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ABSTRACT 

Variance estimators are utilized to estimate the variability of population under study, and this variation 

estimates can aid in devising better policies. In this study, a two-phase population variance estimator under 

two-phase sampling is suggested. The properties of the estimator such as bias and mean square error were 

derived, and they were compared theoretically with some existing estimators. The efficiency conditions of the 

modified estimators under two realistic situations of random non-response were derived theoretically. The 

performances of the estimators were assessed using the criterion of mean square error and percentage relative 

efficiency. The empirical results using real data sets revealed that the proposed estimators performed better 

than the existing variance estimators considered. Thus, the proposed estimators in this study can be used to 

estimate variations that exist in real-world problems when there is random non-response. 
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INTRODUCTION  

Estimation of population variance of the study variable is an 

important issue and has been discussed by many experts 

engaged in survey statistics. For instance, the determinants of 

variation in the economy are required for a nation to develop 

and implement suitable policies for the nation stability, in 

agriculture, the production variation of crops is required for 

further planning or in manufacturing industries and 

pharmaceutical laboratories, the variability of their products 

is necessary for their quality control (Muhammad et al., 2022 

and Muhammad & Oyeyemi, 2025a).  

The use of auxiliary information enhances the accuracy and 

efficiency of survey estimates under various sampling 

schemes. Recent studies have explored various methods for 

utilizing auxiliary variables in survey sampling, including the 

use of extreme values and ranks of auxiliary variables (Zakari 

et al., 2020; Muhammad et al., 2021; Zakari & Muhammad, 

2022; Muhammad et al., 2022; Muhammad et al., 2023; 

Zakari et al., 2023; Oyeyemi et al., 2023; Zakari & 

Muhammad, 2023; Audu et al., 2023; Muhammad & 

Oyeyemi, 2025b).  

A Two-phase sampling scheme can be utilized in obtaining an 

improved estimator when the information on the population 

variance of the auxiliary variable is not available. This 

sampling scheme is used to obtain the information about the 

auxiliary variable cheaply from a larger sample at the first 

phase and a relatively small sample at the second phase 

(Neyman, 1938). Studies by many authors have extended the 

application of two-phase sampling under various strategies, 

including Cochran (1977), Shabbir and Gupta (2007), Singh 

et al. (1988), Mishra et al. (2019) and Muhammad (2023) 

among others. However, the existing ratio-type estimators are 

inefficient when there exist a negative correlation between the 

study and auxiliary variables while the existing product-type 

estimators are inefficient when there exist a positive 

correlation between the study and auxiliary variables and this 

may yield inaccurate results. Therefore, in order to address 

this problem, this study proposed variance estimator under 

two-phase sampling that will be more flexible and efficient. 

Various estimators under different strategies have been 

widely developed by many researchers. For instance, a 

conventional unbiased estimator of variance is developed as 

𝑡0 =
1

𝑛−1
∑ (𝑦𝑖 − 𝑦)

2𝑛
𝑖=1     (1) 

The expression for the variance of conventional unbiased 

estimator of variance (𝑡0) is given as 

𝑉𝑎𝑟(𝑡0) = 𝜆𝑆𝑦
4𝛽2𝑦

*      (2) 

Isaki (1983) proposed usual ratio estimator of the population 

variance using auxiliary information under two-phase 

sampling as 

𝑡1 = 𝑠𝑦
2 (

𝑠𝑥
'2

𝑠𝑥
2)    (3) 

The expression for the mean square error (MSE) equation of 

the estimator in (3) is given as  

𝑀𝑆𝐸(𝑡1) ≅ 𝑆𝑦
4[𝜆𝛽2𝑦

* + (𝜆 − 𝜆')(𝛽2𝑥
* − 2𝜆22

* )] (4) 

Isaki (1983) proposed usual regression estimator of the 

population variance as 

𝑡2 = 𝑠𝑦
2 + 𝑏(𝑠𝑦2,𝑠𝑥2)(𝑠𝑥

'2 − 𝑠𝑥
2)   (5) 

where 𝜌(𝑠𝑦2,𝑠𝑥2) = 𝜆22
* /√𝛽2𝑦

* 𝛽2𝑥
*  is the sample regression 

coefficient. The expression for the mean square error (MSE) 

equation of the estimator in (5) is given as  

𝑀𝑆𝐸(𝑡2) 𝑦
4
2𝑦

* 𝑆𝑦
4(𝜆−𝜆')𝜆22

*

𝛽2𝑥
*

𝑚𝑖𝑛
   (6) 

Singh et al., (1988) proposed usual difference estimator under 

two-phase sampling as 

𝑡3 = 𝑘1𝑠𝑦
2 + 𝑘2(𝑠𝑥

'2 − 𝑠𝑥
2)   (7) 

where 𝑘1 and 𝑘2 are unknown constants, whose values are to 

be determined. The optimum values of 𝑘1 and 𝑘2 along with 

the minimum mean square error (MSE) equation of the 

estimator in (7), up to the first order of approximation are 

given, respectively as  

𝑘1
𝑜𝑝𝑡

=
𝛽2𝑥
*

𝛽2𝑥
* +𝛽2𝑦

* 𝛽2𝑥
* −𝜆22

*2   

𝑘2
𝑜𝑝𝑡

=
𝑆𝑥
2𝜆22

*

𝑆𝑦
2(𝛽2𝑥

* +𝛽2𝑦
* 𝛽2𝑥

* −𝜆22
*2 )

  

𝑀𝑆𝐸(𝑡3)
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

1+
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

𝑆𝑦
4

𝑚𝑖𝑛

   (8) 

Shabbir and Gupta (2007) proposed a regression cum 

exponential variance estimator in two-phase sampling as 

𝑡4 = [𝑘3𝑠𝑦
2 + 𝑘4(𝑠'𝑥

2 − 𝑠𝑥
2)] 𝑒𝑥𝑝 (

𝑠𝑥
'2−𝑠𝑥

2

𝑠𝑥
'2+𝑠𝑥

2) (9) 

where 𝑘3 and 𝑘4 are unknown constants The optimum values 

of k3 and k4 along with the minimum mean square error are 

given, respectively as  
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𝑘3
𝑜𝑝𝑡

=
𝛽2𝑥
*

8
(

8−𝛽2𝑥
*

𝛽2𝑥
* +𝛽2𝑦

* 𝛽2𝑥
* −𝜆22

*2)  

𝑘4
𝑜𝑝𝑡

=
𝑆𝑦
2

8𝑆𝑥
2 (
−4𝛽2𝑦

* + 𝛽2𝑥
* + 8𝜆22

* − 𝜆22
* 𝛽2𝑥

* + 4𝛽2𝑦
* 𝛽2𝑥

* − 4𝜆22
*2

(𝛽2𝑥
* + 𝛽2𝑦

* 𝛽2𝑥
* − 𝜆22

*2 )
) 

 

𝑀𝑆𝐸(𝑡4)
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

1+
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

𝑆𝑦
4 −

(𝜆−𝜆')𝛽2𝑥
* [𝑀𝑆𝐸(𝑡2)

(𝜆−𝜆')𝑆𝑦
4𝛽2𝑥

*

16 𝑚𝑖𝑛
[]]

4[1+
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

𝑆𝑦
4 []]

𝑚𝑖𝑛

 

     (10) 

Mishra et al. (2019) proposed four class of estimators for 

estimating population variance under double sampling 

scheme using log type transformation as 

𝑃𝑙1 = 𝑠𝑦
2 +𝑤0 𝑙𝑜𝑔 (

𝑠𝑥
2

𝑠𝑥
'2)   (11) 

𝑃𝑙2 = 𝑠𝑦
2(𝑤1 + 1) + 𝑤2 𝑙𝑜𝑔 (

𝑠𝑥
2

𝑠𝑥
'2)  (12) 

𝑃𝑙3 = [𝑠𝑦
2(𝑤3 + 1) + 𝑤4 𝑙𝑜𝑔 (

𝑠𝑥
2

𝑠𝑥
'2)] 𝑒𝑥𝑝 {

𝑠𝑥
'2−𝑠𝑥

2

𝑠𝑥
'2+𝑠𝑥

2} (13) 

𝑃𝑙4 = 𝑠𝑦
2(𝑤5 + 1) + 𝑤6 𝑙𝑜𝑔 (

𝑠𝑥
2

𝑠𝑥
'2) 𝑒𝑥𝑝 {

𝑠𝑥
'2−𝑠𝑥

2

𝑠𝑥
'2+𝑠𝑥

2} (14) 

where 𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 and 𝑤6 are unknown constants. 

The optimum values of the parameters involved along with 

the expression for the minimum mean square error (MSE) 

equation of the estimators in (11-14), up to the first order of 

approximation are given, respectively as 

𝑀𝑆𝐸(𝑃𝑙1) 𝑦
4 [𝜆𝛽2𝑦

* − (𝜆 − 𝜆')
𝜆22
*

𝛽2𝑥
* ]

𝑚𝑖𝑛
  (15) 

𝑀𝑆𝐸(𝑃𝑙2)
𝐵𝐶2+(𝐴−2𝐶)𝐷2

𝐷2−𝐴𝐵 𝑚𝑖𝑛
   (16) 

𝑀𝑆𝐸(𝑃𝑙3)1
𝐵1𝐶1

2+𝐴1𝐷1
2−2𝐶1𝐷1

2

𝐸1
2−𝐴1𝐵1 𝑚𝑖𝑛

  (17) 

𝑀𝑆𝐸(𝑃𝑙4)3
𝐵3𝐶3

2+𝐴3𝐷3
2−2𝐶3𝐷3

2

𝐸3
2−𝐴3𝐵3 𝑚𝑖𝑛

  (18) 

where: 

𝑤0 = [
−𝑆𝑦

2𝜆22
*

𝛽2𝑥
* ],𝑤1

𝑜𝑝𝑡
=

(𝐴−𝐶)𝐷

𝐷2−𝐴𝐵
, 𝑤2

𝑜𝑝𝑡
=

𝐶𝐵−𝐷2

𝐷2−𝐴𝐵
, 

𝑤3
𝑜𝑝𝑡

=
𝐶1𝐵1−𝐷1𝐸1

𝐸1
2−𝐴1𝐵1

, 𝑤4
𝑜𝑝𝑡

=
𝐴1𝐷1−𝐶1𝐸1

𝐸1
2−𝐴1𝐵1

,𝑤5
𝑜𝑝𝑡

=
𝐶3𝐵3−𝐷3𝐸3

𝐸3
2−𝐴3𝐵3

, 

𝑤6
𝑜𝑝𝑡

=
𝐴3𝐷3−𝐶3𝐸3

𝐸3
2−𝐴3𝐵3

,𝐴 = 𝑆𝑦
4(1 + 𝜆𝛽2𝑦

* ), 𝐵 = (𝜆 − 𝜆')𝛽2𝑥
* , 

𝐶 = 𝑆𝑦
4𝜆𝛽2𝑦

* , 𝐷 = 𝑆𝑦
2(𝜆 − 𝜆')𝜆22

* ,𝐴1 = 𝑆𝑦
4(1 + 𝜆𝛽2𝑦

* ),  

𝐵1 = (𝜆 − 𝜆
')𝛽2𝑥

* ,𝐶1 = 𝑆𝑦
4𝜆𝛽2𝑦

* ,  

𝐷1 = 𝑆𝑦
2(𝜆 − 𝜆') (𝜆22

* −
𝛽2𝑥
*

2
),  𝐸1 = 𝑆𝑦

2(𝜆 − 𝜆')(𝜆22
* − 𝛽2𝑥

* ), 

𝐹1 = 𝑆𝑦
4 [𝜆𝛽2𝑦

* + (𝜆 − 𝜆') (
𝛽2𝑥
*

4
− 𝜆22

* )],  

𝐴3 = 𝑆𝑦
4(1 + 𝜆𝛽2𝑦

* ),𝐵3 = (𝜆 − 𝜆
')𝛽2𝑥

* , 𝐶3 = 𝑆𝑦
4𝜆𝛽2𝑦

* , 

𝐷3 = 𝑆𝑦
2(𝜆 − 𝜆')𝜆22

* , 𝐸3 = 𝑆𝑦
2(𝜆 − 𝜆') (𝜆22

* −
𝛽2𝑥
*

2
),  

𝐸1 = 𝑆𝑦
4(𝜆 − 𝜆')(𝜆22

* − 𝛽2𝑥
* ) and 

𝐹1 = 𝑆𝑦
4 [𝜆𝛽2𝑦

* + (𝜆 − 𝜆') (
𝛽2𝑥
*

4
− 𝜆22

* )]  

 

Methodology 

Two-phase Sampling Procedure 

The following scenario is adopted in proposing the current 

methodology; consider a finite population 𝜁 = (𝜁1, 𝜁2, … , 𝜁𝑁) 
of size N, from which a sample of size n units from 𝜁 is 

selected by using simple random sample without replacement 

(SRSWOR). Let (𝑦𝑖 , 𝑥𝑖) be the value of the study variable Y 

and the auxiliary variable X on ith unit 𝜁𝑖 , 𝑖 = 1,…𝑁. Let 𝑌 

and 𝑋 be population means of the study variable Y and the 

auxiliary variable X, respectively. We assume that the 

population mean 𝑋 and the population variance 𝑆𝑥
2 of the 

auxiliary variable are known. 

 Let 𝑠𝑦
∗2 = ∑ (𝑦𝑖 − 𝑦̅

∗)2𝑛−𝑟
𝑖=1 /(𝑛 − 𝑟 − 1) and 𝑠𝑥

∗2 =

∑ (𝑥𝑖 − 𝑥̅
∗)2𝑛−𝑟

𝑖=1 /(𝑛 − 𝑟 − 1) be the sample variance of study 

and auxiliary variables, respectively on the basis of the 

responding part of sample, 𝑆𝑦
2 = ∑ (𝑦𝑖 − 𝑌)

2𝑁
𝑖=1 /(𝑁 − 1) 

and 𝑆𝑥
2 = ∑ (𝑥𝑖 − 𝑋)

2𝑁
𝑖=1 /(𝑁 − 1) be the population 

variance of the study and auxiliary variables, respectively. 

Under the double sampling scheme, the first phase sample 

𝑆′(𝑆′ ⊂ 𝜁) of a fixed size 𝑛 is drawn to measure only on the 

auxiliary variable 𝑥 in order to formulate a good estimate of 

population mean 𝑋. 

 
Random Non-Response 

Random non-response as defined by Singh & Joarder (1998), 

in sample 𝑆𝑛 of size 𝑛 drawn at the first phase, let 𝑟1 sampling 

units lack complete information due to random non-response, 

where 𝑟1 can take values from the set {0,1,… , (𝑛 − 2)}. 
Similarly, in the second phase sample 𝑆𝑚 of size 𝑚ℎ, let 

complete information be unavailable for 𝑟2 sampling units, 

where 𝑟2 lies in the range {0,1,2, … , (𝑚 − 2)} It is assumed 

that 𝑟𝑗 ≥ 0, 𝑗 = 1,2 and 𝑟1 ≤ (𝑛 − 2), 𝑟2 ≤ (𝑚 − 2). Non-

response can take (𝑛 − 2) and (𝑚 − 2) possible values in the 

samples 𝑆𝑛 and 𝑆𝑚, respectively. Let these respective 

probabilities be denoted by 𝑝1 and 𝑝2. The total number of 

ways in which 𝑟𝑗(𝑗 = 1, 2) non-responses can be obtained are 

𝐶𝑛−2
𝑟1and 𝐶𝑚−2

𝑟2, respectively. Then 𝑟1 and 𝑟2 are discrete 

random variables having the respective probability 

distributions as given below: 

𝑃(𝑟1) =
𝑛−𝑟1

𝑛𝑞1+2𝑝1
𝐶𝑛−2
𝑟1𝑝1

𝑟1𝑞1
𝑛−𝑟1−2; 𝑟1 = 0,1,2, . . . , (𝑛 − 2) 

and 

𝑃(𝑟2) =
𝑚−𝑟2

𝑛𝑞2+2𝑝2
𝐶𝑚−2
𝑟2𝑝2

𝑟2𝑞2
𝑚−𝑟2−2; 𝑟2 = 0,1,2, . . . , (𝑚 − 2) 

where 𝑞1 = 1 − 𝑝1   and 𝑞2 = 1 − 𝑝2. 

 

Proposed Estimator 

In this section, a new estimator for estimating the finite 

population variance under two-phase sampling is proposed 

when random non-response occurs on both study and 

auxiliary variables as: 

𝑇̂𝑝𝑟𝑜𝑝𝑖
** = {𝑘1𝑠𝑦

*2 [
1

2
(
𝑠𝑥
'*2

𝑠𝑥
*2 +

𝑠𝑥
*2

𝑠𝑥
'*2)]

𝛿

+ 𝑘2(𝑠𝑥
'*2 − 𝑠𝑥

*2)} 𝑒𝑥𝑝 {
𝑠𝑥
'*2−𝑠𝑥

*2

𝑠𝑥
'*2+𝑠𝑥

*2} 

     (19) 

where, 𝑇̂𝑝𝑟𝑜𝑝𝑖
∗∗  is the proposed estimator, 𝛽1 and 𝛽2 are real 

parameters to be determined such that the mean square error 

of the proposed estimator 𝑇̂𝑝𝑟𝑜𝑝𝑖
∗∗  is minimum and 𝛿 is a 

driving parameter suitably chosen. To obtain the bias and 

MSE equations for the proposed estimator, we define the 

following notations: 

𝑠𝑦
*2 = 𝑆𝑦

2(1 + 𝑒0), 𝑠𝑥
*2 = 𝑆𝑥

2(1 + 𝑒1) and 𝑠𝑥
'*2 = 𝑆𝑥

2(1 + 𝑒2) 

 

Properties of the Proposed Estimator 

To derive the properties of the modified estimators, we 

consider the following existing results as defined in Isaki 

(1983). 

𝐸(𝑒0) = 𝐸(𝑒1) = 𝐸(𝑒2) = 0  

𝐸(𝑒0
2) = 𝑓2

*(𝜆40 − 1) = 𝑓2
*𝐶0

2, 𝐸(𝑒1
2) = 𝑓2

*(𝜆04 − 1) =

𝑓2
*𝐶1

2, 𝐸(𝑒2
2) = 𝑓1

*(𝜆04 − 1) = 𝑓1
*𝐶1

2,  𝐸(𝑒0𝑒1) = 𝑓2
*(𝜆22 −

1) = 𝑓2
*𝜌01 , 𝐸(𝑒0𝑒2) = 𝑓1

*(𝜆22 − 1) = 𝑓1
*𝜌01, 𝐸(𝑒1𝑒2) =

𝑓1
*(𝜆04 − 1) = 𝑓1

*𝐶1
2 

where 𝑓1
* = (

1

𝑛𝑞1+2𝑝1
−

1

𝑁
) and 𝑓2

* = (
1

𝑚𝑞2+2𝑝2
−

1

𝑁
) 

Expressing the estimator 𝑇̂𝑝𝑟𝑜𝑝𝑖
∗∗  in terms of 𝑒𝑖  (𝑖 = 0, 1, 2) we 

can write (19) as  
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𝑇̂𝑝𝑟𝑜𝑝𝑖
** = {

𝑘1𝑆𝑦
2(1 + 𝑒0)

1

2𝛿
[(1 + 𝑒2)(1 + 𝑒1)

−1 + (1 + 𝑒1)(1 + 𝑒2)
−1]𝛿

−𝑘2[𝑆𝑥
2(1 + 𝑒2) − 𝑆𝑥

2(1 + 𝑒1)]
} 𝑒𝑥𝑝 {

𝑆𝑥
2(1+𝑒2)−𝑆𝑥

2(1+𝑒1)

𝑆𝑥
2(1+𝑒2)+𝑆𝑥

2(1+𝑒1)
}  (20) 

Expanding the RHS of (20) to the first order of approximation, we get: 

𝑇̂𝑝𝑟𝑜𝑝𝑖
∗∗ = {𝑘1𝑆𝑦

2(1 + 𝑒0) [1 +
𝛿𝑒1

2

2
+
𝛿𝑒2

2

2
− 𝛿𝑒1𝑒2] − 𝑘2𝑆𝑥

2(𝑒2 − 𝑒1)} 𝑒𝑥𝑝 {1 +
𝑒2

2
−
𝑒1

2
−
𝑒2
2

8
+
3𝑒1

2

8
−
𝑒1𝑒2

4
} (21) 

Expanding the RHS of (21) to the first order of approximation, neglecting the terms of e’s greater than two and taking out the 

common terms gives:  

𝑇̂𝑝𝑟𝑜𝑝𝑖
** − 𝑆𝑦

2 = {
(𝑘1 − 1)𝑆𝑦

2 + 𝑘1𝑆𝑦
2 [𝑒0 −

𝑒1

2
+
𝑒2

2
+ 𝐴𝑖𝑒1

2 + 𝐵𝑖𝑒2
2 −

𝑒0𝑒1

2
+
𝑒0𝑒2

2
− 𝐷𝑖𝑒1𝑒2]

+𝑘2𝑆𝑥
2 [𝑒1 − 𝑒2 −

𝑒1
2

2
−
𝑒2
2

2
+ 𝑒1𝑒2]

}  (22) 

where 𝐴𝑖 = [
4𝛿+3

8
], 𝐵𝑖 = [

4𝛿−1

8
] and 𝐷𝑖 = [

8𝛿+1

8
] 

Taking expectation of (22), the bias of the proposed generalized estimator is obtained as: 

𝐵𝑖𝑎𝑠(𝑇̂𝑝𝑟𝑜𝑝𝑖
** ) == {

(𝑘1 − 1)𝑆𝑦
2 + 𝑘1𝑆𝑦

2 [(𝑓2
*𝐴𝑖 + 𝑓1

*𝐵𝑖 − 𝑓1
*𝐷𝑖)𝐶1

2 +
1

2
(𝑓1

* − 𝑓2
*)𝜌01]

+𝑘2𝑆𝑥
2 1

2
(𝑓1

* − 𝑓2
*)𝐶1

2
}   (23) 

Squaring equation (23) to the first order of approximation, neglecting the terms of e’s greater than two and taking out the 

common terms gives:  

(𝑇̂𝑝𝑟𝑜𝑝𝑖
** − 𝑆𝑦

2)
2
=

{
 
 
 

 
 
 
(𝑘1 − 1)

2𝑆𝑦
4 + 𝑘1

2𝑆𝑦
4 [
2𝑒0 − 𝑒1 + 𝑒2 + 𝑒0

2 +
(8𝐴𝑖+1)𝑒1

2

4
+
(8𝐵𝑖+1)𝑒2

2

4

−2𝑒0𝑒1 + 2𝑒0𝑒2 −
(4𝐷𝑖+1)𝑒1𝑒2

2

]

+𝑘2
2𝑆𝑥

4(𝑒1
2 + 𝑒2

2 − 2𝑒1𝑒2) − 2𝑘1𝑘2𝑆𝑦
2𝑆𝑥

2(𝑒1 − 𝑒2 − 𝑒1
2 − 𝑒2

2 + 𝑒0𝑒1 − 𝑒0𝑒2 + 2𝑒1𝑒2)

−2𝑘1𝑆𝑦
4 (𝑒0 −

𝑒1

2
+
𝑒2

2
+ 𝐴𝑖𝑒1

2 + 𝐵𝑖𝑒2
2 −

𝑒0𝑒1

2
+
𝑒0𝑒2

2
− 𝐷𝑖𝑒1𝑒2)

−2𝑘2𝑆𝑦
2𝑆𝑥

2 (𝑒1 − 𝑒2 −
𝑒1
2

2
−
𝑒2
2

2
+ 𝑒1𝑒2) }

 
 
 

 
 
 

 (24) 

Taking expectation of (24), the mean square error of the proposed estimator, up to the first order of approximation, is given 

as:  

𝑀𝑆𝐸(𝑇̂𝑝𝑟𝑜𝑝𝑖
** ) =

{
 
 

 
 (𝑘1 − 1)

2𝑆𝑦
4 + 𝑘1

2𝑆𝑦
4 [𝑓2

*𝐶0
2 +

1

4
([8𝐵𝑖 − 8𝐷𝑖 − 1]𝑓2

* + [8𝐴𝑖 + 1]𝑓1
*)𝐶1

2 + 2(𝑓1
* − 𝑓2

*)𝜌01]

+𝑘2
2𝑆𝑥

4(𝑓2
* − 𝑓1

*)𝐶1
2 + 2𝑘1𝑘2𝑆𝑦

2𝑆𝑥
2[(𝑓1

* − 𝑓2
*)(𝐶1

2 − 𝜌01)]

−2𝑘1𝑆𝑦
4 [(𝐴𝑖𝑓2

* + (𝐵𝑖 − 𝐷𝑖)𝑓1
*)𝐶1

2 +
1

2
(𝑓1

* − 𝑓2
*)𝜌01] − 2𝑘2𝑆𝑦

2𝑆𝑥
2 (𝑓1

*−𝑓2
*)

2
𝐶1
2

}
 
 

 
 

  (25) 

The MSE equation of the proposed estimator is subsequently reduced from equation (25) as:  

𝑀𝑆𝐸(𝑇̂𝑝𝑟𝑜𝑝𝑖
** ) = (𝑘1 − 1)

2𝑆𝑦
4 + 𝑘1

2𝑆𝑦
4𝐽𝑖 + 𝑘2

2𝑆𝑥
4𝐸𝑖 + 2𝑘1𝑘2𝑆𝑦

2𝑆𝑥
2𝐹𝑖 − 2𝑘1𝑆𝑦

4𝐺𝑖 − 2𝑘2𝑆𝑦
2𝑆𝑥

2𝐻𝑖  (26) 

where: 

𝐽𝑖 = [𝑓2
*𝐶0

2 +
1

4
([8𝐵𝑖 − 8𝐷𝑖 − 1]𝑓2

* + [8𝐴𝑖 + 1]𝑓1
*)𝐶1

2 + 2(𝑓1
* − 𝑓2

*)𝜌01]  

𝐸𝑖 = (𝑓1
* − 𝑓2

*)𝐶1
2  

𝐹𝑖 = [(𝑓1
* − 𝑓2

*)(𝐶1
2 − 𝜌01)]  

𝐺𝑖 = [(𝐴𝑖𝑓2
* + (𝐵𝑖 − 𝐷𝑖)𝑓1

*)𝐶1
2 +

1

2
(𝑓1

* − 𝑓2
*)𝜌01]  

𝐻𝑖 =
1

2
(𝑓1

* − 𝑓2
*)𝐶1

2  

We obtain the optimum values of 𝑘1 and 𝑘2,  by differentiating (26) partially with respect to 𝑘1 and 𝑘2, and equating to zero, 

respectively as:  

𝑘1(𝑜𝑝𝑡)
** =

(1+𝐺𝑖)𝐸𝑖−𝐹𝑖𝐻𝑖

(1+𝐽𝑖)𝐸𝑖−𝐹𝑖
2   

 and 

𝑘2(𝑜𝑝𝑡)
** =

𝑆𝑦
2

𝑆𝑥
2 [
(1+𝐽𝑖)𝐻𝑖−(1+𝐺𝑖)𝐹𝑖

(1+𝐽𝑖)𝐸𝑖−𝐹𝑖
2 ]  

We obtain the minimum mean square error of the proposed estimator 𝑇̂𝑝𝑟𝑜𝑝𝑖
**  by substituting the optimum values of 𝑘1 and 𝑘2 

into Equation (27), as: 

𝑀𝑆𝐸(𝑇̂𝑝𝑟𝑜𝑝𝑖
** ) 𝑦

4 {1 −
[
(1+𝐽𝑖)((𝐺𝑖+1)

2𝐸𝑖
2−𝐹𝑖

2𝐻𝑖
2)+2(1+𝐺𝑖)(𝐹𝑖

2−𝐽𝑖𝐸𝑖−𝐸𝑖)𝐹𝑖𝐻𝑖

+(1+2𝐽𝑖)𝐸𝑖𝐻𝑖
2−(1+𝐺𝑖)

2𝐸𝑖𝐹𝑖
2 ]

[(1+𝐽𝑖)𝐸𝑖−𝐹𝑖
2]
2 }

𝑚𝑖𝑛

    (27) 

Special Classes: 

For 𝛿 = 1, the proposed estimator in equation (19) becomes 

𝑇̂𝑝𝑟𝑜𝑝1
** = {𝑘1𝑠𝑦

2 [
1

2
(
𝑠𝑥
'*2

𝑠𝑥
*2 +

𝑠𝑥
*2

𝑠𝑥
'*2)] + 𝑘2(𝑠𝑥

'*2 − 𝑠𝑥
*2)} 𝑒𝑥𝑝 {

𝑠𝑥
'*2−𝑠𝑥

*2

𝑠𝑥
'*2+𝑠𝑥

*2}     (28) 

The optimum values of 𝑘1 and 𝑘2, of the proposed estimator in equation (28) are obtain as 

𝑘1(𝑜𝑝𝑡)
** =

(1+𝐺1)𝐸1−𝐹1𝐻1

(1+𝐽1)𝐸1−𝐹1
2   

 and 

𝑘2(𝑜𝑝𝑡)
** =

𝑆𝑦
2

𝑆𝑥
2 [
(1+𝐽1)𝐻1−(1+𝐺1)𝐹1

(1+𝐽1)𝐸1−𝐹1
2 ]  

The minimum mean squared error of the proposed estimator in equation (28) is obtained as  
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𝑀𝑆𝐸(𝑇̂𝑝𝑟𝑜𝑝1
** ) 𝑦

4 {1 −
[
(1+𝐽1)((𝐺1+1)

2𝐸1
2−𝐹1

2𝐻1
2)+2(1+𝐺1)(𝐹1

2−𝐽1𝐸1−𝐸1)𝐹1𝐻1
+(1+2𝐽1)𝐸1𝐻1

2−(1+𝐺1)
2𝐸1𝐹1

2 ]

[(1+𝐽1)𝐸1−𝐹1
2]2

}

𝑚𝑖𝑛

    (29) 

When 𝛿 = 2, the proposed estimator in equation (19) becomes 

𝑇̂𝑝𝑟𝑜𝑝2
** = {𝑘1𝑠𝑦

2 [
1

2
(
𝑠𝑥
'*2

𝑠𝑥
*2 +

𝑠𝑥
*2

𝑠𝑥
'*2)]

2

+ 𝑘2(𝑠𝑥
'*2 − 𝑠𝑥

*2)} 𝑒𝑥𝑝 {
𝑠𝑥
'*2−𝑠𝑥

*2

𝑠𝑥
'*2+𝑠𝑥

*2}     (30) 

The optimum values of 𝑘1 and 𝑘2, of the proposed estimator in equation (30) are obtain as: 

𝑘1(𝑜𝑝𝑡)
** =

(1+𝐺2)𝐸2−𝐹2𝐻2

(1+𝐽2)𝐸2−𝐹2
2   

 and 

𝑘2(𝑜𝑝𝑡)
** =

𝑆𝑦
2

𝑆𝑥
2 [
(1+𝐽2)𝐻2−(1+𝐺2)𝐹2

(1+𝐽2)𝐸2−𝐹2
2 ]  

The minimum mean squared error of the proposed estimator in equation (30) is obtain as 

𝑀𝑆𝐸(𝑇̂𝑝𝑟𝑜𝑝2
** ) 𝑦

4 {1 −
[
(1+𝐽2)((𝐺2+1)

2𝐸2
2−𝐹2

2𝐻2
2)+2(1+𝐺2)(𝐹2

2−𝐽2𝐸2−𝐸2)𝐹2𝐻2

+(1+2𝐽2)𝐸2𝐻2
2−(1+𝐺2)

2𝐸2𝐹2
2

]

[(1+𝐽2)𝐸2−𝐹2
2]2

}

𝑚𝑖𝑛

    (31) 

Efficiency Comparisons 

In this section, the conditions under which the proposed estimators are more efficient than existing estimators considered are 

presented. 

i. Comparing the proposed estimator’s MSE with that of the usual variance estimator, we have: 

𝑉𝑎𝑟(𝑠̂𝑦
2) −𝑀𝑆𝐸(𝑆̂𝑑𝑖

2 )𝑚𝑖𝑛, if 

𝑆𝑦
4𝜆(𝛽2𝑦 − 1) − 𝑆𝑦

4 (1 −
𝐾

𝑀
) > 0  

𝜆(𝛽2𝑦 − 1) − (1 −
𝐾

𝑀
) > 0         (32) 

where:  

𝐾 = (1 + 𝐷2)((𝐺2 + 1)
2𝐸2

2 − 𝐹2
2𝐻2

2) + 2(1 + 𝐺2)(𝐹2
2 − 𝐷2𝐸2 − 𝐸2)𝐹2𝐻2 + (1 + 2𝐷2)𝐸2𝐻2

2 − (1 + 𝐺2)
2𝐸2𝐹2

2 𝑀 = [(1 +
𝐷2)𝐸2 − 𝐹2

2]2 

ii. Comparing the proposed estimator’s MSE with that usual ratio variance estimator defined by Isaki (1983), we have: 

𝑀𝑆𝐸(𝑡1) − 𝑀𝑆𝐸(𝑆̂𝑑𝑖
2 )𝑚𝑖𝑛, if 

𝑆𝑦
4[𝜆𝛽2𝑦

* + (𝜆 − 𝜆')(𝛽2𝑥
* − 2𝜆22

* )] − 𝑆𝑦
4 (1 −

𝐾

𝑀
) > 0  

[𝜆𝛽2𝑦
* + (𝜆 − 𝜆')(𝛽2𝑥

* − 2𝜆22
* )] − (1 −

𝐾

𝑀
) > 0       (33) 

iii. Comparing the proposed estimator’s MSE with that usual regression variance estimator defined by Isaki (1983), we have: 

𝑀𝑆𝐸(𝑡2)𝑆̂𝑑𝑖
2

𝑚𝑖𝑛𝑚𝑖𝑛
, if 

𝑆𝑦
4 [𝜆𝛽2𝑦

* −
(𝜆−𝜆')𝜆22

*

𝛽2𝑥
* ] − 𝑆𝑦

4 (1 −
𝐾

𝑀
) > 0  

[𝜆𝛽2𝑦
* −

(𝜆−𝜆')𝜆22
*

𝛽2𝑥
* ] − (1 −

𝐾

𝑀
) > 0        (34) 

iv. Comparing the proposed estimator’s MSE with that usual difference variance estimator defined by Singh et al (1988), we 

have: 

𝑀𝑆𝐸(𝑡3)𝑆̂𝑑𝑖
2

𝑚𝑖𝑛𝑚𝑖𝑛
, if 

𝑆𝑦
4 [

𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

1+
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

𝑆𝑦
4

− 𝑆𝑦
4 (1 −

𝐾

𝑀
) > 0]  

[
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

1+
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

𝑆𝑦
4

− (1 −
𝐾

𝑀
) > 0]         (35) 

v. Comparing the proposed estimator’s MSE with that usual difference variance estimator defined by Shabbir and Gupta 

(2007), we have: 

𝑀𝑆𝐸(𝑡3)𝑆̂𝑑𝑖
2

𝑚𝑖𝑛𝑚𝑖𝑛
, if 

[
 
 
 
 
 
 

𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

1+
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

𝑆𝑦
4 −

(𝜆−𝜆')𝛽2𝑥
* [𝑀𝑆𝐸(𝑡2)

(𝜆−𝜆')𝑆𝑦
4𝛽2𝑥

*

16 𝑚𝑖𝑛
[]]

4[1+
𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛

𝑆𝑦
4 []]

−(1−
𝐾

𝑀
)>0

]
 
 
 
 
 
 

      (36) 

Since condition (58) is satisfied, the proposed estimator is more flexible and efficient than the variance estimator defined by 

Shabbir and Gupta (2007). 
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Data Source and Description 

Four real-life data sets were used to illustrate the efficacious 

performances of the proposed estimators. The sources of the 

data sets, the nature of the variables y, x, z and the values of 

the various parameters are given as follows: 

 

Dataset I: Cochran (1977) 

y: Number of placebo children. 

x: Number of paralytic polio cases in the placebo group. 

z: Number of paralytic polio cases in the „not inoculated‟ 

group. 

𝑁 = 34, 𝑛 = 20, 𝑚 = 12, 𝑆𝑦
2 = 23154.85561, 𝑆𝑥

2 =

28123.21925 𝐶0
2 = 2.32188, 𝐶0

2 = 1.82685, 𝐶𝑥 = 1.2333, 

𝜌01 = 0.6661, ρ = 02 0.5657, ρ = 12 0.6005, λ = 030 1.5224 

and λ = 210 1.4083. 

 

Dataset II: Murthy (1967) 

y: Area under wheat in 1964. 

x: Area under wheat in 1963. 

z: Cultivated area in 1961. 

N= 34, n = 20, m= 12, C0 = 1.6510, C1 = 1.3828, Cx = 0.7205, 

ρ = 01 0.9218, ρ = 020.8914, ρ = 12 0.9346, λ = 030 0.9345 

and λ = 210 1.0196. 

 

Dataset III: Sukhatme & Sukhatme (1970) 

y: Area under wheat in 1937. 

x: Area under wheat in 1936. 

z:Total cultivated area in 1931. 

N= 34, n = 20, m= 12, C0 = 1.5959, C1 = 1.5105, Cx = 0.7678, 

ρ = 01 0.6251, ρ = 02 0.8007, ρ = 12 0.5342, λ = 030 1.0982 

and λ = 210 0.8886. 

 

Dataset IV: Murthy (1967) 

y: Output. 

x: Fixed Capital 

z: Number of workers. 

N= 80, n = 60, m= 40, C0 = 1.1255, C1 = 1.6065, Cx = 0.9485, 

ρ = 01 0.7319, ρ = 02 0.7940, 

ρ = 12 0.9716, λ = 030 1.2761 and λ = 210 0.5461. 

 

RESULTS AND DISCUSSION 

Comparison of Estimators 

The empirical results of the proposed and some existing 

estimators were computed and presented in tables below. 

Table 1: Various Estimators’ MSE and PRE Values with Regard to 𝒔𝒚
𝟐 

Estimators Dataset I Dataset II 

 MSE PRE MSE PRE 

Sample variance (𝑡0) 9286.713 100 300106473570 100 

Isaki (1983) Classical Ratio (𝑡1) 10506.05 88.394  29256901796.03 1025.763  

Isaki (1983) Classical Regression (𝑡2) 7554.903 122.923  27722181291.40 1082.550  

Singh et al., (1988) (𝑡3) 6926.661 134.072  27429779412.11 1094.090  

Shabbir and Gupta (2007) (𝑡4) 6720.736 138.180  26492917739.54 1132.780  

Mishra et al., (2019) Estimator (𝑃𝑙1) 7554.903 241.1409 27722181291.40 1082.550  

Mishra et al., (2019) Estimator (𝑃𝑙2) 6926.661 122.923  27429779412.11 1094.090  

Mishra et al., (2019) Estimator (𝑃𝑙3) 6684.022 134.072  27672258497.21 1084.503  

Mishra et al., (2019) Estimator (𝑃𝑙4) 6569.176 141.368  19355064814.53 1550.532  

Proposed Estimator (𝑇̂𝑝𝑟𝑜𝑝1
∗∗ ) 3218.826 288.512 15684959477 1913.339 

Proposed Estimator (𝑇̂𝑝𝑟𝑜𝑝2
∗∗ ) 1888.781 491.678 7586821411 3955.629 

Table 1 Presented the Mean Square Error (MSE) and Percentage Relative Efficiency (PRE) Values of the Proposed and some 

Existing Estimators Considered using Datasets 1 and 2. The Proposed Estimator Performed Better with Minimum MSE and 

Higher PRE Values. 

 

Table 2: Various Estimators’ MSE and PRE Values with Regard to 𝒔𝒚
𝟐 

Estimators Dataset III Dataset IV 

 MSE PRE MSE PRE 

Sample variance (𝑡0) 558.2446 100 209772707 100 

Isaki (1983) Classical Ratio (𝑡1) 190.8131 292.561  28490643.789 736.2863 

Isaki (1983) Classical Regression (𝑡2) 107.935 517.205  18485825.132 1134.776 

Singh et al., (1988) (𝑡3) 107.369 519.932  18156904.286 1155.333 

Shabbir and Gupta (2007) (𝑡4) 105.521 529.036  17455922.388 1201.728 

Mishra et al., (2019) Estimator (𝑃𝑙1) 107.935 517.205  18485825.132 1134.776 

Mishra et al., (2019) Estimator (𝑃𝑙2) 107.369 519.932  18156904.286 1155.333 

Mishra et al., (2019) Estimator (𝑃𝑙3) 107.058 521.422  18319672.456 1145.068 

Mishra et al., (2019) Estimator (𝑃𝑙4) 99.1400 563.085  11136040.182 1883.728 

Proposed Estimator (𝑇̂𝑝𝑟𝑜𝑝1
∗∗ ) 54.2591 1028.85 4740125 4425.468 

Proposed Estimator (𝑇̂𝑝𝑟𝑜𝑝2
∗∗ ) 13.0590 4274.79 1890131 11098.32 

Table 2 Displayed the Estimators’ mean Square Error (MSE) and Percentage Relative Efficiency (PRE) Values Using Datasets 

1 and 2. The Result Implied that the Proposed Estimator Performed Better with Minimum MSE and Higher PRE Values. 

 

Discussion 

A new two-phase variance estimator in the presence of 

random non-response was developed in this study. The 

performance of the proposed and some existing estimators 

based on the criteria of mean square error and percentage 

relative efficiency were assessed using four real-life datasets. 

The results obtained from dataset I revealed that the proposed 

classes of estimator; I and II (3218.826 and 288.512; 
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1888.781 and 491.678) have minimum MSE and higher PRE 

values, respectively, compared to the sample variance 

(9286.713 and 100); Isaki (1983) classical ratio (10506.05 and 

88.394); Isaki (1983) classical regression (7554.903 and 

122.923); Singh et al., (1988) difference-type (6926.661 and 

134.072); Shabbir and Gupta (2007) ratio-regression-type 

estimator (6720.736 and 138.180) and Mishra et al., (2019) 

ratio estimators 𝑃𝑙1, 𝑃𝑙2, 𝑃𝑙3 and 𝑃𝑙4 (7554.903 and 122.923), 

(6926.661 and 134.072), (6684.022 and 134.072) and 

(6569.176 and 141.368), respectively. The results obtained 

from dataset II revealed that, the proposed estimators I and II 

(15684959477 and 1913.339; 7586821411 and 3955.629) 

have minimum MSE and higher PRE values, respectively, 

compared to the sample variance (300106473570 and 100); 

Isaki (1983) classical ratio (29256901796.03 and 1025.763); 

Isaki (1983) classical regression (27722181291.40 and 

1082.550); Singh et al., (1988) difference-type 

(27429779412.11 and 1094.090); Shabbir and Gupta (2007) 

ratio-regression-type estimator (26492917739.54 and 

1132.780) and Mishra et al., (2019) ratio estimators 

𝑃𝑙1, 𝑃𝑙2, 𝑃𝑙3 and 𝑃𝑙4 (27722181291.40 and 1082.550), 

(27429779412.11 and 1094.090), (27672258497.21 and 

1084.503) and (19355064814.53 and 1550.532), respectively.  

The results obtained from dataset III similarly revealed that, 

the proposed estimators I and II (54.2591 and 1028.85; 

13.0590 and 4274.79) possessed minimum MSE and higher 

PRE values, respectively, compared to the sample variance 

(558.2446 and 100); Isaki (1983) classical ratio (190.8131 and 

292.561); Isaki (1983) classical regression (107.935 and 

517.205); Singh et al., (1988) difference-type (107.369 and 

519.932); Shabbir and Gupta (2007) ratio-regression-type 

estimator (105.521 and 529.036) and Mishra et al., (2019) 

ratio estimators 𝑃𝑙1, 𝑃𝑙2, 𝑃𝑙3 and 𝑃𝑙4 (107.935 and 517.205), 

(107.369 and 519.932), (107.058 and 521.422) and (99.1400 

and 563.085), respectively. The results obtained from dataset 

IV further revealed that, the proposed estimators I and II 

(4740125 and 1028.85; 1890131 and 11098.32) possessed 

minimum MSE and higher PRE values, respectively, 

compared to the sample variance (209772707 and 100); Isaki 

(1983) classical ratio (28490643.789 and 736.2863); Isaki 

(1983) classical regression (18485825.132 and 1134.776); 

Singh et al., (1988) difference-type (18156904.286 and 

1155.333); Shabbir and Gupta (2007) ratio-regression-type 

estimator (17455922.388 and 1201.728) and Mishra et al., 

(2019) ratio estimators 𝑃𝑙1, 𝑃𝑙2, 𝑃𝑙3 and 𝑃𝑙4 (18485825.132 

and 1134.776), (18156904.286 and 1155.333), 

(18319672.456 and 1145.068) and (11136040.182 and 

1883.728), respectively. Therefore, based on the criteria of 

mean square error and percentage relative efficiency, the 

proposed estimators are more efficient and better. 

 

CONCLUSION 

A two-phase estimator with two special classes for estimating 

finite population variance is proposed in this study. 

Expressions for bias and MSE of the modified estimators 

were derived. The theoretical efficiency conditions in which 

the modified estimators over some of existing estimators were 

derived. Evidence from the empirical results revealed that the 

modified estimators performed better than some existing 

estimators considered based on the criterion of mean square 

error and percentage relative efficiency. Thus, the study 

contributed by developing new variance estimators that will 

provide accurate and reliable estimates of variation for 

various phenomenon when there is random non-response. 

Extension of the modified estimator in this study to capture 

measurement error can be considered in future research. 
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