the fractional order partial 

differential equation equivalent of the non-steady state salt 

solute transport by replacing it with the Caputo fractional 

derivative. The FPDE will be solved using the Fractional 

Reduced Differential Transform Method (FRDTM). To show 

the reliability and accuracy of the FRDTM, the result obtained 

will be compared with that of the Fractional Variational 

Iteration Method (FVIM), and we will also analyze the effect 

of the various values of the fractional order𝛼. 

 

MATERIALS AND METHODS 

Considered the integer order partial differential equation of a 

non-steady states salt transport equation, 
𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
− 𝑣

𝜕𝑢

𝜕𝑥
, (𝑥, 𝑡) ∈ (0,1) × (0, 𝑇) (1) 

Subject to the initial and boundary conditions 

𝑢(𝑥, 0) = 𝑒−𝑥 ,     𝑥 ∈ [0,1]      (2) 

𝑢(0, 𝑡) = 𝑒(𝐷+𝑣)𝑡 ,     𝑡 ∈ [0, 𝑇]   (3) 

𝑢(1, 𝑡) = 𝑒−1+(𝐷+𝑣)𝑡,     𝑡 ∈ [0, 𝑇]      (4) 

  The exact solution is given as  

𝑢(𝑥, 𝑡) = (𝑒−𝑥 + 𝑥 −
𝑥

𝑒
− 1) 𝑒(𝐷+𝑣)𝑡 − (𝑥 −

𝑥

𝑒
− 1)𝑒(𝐷+𝑣)𝑡

     (5) 

where 𝐷 = 0.001 is the diffusion coefficient and 𝑣 = 0.1  is 

the flow velocity. 

We replace the first-order time derivative 
𝜕𝑢

𝜕𝑡
 with the Caputo 

fractional derivative of order 𝛼 in equation (1), then, equation 

(1) becomes, 

𝐷𝑡
𝛼 =

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
= 𝐷

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
− 𝑣

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
,    0 < 𝛼 ≤ 1 , (𝑥, 𝑡) ∈

(0,1) × (0, 𝑇)     (6) 

𝑢(𝑥, 0) = 𝑒−𝑥 ,     𝑥 ∈ [0,1]       (7) 

𝑢(0, 𝑡) = 𝑒(𝐷+𝑣)𝑡 ,     𝑡 ∈ [0, 𝑇]  (8) 

𝑢(1, 𝑡) = 𝑒−1+(𝐷+𝑣)𝑡,     𝑡 ∈ [0, 𝑇]  (9) 

The Fractional Reduced Differential Transform Method 

(FRDTM) is used to solve equation (6).  

 

The Basic Concept of Fractional Reduced Differential 

Transform Method (FRDTM) 

Let  𝑢(𝑥, 𝑡) be a product of two variables, such that  

𝑢(𝑥, 𝑡) = 𝑔(𝑥)ℎ(𝑡)    (10) 

Based on the properties of the fractional differential transform 

method, the function 𝑢(𝑥, 𝑡) is defined as; 

𝑢(𝑥, 𝑡) = ∑ 𝑔(𝑖)𝑥𝑖 × ∑ ℎ(𝑗)𝑡𝑗 = ∑ 𝑈𝑘(𝑥)𝑡
𝑘∞

𝑘=0
∞
𝑗=0

∞
𝑖=0  

     (11) 

where 𝑈𝑘  is the 𝑡-dimensional spectrum function of 𝑢(𝑥, 𝑡) 
Definition 1: According to (Kenea, 2018), If the function 

𝑢(𝑥, 𝑡), is analytical and 𝑘-times continuously differentiable 

with 𝛼𝑡ℎ derivatives with respect to the time 𝑡 and space 𝑥 in 

the domain of interest, then let the Fractional Reduced 

Differential Transform (FRDT) of 𝑢(𝑥, 𝑡), be given as  

𝐹𝑅𝐷𝑇[𝑢(𝑥, 𝑡)] = 𝑈𝑘(𝑥) =
1

Γ(𝑘𝛼+1)
[(𝐷𝑎,𝑡

𝛼 )𝑘(𝑢(𝑥, 𝑡)]
𝑡=𝑡0

  

=  
1

Γ(𝑘𝛼+1)
[
𝜕𝑘𝛼

𝜕𝑡𝑘𝛼
𝑢(𝑥, 𝑡)]

𝑡=𝑡0
,   𝑘 = 0,1.2, … (12) 

where 𝛼 > 0, 𝑡-dimensional spectrum function 𝑈𝑘(𝑥), is the 

transformation function and 𝑢(𝑥, 𝑡) is the original function. 

Definition 2: The differential inverse fractional reduced 

transform of 𝑈𝑘(𝑥), denoted by  𝑢(𝑥, 𝑡) is given by;  

𝐹𝑅𝐷𝑇−1(𝑈𝑘(𝑥)) = 𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)(𝑡 − 𝑡0)
𝑘𝛼∞

𝑘=0  

     (13) 

 Combining equations (11) and (12), we have 

𝑢(𝑥, 𝑡) = ∑
1

Γ(𝑘𝛼+1)
[
𝜕𝑘𝛼

𝜕𝑡𝑘𝛼
𝑢(𝑥, 𝑡)]

𝑡=𝑡0
(𝑡 − 𝑡0)

𝑘𝛼∞
𝑘=0  

     (14) 

Equation(14) shows clearly that the concept of the reduced 

differential transform is derived from the power series 

expansion.The fundamental operations of the fractional 

Reduced Differential Transform Method (FRDTM) (Moosav 

and Taghizadeh, 2020) are tabulated below. 

 

Table 1: The Fundamental Operators of the FRDTM 

S/N Original function Transformed Function 

1 𝑢(𝑥, 𝑡) 𝑈𝑘(𝑥)

=

{
 
 

 
 1

(𝑘 𝛼⁄ )!
[
𝜕
𝑘
𝛼

𝜕𝑡
𝑘
𝛼

𝑢(𝑥, 𝑡)]

𝑡=𝑡0

𝑓𝑜𝑟 𝑘 = 0,1,2,3, . . (𝑚𝛼 − 1)  𝑖𝑓 𝑘 𝛼⁄  ℤ+

0                                         𝑖𝑓 𝑘 𝛼⁄  ∉ ℤ+                                             

 

 

1 𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) ± ℎ(𝑥, 𝑡) 𝑈𝑘(𝑥) = 𝐺𝑘(𝑥) ± 𝐻𝑘(𝑥)   
2 𝑢(𝑥, 𝑡) = 𝑎𝑔(𝑥, 𝑡), where a is a 

constant 

𝑈𝑘(𝑥) = 𝑎𝐺(𝑥) 

3 𝑢(𝑥, 𝑡) =  
𝜕𝑛

𝜕𝑥𝑛
𝑢(𝑥, 𝑡),     𝑈𝑘(𝑥) =  

𝜕𝑛

𝜕𝑥𝑛
𝑈𝑘(𝑥) 

4 
𝑢(𝑥, 𝑡) =

𝜕𝛼𝑛

𝜕𝑡𝛼𝑛
𝑢(𝑥, 𝑡) 

 

   𝑈𝑘(𝑥) =
Γ(𝛼(𝑘 + 𝑛) + 1)

Γ(𝑘𝛼 + 1)
𝑈𝑘(𝑘 + 𝑛),   𝑛 = 1,2,3,… 

5 𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)ℎ(𝑥, 𝑡) 
𝑈𝑘(𝑥) = ∑ 𝐺𝑘(𝑚)𝐻𝑘(𝑘 −𝑚)

𝑘

𝑚=0

 

 

The Implementation of Fractional Reduced Differential 

Transform Method (FRDTM) to Solve the Fractional 

Non-Steady State Salt Transport Equation 

In this section, we apply the Fractional Reduced Differential 

Transform operator FRDT on both sides of equation (6) and 

( 7 − 9), we have, 

𝐹𝑅𝐷𝑇 [
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
] = 𝐹𝑅𝐷𝑇 [𝐷

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
−
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
] ,   0 < 𝛼 ≤ 1 ,

(𝑥, 𝑡) ∈ (0,1) × (0, 𝑇)   (15) 

Applying the operators 3 and 4 in Table 1 to equation, 

equation (6) is transformed to 

 
Γ(α(k+1)+1)

Γ(kα+1)
𝑈𝑘+1(𝑥) = 𝐷

𝜕2𝑈𝑘(𝑥)

𝜕𝑥2
− 𝑣

𝜕𝑈𝑘(𝑥)

𝜕𝑥
  (16) 

or 

𝑈𝑘+1(𝑥) =
Γ(kα+1)

Γ(α(k+1)+1)
(𝐷

𝜕2𝑈𝑘(𝑥))

𝜕𝑥2
− 𝑣

𝜕𝑈𝑘(𝑥)

𝜕𝑥
) (17) 
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The initial and the boundary condition in equation (7 − 8)can 

be transformed by applying 

 operator 1 in Table 1 as follows:  

𝐹𝑅𝐷𝑇[𝑢(𝑥, 0)] = 𝐹𝑅𝐷𝑇[𝑒−𝑥]    (18) 

𝑈0(𝑥) = 𝑒
−𝑥        (19) 

𝐹𝑅𝐷𝑇[𝑢(0, 𝑡)] = 𝐹𝑅𝐷𝑇[𝑒(𝐷+𝑣)𝑡],     𝑡 ∈ [0, 𝑇]   (20) 

𝑈𝑘(0, 𝑡) = 𝑒
(𝐷+𝑣)𝑡    (21) 

𝐹𝑅𝐷𝑇[𝑢(1, 𝑡)] = 𝐹𝑅𝐷𝑇[𝑒−1+(𝐷+𝑣)𝑡],     𝑡 ∈ [0, 𝑇]  

     (22) 

𝑈𝑘(1, 𝑡) = 𝑒
−1+(𝐷+𝑣)𝑡      (23) 

Substituting equation (19) into equation (17), we obtain the 

following 𝑈𝑘+1values successively for 𝑘 = 0,1,2,3,4,…, we 

have, 

𝑓𝑜𝑟 𝑘 = 0  

𝑈0+1(𝑥) =
Γ(0×α+1)

Γ(α(0+1)+1)
(𝐷

𝜕2𝑈0(𝑥)

𝜕𝑥2
− 𝑣

𝜕𝑈0(𝑥)

𝜕𝑥
)  

𝑈1(𝑥) =
Γ(1)

Γ(α+1)
(0.001

𝜕2

𝜕𝑥2
(𝑒−𝑥) − 0.1

𝜕

𝜕𝑥
(𝑒−𝑥))  

𝑈1(𝑥) =
Γ(1)

Γ(α+1)
(0.001 × 𝑒−𝑥 + 0.1 × 𝑒−𝑥)  

𝑈1(𝑥) =
0.101𝑒−𝑥

Γ(α+1)
  

𝑓𝑜𝑟 𝑘 = 1  

𝑈1+1(𝑥) =
Γ(1×α+1)

Γ(α(1+1)+1)
(𝐷

𝜕2𝑈1(𝑥)

𝜕𝑥2
− 𝑣

𝜕𝑈1(𝑥)

𝜕𝑥
)  

𝑈2(𝑥) =
Γ(α+1)

Γ(2α+1)
(0.001

𝜕2

𝜕𝑥2
(
0.101𝑒−𝑥

Γ(α+1)
) − 0.1

𝜕

𝜕𝑥
(
0.101𝑒−𝑥

Γ(α+1)
))  

𝑈2(𝑥) =
1

Γ(2α+1)
(0.001 × 0.101𝑒−𝑥 + 0.1 × 0.101𝑒−𝑥)  

𝑈2(𝑥) =
0.010201𝑒−𝑥

Γ(2α+1)
  

𝑓𝑜𝑟 𝑘 = 2  

𝑈2+1(𝑥) =
Γ(2×α+1)

Γ(α(2+1)+1)
(𝐷

𝜕2𝑈2(𝑥)

𝜕𝑥2
− 𝑣

𝜕𝑈2(𝑥)

𝜕𝑥
)  

𝑈3(𝑥) =
Γ(2α+1)

Γ(3α+1)
(0.001

𝜕2

𝜕𝑥2
(
0.010201𝑒−𝑥

Γ(2α+1)
) − 0.1

𝜕

𝜕𝑥
(
0.010201𝑒−𝑥

Γ(2α+1)
))  

𝑈3(𝑥) =
1

Γ(3α+1)
(0.001 × 0.0102011𝑒−𝑥 + 0.1 × 0.010201𝑒−𝑥)  

𝑈3(𝑥) =
0.001030301𝑒−𝑥

Γ(3α+1)
  

𝑓𝑜𝑟 𝑘 = 3  

𝑈3+1(𝑥) =
Γ(2×α+1)

Γ(α(2+1)+1)
(𝐷

𝜕2𝑈3(𝑥)

𝜕𝑥2
− 𝑣

𝜕𝑈3(𝑥)

𝜕𝑥
)  

𝑈4(𝑥) =
Γ(3α+1)

Γ(4α+1)
(0.001

𝜕2

𝜕𝑥2
(
0.001030301𝑒−𝑥

Γ(3α+1)
) −

0.1
𝜕

𝜕𝑥
(
0.001030301𝑒−𝑥

Γ(3α+1)
))  

𝑈4(𝑥) =
1

Γ(2α+1)
(0.001 × 0.001030301𝑒−𝑥 + 0.1 ×

0.001030301𝑒−𝑥)  

𝑈4(𝑥) =
0.000104060401𝑒−𝑥

Γ(4α+1)
  

⋮ 
Then, using the inverse transformation rule in equation(13), 
the approximate solution of  𝑢(𝑥, 𝑡) is obtained by 

𝑢(𝑥, 𝑡) =  ∑ 𝑈𝑘(𝑥)𝑡
𝑘𝛼 10

𝑘=0 ,     𝑘 = 0, 1, 2, 3, 4  𝑎𝑛𝑑 𝛼 =
0.5,0.7 𝑎𝑛𝑑 1      (24) 

𝑢(𝑥, 𝑡) = 𝑈0(𝑥) + 𝑈1(𝑥)𝑡
𝛼 + 𝑈2(𝑥)𝑡

2𝛼 + 𝑈3(𝑥)𝑡
3𝛼 +

𝑈4(𝑥)𝑡
4𝛼 +⋯  

𝑢(𝑥, 𝑡) = 𝑒−𝑥 +
0.101𝑒−𝑥

Γ(α+1)
𝑡𝛼 +

0.010201𝑒−𝑥

Γ(2α+1)
𝑡2𝛼 +

0.001030301𝑒−𝑥

Γ(3α+1)
𝑡3𝛼 +

0.000104060401𝑒−𝑥

Γ(4α+1)
𝑡4𝛼   

Using Maple21 software, we obtain the approximate solution, 

up to the tenth iteration approximation solution 𝑢(𝑥, 𝑡) ofthe 

Fractional Reduced Differential Transform Method. 

 

Fractional Variational Iterational Method (FVIM) for 

Validation 

To assess the accuracy of FRDTM, the Fractional Variational 

Iteration Method (FVIM) is applied. The FVIM is a semi-

analytical technique based on correction functional and 

Lagrange multipliers (Wu and Lee, 2010; Odibat and 

Momani, 2006). In this study, it is used as a reference method.  

The FVIM correction functional for the time-fractional non-

steady state salt transport equation is given as; 

𝑢𝑘+1(𝑥, 𝑡) = 𝑢𝑘 +
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1 [𝐷

𝜕2𝑢(𝑥,τ)

𝜕𝑥2
−

𝑡

0

𝑣
𝜕𝑢(𝑥,τ)

𝜕𝑥
−
𝜕𝛼𝑢(𝑥,τ)

𝜕τ𝛼
] 𝑑τ   (25) 

where  0 < α ≤ 1 and 𝑢𝑘+1 is the (𝑘 + 1)𝑡ℎ approximation 

produced by the variational iteration correction functional. 

Refer to (Odibat and Momani, 2006) for details on the 

formulation and implementation of FVIM. 

 

RESULTS AND DISCUSSION 

To validate the accuracy of the Fractional Reduced 

Differential Transform Method (FRDTM), a series of 

numerical experiments were conducted by comparing its 

results with those obtained using the Fractional Variational 

Iteration Method (FVIM). The function 𝑢(𝑥, 𝑡)was computed 

for various values of the fractional order 𝛼, while keeping the 

spatial variable fixed at 𝑥 = 0.3 and varying the time 

variable 𝑡[0,10]. The three cases are presented for the 

fractional order𝛼 = 0.2,0.5 and 0.7 respectively. The 

numerical simulation was done using Maple21 software, and 

several interesting observations were made from the 

simulation results. 

 

Table 2: The comparisons between the results obtained by the exact solution, FRDTM, and FVIM solutions 𝒖(𝒙, 𝒕)for 

𝜶 = 𝟏 at𝟎 < 𝒕 ≤ 𝟏𝟎,  𝒂𝒏𝒅 𝟎 < 𝒙 ≤ 𝟏 

𝒙 𝒕 Exact Solution 𝑭𝑹𝑫𝑻𝑴 𝑭𝑽𝑰𝑴 

Absolute error 𝒖(𝒙, 𝒕) 
for 𝜶 = 𝟏 

|𝑬𝒙𝒂𝒄𝒕 − 𝑭𝑹𝑫𝑻𝑴| 

Absolute error 

𝒖(𝒙, 𝒕) for 𝜶 = 𝟏 

|𝑬𝒙𝒂𝒄𝒕 − 𝑭𝑽𝑰𝑴| 

0 0 1 1 1 0 0 

 0.1 1.0 1.001001 1.001000499 1.182905468 1.00E-09 9.58E-02 

 0.2 2.0 1.002002 1.002002001 1.182905468 0 1.81E-01 

 0.3 3.0 1.003005 1.003004503 1.257767843 2.00E-09 2.55E-01 

 0.4 4.0 1.004008 1.004008011 1.3213456 0 1.73E-01 

 0.5 5.0 1.005013 1.005012521 1.373807108 0 3.69E-01 

 0.6 6.0 1.006018 1.006018036 1.415514729 0 4.09E-01 

 0.7 7.0 1.007025 1.007024554 1.446974591 4.00E-09 4.40E-01 

 0.8 8.0 1.008032 1.00803207 1.468795276 1.60E-08 4.61E-01 

 0.9 9.0 1.009041 1.009040575 1.481654086 4.80E-08 4.73E-01 

 1.0 10.0 1.01005 1.010050044 1.48626973 1.23E-07 4.76E-01 
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Table 2 presents the results of the approximate solution 

𝑢(𝑥, 𝑡) obtained by the exact solutions, FRDTM and FVIM 

over a range of spatial (𝑥[0,1]) and temporal values (𝑡[0,10]) 
for fractional order of 𝛼 = 1. Additionally, the absolute errors 

are computed to assess the accuracy of the method. It was 

observed that the FRDTM solution matches the exact solution 

to high precision, with errors consistently in the range of 

10−09to10−07indicating a high accuracy of the method for the 

integer-order case. While FVIM has higher errors, ranging 

from 9.58 × 10−01at 𝑡 = 1.0 to 4.74 × 10−01at 𝑡 =
10.0,FVIM’s error increases with time, implying potential 

instability or accumulation of truncation error. 

 

 
Figure 1: 2D surface plot of the absolute error of the FRDTM and FVIM 

solutions 𝑢(𝑥, 𝑡) for 𝛼 = 1 at 0 < 𝑡 ≤ 10,  𝑎𝑛𝑑 0 < 𝑥 ≤ 1 

 

It is seen from Figure 1 that the error of FRDTM is almost 

zero across time. This provides highly accurate solutions 

across all time steps and this shows that FRDTM is stable and 

reliable for long-time simulation. While FVIM is reasonably 

accurate at small time 𝑡, the error of FVIM increases 

significantly over time, thereby losing its precision as time 

increases, and this might not preserve solution accuracy well 

for large time 𝑡. 

 

 
Figure 2: 3D surface plot of the EXACT, FRDTM and FVIM solutions 𝑢(𝑥, 𝑡)for 𝛼 = 1 

at 0 < 𝑡 ≤ 10,  𝑎𝑛𝑑 0 < 𝑥 ≤ 1 
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Figure 3: 2D surface plot of the EXACT, FRDTM and FVIM solutions 𝑢(𝑥, 𝑡) for 

𝛼 = 1 at 0 < 𝑡 ≤ 10,  𝑎𝑛𝑑 0 < 𝑥 ≤ 1. 
 

Figures 2 and 3 show the 3D and 2D representation of the 

exact solution (green), the FRDTM (red), and the FVIM 

(blue). It is seen that the exact solutions show a smooth decay 

surface, with decreasing values as time increases, and the 

surface reflects the expected behavior of a dissipative 

advection-diffusion model. The FRDTM solution closely 

matches the exact solution; the curvature and slope of the 

surface match closely with the exact solution and no visible 

deviation is seen. While for the FVIM solution, it is observed 

that the surface is less steep and lower in magnitude than the 

other two solutions, which implies that FVIM underestimates 

the solution for higher 𝑡values. 

 

Table 3: The Comparisons between the FRDTM and FVIM solutions 𝒖(𝒙, 𝒕)for 𝜶 = 𝟎. 𝟐 at 𝟎 < 𝒕 ≤ 𝟏𝟎  𝒂𝒏𝒅 𝒙 = 𝟎. 𝟑 

𝒙 𝒕 𝑭𝑹𝑫𝑻𝑴) 𝑭𝑽𝑰𝑴 

0.3 0 0.60653066 0.60653066 

  1.0 0.671675597 0.673023306 

  2.0 0.743817481 0.746741699 

  3.0 0.823707824 0.824399945 

  4.0 0.912178858 0.91277357 

  5.0 1.23380268 1.224251577 

  6.0 1.366320298 1.369114012 

  7.0 1.513071081 1.511016512 

  8.0 1.675583757 1.672322356 

  9.0 1.855551243 1.853541851 

  10.0 2.033991259 2.032486289 

 

 
Figure 4: 2D surface plot of the comparisons between the FRDTM and FVIM 

solutions  𝑢(𝑥, 𝑡) for 𝛼 = 0.2 at 0 < 𝑡 ≤ 10  𝑎𝑛𝑑 𝑥 = 0.3. 
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Table 3andFigure 4 show the comparison between FRDM and 

FVM for𝛼 = 0.2. It is observed that the values of the 

solutions 𝑢(𝑥, 𝑡) gradually increase as time progresses for 

both methods, this indicate a slow diffusion or transport 

process due to the low value of α. Also, both methods yield 

very similar results, with only slight differences appearing for 

higher𝑡, especially after𝑡 = 7. Additional, the maximum 

absolute error remains minimal, suggesting that FRDM 

closely approximates the FVM results even for small 

fractional orders. 

 

Table 4: The Comparisons between the FRDTM and FVIM solutions 𝒖(𝒙, 𝒕)for 𝜶 = 𝟎. 𝟓 at 𝟎 < 𝒕 ≤ 𝟏𝟎  𝒂𝒏𝒅 𝒙 = 𝟎. 𝟑 

𝒙 𝒕 𝑭𝑹𝑫𝑻𝑴 𝑭𝑽𝑰𝑴 

0.5 0 0.740818221 0.729705947 

  1.0 0.82435588 0.809617008 

  2.0 0.906194684 0.90125395 

  3.0 0.915826048 0.911093561 

  4.0 1.006124227 1.005239696 

  5.0 1.124172873 1.121398001 

  6.0 1.240934708 1.248904416 

  7.0 1.367837733 1.386688315 

  8.0 1.507265969 1.534030278 

  9.0 1.662470848 1.691230541 

  10.0 1.854253675 1.860176024 

 

 
Figure 5: 2D surface plot of the comparisons between the FRDTM and FVIM solutions  

𝑢(𝑥, 𝑡)for 𝛼 = 0.5 at 0 < 𝑡 ≤ 10  𝑎𝑛𝑑 𝑥 = 0.3. 

 

Table 4 and Figure 5 present the solution values for 𝛼 = 0.5 

at fixed point𝑥 = 0.3.Here, the solution𝑢(𝑥, 𝑡)values are 

higher than those of fractional order𝛼 = 0.2, which implies 

that increasing the values of 𝛼leads to faster diffusion of the 

solution𝑢(𝑥, 𝑡). The curves for both FRDTM and FVIM 

remain almost identical up to𝑡 = 7.After which, a slight 

deviations are observed. It is also observed that the FRDTM 

values are slightly underestimated compared to FVIM in the 

mid-time range, but gradually catch up by 𝑡 = 10. 

 

Table 5: Comparisons between the FRDTM and FVIM solutions 𝒖(𝒙, 𝒕) for 𝜶 = 𝟎. 𝟕 at 𝟎 < 𝒕 ≤ 𝟏𝟎  𝒂𝒏𝒅 𝒙 = 𝟎. 𝟑. 

𝒙 𝒕 𝑭𝑹𝑫𝑻𝑴 𝑭𝑽𝑰𝑴 

0.7 0 0.740818221 0.729705947 

  1.0 0.825715735 0.811030723 

  2.0 0.909474481 0.906374627 

  3.0 1.010653892 1.013972327 

  4.0 1.117571646 1.130036274 

  5.0 1.229069021 1.250893426 

  6.0 1.365138401 1.375601469 

  7.0 1.4983637 1.50773999 

  8.0 1.665757967 1.655225052 

  9.0 1.857042444 1.827808 

  10.0 2.047354309 2.0109898 



A SEMI-ANALYTICAL SOLUTION TO…      Ogunfiditimi and Akogwu FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 36 – 43 42 

 
Figure 6: 2D surface plot of the Comparisons between the FRDTM and FVIM 

solutions  𝒖(𝒙, 𝒕) for 𝜶 = 𝟎. 𝟕 at 𝟎 < 𝑡 ≤ 10  𝑎𝑛𝑑 𝑥 = 0.3. 

 

Table 5 and Figure 6 show the comparison for  𝛼 = 0.7 at 

fixed point𝑥 = 0.3.The solutions𝑢(𝑥, 𝑡) is observed to show 

a sharp rise over time, stressing the impact of a higher 

fractional order on the dynamic behavior of the system. The 

results obtained by the FRDM and FVIM remain very close. 

However, the FRDM results tend to be slightly higher than 

FVIM in the later time steps. Also, it seems that the shape and 

slope of the curves in Figure 7 are nearly identical, thereby 

illustrating the consistency between the two methods.  

 

CONCLUSION 

The FRDTM successfully produced accurate solutions for the 

fractional non-steady state salt transport equation. Three cases 

with varying values of the fractional order α were analyzed. 

Results showed that lower values of α led to slower diffusion 

behavior, which is consistent with theoretical expectations. 

The 2D surface plots of the solutions at selected fixed spatial 

point sand varying temporal points demonstrate the 

convergence and reliability of FRDTM. The absolute error of 

FRDTM solutions was minimal compared to the FVIM 

solutions, highlighting the accuracy of FRDTM. The study 

shows there liability and stability of FRDTM for long-time 

simulation especially, at fractional orderα < 1and, also has the 

capability to accurately capture the complexity of higher-

order fractional dynamics.  
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