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ABSTRACT 

This paper investigates the primitive and regular characteristics of Dihedral Group of degree 2p, where p is an 

odd prime. By utilizing numerical approached, the properties of these groups were examined to shed light on 

their structure, behavior, and underlying algebraic characteristics. The work uses some group concept to test 

conditions for primitivity and regularity in these groups, with the help of Group Algorithm Programming (GAP) 

our results were validated. The main focus of this paper is on their applications to musical note theory. We 

explore the conditions under which these groups exhibit primitive and regular action on sets, highlighting their 

algebraic properties and symmetries. The theoretical findings are then connected to musical note arrangements, 

where pitch classes and transformations exhibit similar cyclic and reflective patterns. By establishing this 

connection, we demonstrate how group-theoretic principles can enhance the understanding of musical scales, 

chord structures, and symmetrical note sequences. The results presented offer new insights into the intersection 

of abstract algebra and music, paving the way for further interdisciplinary exploration. The work reveal that the 

musical note operate base on their pitch classes and musical intervals. It was discovered that the group of 

transpositions and inversions, denoted 𝑇𝑛 𝑇1−𝑛⁄   is isomorphic to the dihedral group 𝐷12. Finally, Its Conjugacy 

classes and Character table was presented.  
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INTRODUCTION 

Dihedral groups whose degree is 2p, where p is prime are 

fundamental in abstract algebra, representing symmetries of 

regular polygons., Dummit and Foote, (2004). The focus here 

is on investigating the primitivity and regularity of such 

groups that are not p-groups, meaning their order is not a 

power of p. Using computational techniques, Holt, (2005) we 

address these properties and explore whether numerical 

analysis can offer deeper insights into their structure. 

Dihedral Groups are groups that represent the symmetries of 

polygons and consist of rotations and reflections, Armstrong, 

(1997). For a group of order (n = 2p), they combine geometric 

interpretations with algebraic formalism, Artin, (1991).  

Primitivity in a group refers, a group is primitive if it 

preserves no nontrivial partition of a set, Serre, (1977). In the 

context of dihedral groups, understanding primitivity involves 

analyzing their actions on various sets, Dixon, (1996). 

Regularity: A group is regular if every element can be 

expressed uniquely as a product of generators, Burnside, 

(1911). Exploring this property involves understanding how 

elements combine in the dihedral group D_{2p}, Robinson, 

(1996). 

Numerical Approach: In this section, numerical techniques 

such as group element counting, cycle structure analysis, and 

matrix representations of group actions are used to study the 

properties of D_{2p} Cannon, et al (2004).  

Main computational tools include: 

Cycle Decomposition: Decomposing group elements into 

cycles to check if the group action is primitive Butler, (2005). 

Testing Regularity: Using numerical algorithms to test if 

every element can be uniquely written as a product of group 

generators, Neumann, et al, (1994).  

These work-study Dihedral group of Degree 2p for small p. 

We present numerical simulations for small prime values of p 

={3,5}. We calculate the group order, structure, and test for 

primitivity and regularity for each case (Suzuki, 1982, 

Magnus, et al, 2004). And finally, we presented an application 

of this work to Music.  

Ben, et al (2021) work on a dihedral group of degree 3p that 

are not p-group he came out with a nice result that the dihedral 

group of degree 3p are imprimitive and soluble. 

 

Preliminaries 

The following definitions are important to this research work: 

 

Permutation Group 

A permutation group is a group 𝐺 whose elements are 

permutations of a given set X and whose group operation is 

the composition of functions in 𝐺 which are a bijection from 

the set X to itself. 

 

Symmetric Group 

The symmetric groups Sn is the group of permutations on a set 

with n elements. The symmetric group of degree n on a finite 

set is define to be the group whose elements are all bijective 

functions from X to X and whose group operation is that of 

function composition. Permutations and bijection are two the 

same operation meaning rearrangement. 

 

Abelian Group 

A group G is called abelian if for every 𝑎, 𝑏 ∈ 𝐺, 𝑎𝑏 = 𝑏𝑎. 
Otherwise 𝐺 is said to be non-abelian. 

 

Dihedral Group 

A dihedral group Dn is a symmetric group for an n-sided 

regular polygon for n>2. Dihedral group are non-abelian 

permutation groups with group order 2n. We can 

mathematically write dihedral group 𝐷𝑛 = {𝑥, 𝑦|𝑥𝑛 = 𝑦2 =
1, 𝑦𝑥 = 𝑥𝑛−1𝑦 = 𝑥−1𝑦} 
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Stabilizer 

A kind of dual role is played by the set of elements in 𝐺 which 

fix a specified point α. This is called the stabilizer of α in G 

and is denoted by 𝐺𝛼: = {𝑥 ∈ 𝐺|𝛼𝑥 = 𝛼 }.  
 

Transitive Group 

A group 𝐺 acting on a set Ω is said to be transitive on Ω if it 

has one orbit and so αG =Ω for all α∈ Ω. Equivalently, 𝐺 is 

transitive if for every pair of point α, δ ∈ Ω there exists 𝑔 ∈Ω 

such that 𝛼𝑔=β. A group which is not transitive is called 

intransitive. 

If |Ω|≥2, we say that the action of 𝐺 on Ω is doubly transitive 

if for any α1, α2∈Ω such that α1≠α2 and 𝛽1, 𝛽2 ∈ Ω such that 

𝛽1 ≠ 𝛽2 there exist 𝑔∈G such that 𝛼1
𝑔

= 𝛽1 , 𝛼2
𝑔

= 𝛽2. 

The group G is said to be k-transitive (or k-fold transitive) on 

Ω if for any sequences 𝛼1, 𝛼2, . . . , 𝛼𝑘  such that 𝛼𝑖 ≠ 𝛼𝑗when 

𝑖 ≠ 𝑗 and 𝛽1 , 𝛽2 , . . . , 𝛽𝑘 such that 𝛽𝑖 ≠ 𝛽𝑗  when 𝑖 ≠ 𝑗of k 

element on Ω, there exists 𝑔∈G such that 𝛼1
𝑔

= 𝛽1 𝑓𝑜𝑟 1 ≤
𝑖 ≤ 𝑘 

Thus, 

𝐺1 = {(1), (12), (13), (23), (123), (132)} is transitive and 

𝐺2 = {(1), (12), (34), (12)(34)} is intransitive. 

 

Imprimitivity 

A subset ∆ of Ω is said to be a set of imprimitivity for the 

action of G on Ω, if for each 𝑔∈G, either ∆𝑔= ∆ or ∆𝑔 and ∆ 

are disjoint. In particular, Ω itself, the 1-element subsets of Ω 

and the empty set are obviously sets of imprimitivity which 

are called trivial set of imprimitivity. 

Example  

The group of symmetry 𝐷4 =
(1), (1234), (13)(24)(1432), (13), (24), (12)(34), (14)(23)}
, of the square with vertices 1,2,3,4 is not primitive. For take 

𝐺1 = {(1), (24)} = reflection in the  

line joining vertices 1 and 3 = stabilizer of the point 1, and 

𝐻 = {(1), (24), (13) = reflection in m the line joining 

vertices 2 and 4, (13)(24) = rotation in 1800, 𝐻 =
{(1), (24), (13), (13)(24)}. Thus G1 < H < G. 

 

Primitive 

A permutation group G acting on a nonempty set Ω is called 

primitive if G acts transitively on Ω and G preserves no non 

trivial partition of Ω. Where non trivial partition means a 

partition that is not a partition into singleton set or partition 

into one set Ω. In other word, a group G is said to be primitive 

on a set Ω if the only sets of imprimitivity are trivial ones 

otherwise G is imprimitive on Ω, example the group (e *) For 

each 𝑔 ∈ 𝐺, ∆𝑔= ∆ , ∆𝑔 ∩ ∆≠ ∅. Thus 𝐺 = 𝑆3 = { . . . } is 

primitive.  

 

p-subgroup 

Let G be a group. Let H be a subgroup of G. if H is a p-group, 

then H is a p-subgroup of G. Thus, A p-subgroup of G is a 

subgroup whose order is some power of p. 

 

Sylow p-subgroup 

A Sylow p-subgroup of G is a subgroup whose order is 𝑝𝑘, 

where k is the largest natural number for which 𝑝𝑘 divides |G|. 

 

Normal group 

A subgroup N of a group G is normal in G if the left and right 

cosets are the same, that is if 𝑔𝐻 = 𝐻𝑔 for every 𝑔∈G and a 

subgroup H of G. 

 

 

 

Semi-regular and Regular Group 

A permutation group G is called semi-regular if one is the only 

element of G which fixes each point. In other word, G is semi-

regular when Gα=1 for each α∈G. A transitive semi-regular is 

called a regular group. Thus, the group 

G={(1),(12)(34),(14)(23),(13)(24)} is a regular group. 

Clearly subgroups of semi-group are semi-regular; 1 is semi-

regular. As we get that in a semi –regular group 𝐺, orbits have 

the same size, namely |𝐺|, and hence, the order of 𝐺 divides 

the degree of 𝐺. Furthermore, in a regular group 𝐺 we have 

that |𝐺| = |α𝐺| = |Ω|, αϵΩ and so the order and the degree of 

𝐺 coincide. 

 

Integers Modulo m  

This is a finite group that is called the additive group of the 

residue class of integers modulo m. it is denoted by 𝑍𝑚 

 

MATERIALS AND METHODS 

Methodology 

In this work, acknowledgment of the basic facts from both the 

theory of abstract finite groups and the theory of permutation 

will be assumed throughout. Key numerical methods are 

employed to calculate invariants and test conditions for 

primitivity and regularity of these groups. (Rotman, 1999), 

(Humphreys, 1996). 

Relevant theorems and results are given and quoted with 

example where necessary, in order to enhance proper 

understanding of the subject matter.  

 

Theorem 1 (Cayley,1854) 

Any finite group G is isomorphic to a subgroup of the 

symmetric group 𝑆𝑛 of degree n, where 𝑛 = |𝐺|. 
Proof: 

Let G act on itself by right multiplication 𝑔ℎ = 𝑔h for all 

𝑔, ℎ ∈ 𝐺. If 𝑔ℎ = 𝑔 then 𝑔h = 𝑔 and so ℎ = 1. That is, the 

kernel of the action is {1}. The mapping f:G → sym(𝐺) 

define by 𝑓𝑔 → 𝑓𝑔where 𝛼𝑓𝑔 = 𝛼𝑔 for any 𝛼 ∈ 𝐺 is a 

homomorphism. Then 𝐺 𝐾𝑒𝑟𝑓⁄ ≅ im f but 𝑘𝑒𝑟𝑓 = {1} and 

𝑖𝑚𝑓 ≤ 𝑠𝑦𝑚(𝐺) = 𝑆𝑛. 

Accordingly, 𝐺 ≤ 𝑆𝑛. In general, we have that if G acts on Ω 

with k kernel of the action then 𝐺/𝐾 ≤ sym(𝛺).  

 

Fundamental Counting Lemma or Orbit formula (Dixon 

and Mortimer, 1996) 

Let G act on Ω and α ∈ Ω. If G is finite then |G| = |Gα||αG|.  

Proof: 

We determine the length |αG| of the αG, we have that  

if and only if αxy-1= α if and only if αxy ∈Gα if and only if Gαx 

= Gαy. Thus there is one to one correspondence given by the 

mapping Gαx→αx between the set of right cosets Gα and the 

G-orbit αG in Ω. Accordingly, as G is finite we have that 

|G:Gα|=|αG| and so |G| = |Gα||αG|. 

 

Theorem 2 (Sylow, 1872) 

Let G be a finite group. If |𝐺| = 𝑝𝑟𝑚(𝑝, 𝑚) = 1, then 

i. There is at least one Sylow p-subgroup H of G. 
ii. If B is any p-subgroup of G, then 𝐵 ⊆  𝑥−1𝐻𝑥 for 

some𝑥 ∈ 𝐺. 
iii. If K is any Sylow p-subgroup of G, 

K=𝑔−1𝐻𝑔 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑔 ∈ 𝐺 

iv. If n is the number of Sylow p-subgroups of 𝐺, then n 

divides m and n ≡1modp. 
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Corollary (Sylow, 1872) 

Let 𝐺 be a finite group and H a Slow p-subgroup of 𝐺. Then 

H is the only Sylow p-group of G if and only if H is normal in 

𝐺. 

Proof:  

By Sylow theorem, the Sylow p-Subgroups of 𝐺 are the 

elements of the sets 𝑔−1𝐻𝑔|𝑔 ∈ 𝐺 and this reduces to a 

singleton set if and only if 𝑔−1𝐻𝑔 = 𝐻 ∀𝑔 ∈ 𝐺; that is 

precisely when H is normal in 𝐺; 

 

Corollary (Thanos, 2006) 

Let p be prime. If H ≤ G and G/H = p or p2 then G/H is abelian. 

That is, every group of order p or p2 is abelian. 

Proof: 

Let |G| = p2. If |Z(G)| = p2, then certainly 𝐺 is abelian, so 

suppose that |Z(G)| = p. Then G/Z(G) is a cyclic group of 

order p, generated say by the coset Z(G)a; then every element 

of 𝐺 has the form zai , where z ∈ Z(G) and i = 0,1,..., p −1. By 

inspection, these elements commute. 

Thus, 𝐺 is abelian. 

 

Lemma (Passman & Benjamin, 1968) 

Let 𝐺 be a dihedral group of any order, then 𝐺 is transitive. 

Proof: 

For given αi, αj as any two vertices of the regular polygon with 

i< j, we readily see that 

(α1,α2,…,αi,…,αj,…,αn)j-I is the rotation about the center of the 

polygon through angle 2𝜋𝑐 𝑛⁄ , (where n is the number of 

edges of the polygon ) which take αi to αj. As such 𝐺 is 

transitive. 

 

Theorem 3 (Passman & Benjamin, 1968) 

Let 𝐺 be a non-trivial transitive permutation group on Ω. Then 

𝐺 is primitive iff Gα, (α∈Ω) is a maximal subgroup of 𝐺 or 

equivalently, 𝐺 is imprimitivity if and only if there is a 

subgroup H of 𝐺 properly lying between 𝐺𝛼, (α∈Ω) and 𝐺. 

Proof:: 

Suppose 𝐺 is imprimitive and ψ a non-trivial subset of 

imprimitivity of 𝐺. 

Let 𝐻 = {𝑔 ∈ 𝐺|ψ𝑔 = ψ} . 
Clearly H is a subgroup of 𝐺 and a proper subgroup of G 

because 𝜓 ⊂ Ω and 𝐺 is transitive. 

Now choose 𝛼 ∈ 𝜓. If 𝑔∈G then 𝛼𝑔 = 𝛼, showing that 𝛼 ∈
ψ ∩ ψ𝑔and so ψ = ψ𝑔. 

Hence 𝐺 ≤ 𝐻.  

Hence, 𝐺𝛼 ≤ 𝐻 ≤ 𝐺. 

Since |𝜓| = 1, choose 𝛽 ∈ 𝜓 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛽 ≠ 𝛼. By 

transitivity of 𝐺, there exist some ℎ ∈ 𝐺 with 𝛼ℎ =
𝛽 𝑠𝑜 𝑡ℎ𝑎𝑡 ℎ ∈ 𝐺𝛼. Now 𝛽 ∈ ψ ∩ ψℎ so ψ = ψ𝑔and h ∈ H −
𝐺ℎ . Thus, 𝐻 ≠ 𝐺𝛼 Hence 𝐺𝛼 is not a maximal subgroup. 

Conversely, suppose that𝐺𝛼 ≤ 𝐻 ≤ 𝐺 for some subgroup H.  

Let ψ = α𝐻.  

Since 𝐻 > 𝐺𝛼, |𝜓| ≠ 1.  

Now If 𝜓 = Ω, then H is transitive on Ω and hence Ω =
|𝐺: 𝐺𝛼| = |𝐻: 𝐺𝛼| showing that H = G, a contradiction. 

Hence, 𝜓 = Ωψ = Ω. Now we shall show that ψ is a subset of 

imprimitivity of 𝐺. 

Let ℎ ∈ 𝐺and𝛽 ∈ ψ ∩ ψ𝑔 then 𝛽 = 𝑎ℎ = 𝑎ℎ𝑔for some h, h'∈ 

H.  

Hence 𝛼ℎ𝑔ℎ−1 = 𝛼. So ℎ𝑔ℎ−1 ∈ 𝐺𝛼 < 𝐻. 

Thus ψ = ψ𝑔. Hence ψ is a non-trivial subset of 

imprimitivity. So 𝐺 is imprimitive. 

 

Theorem 4 (Passman & Benjamin, 1968) 

Let G be a transitive permutation group of prime degree on Ω. 

Then 𝐺 is primitive. 

Proof:  

Now since 𝐺 is transitive, it permutes the sets of imprimitivity 

bodily and all the sets have the same size. But Ω =∪ |Ω𝑖|, 
Ω𝑖being the sets of imprimitivity. As |Ω| is prime we Have 

that either each |Ω𝑖 |=1 or Ω is the set of imprimitivity. So G is 

primitive. 

 

Theorem 5 (Audu, et al, 2000) 

Let 𝐺 be a transitive abelian group. Then, 𝐺 is regular. 

Proof: 

Fix 𝛼 ∈ Ω. If 𝛽 ∈ Ω such that ∃ 𝑔 ∈ 𝐺 with αG =

β. Now Gα = Gα
g

= (Gα)g = g-1(Gα)g = Gα (since 𝐺 is 

abelian). As α, β are arbitrary, we get that Gα =1 since 𝐺 is 

transitive, it is regular. 

 

Proposition (Neumann, 1980) 

A transitive group is regular if and only if its order and degree 

are equal 

Proof:  

Let 𝐺 be a regular on Ω. of degree n since |𝛼𝐺| = |𝐺| and 𝐺 

is transitive Hence |𝐺| = 𝑛, conversely, by transitivity of 𝐺 it 

follows that, 𝑛|𝐺𝛼| = |𝐺|. Hence 𝐺𝛼 = 1, since |𝐺| = 𝑛 by 

assumption Hence 𝐺 is semi-regular, but 𝐺 is transitive so 𝐺 

is regular 

 

Proposition (Neumann, 1980) 

An intransitive group is irregular if and only if its order and 

degree are not equal 

Proof: 

Let 𝐺 be an irregular group on Ω. of degree n, since |𝛼𝐺| ≠
|𝐺| and 𝐺 is intransitive Hence |𝐺| = 𝑛. Conversely by 

transitivity of 𝐺 it follows that, 𝑛|𝐺𝛼| = |𝐺|. Hence |𝐺𝛼| ≠ 1, 

since |𝐺| = 𝑛 by assumption. Hence 𝐺 is Semi-regular, but 𝐺 

is intransitive so 𝐺 is irregular. 

 

Regularity Property (Dedekind, 1879) 

A group 𝐺 is called regular if every subgroup of 𝐺 is normal. 

Proof: 

The wreath product H≀G is defined as the semi-direct product 

HX⋊G, where HX is the direct product of X copies of H. The 

elements of H≀G can be represented as pairs (f, g), where 

f:X→H is a function and g ∈G. Multiplication in H≀G is 

defined component-wise as (f1,g1)⋅(f2,g2)=(f1f2,g1g2), 

where f1f2 is the point-wise product of functions. Consider a 

subgroup K of H≀G. Since HX is a normal subgroup of H≀G, 

the projection of K onto HX is also a normal subgroup. The 

projection map π:H≀G→HX is defined as (f, g)↦f. This is a 

group homomorphism, and its kernel is the set of elements of 

the form (1,g) for all g ∈ G, which is isomorphic to G. 

Therefore, HX is a normal subgroup of H≀G. Let K be a 

subgroup of H≀G, and let a ∈ H≀G. We need to show that 

aKa−1=K for all a ∈ H≀G. Consider an element a = (fa, ga

)∈H≀G. The conjugate of K by a is given by aKa−1={(fakfa−1

,ga)∣ k ∈ K}. Since HX is a normal subgroup, the conjugation 

fakfa−1 lies in HX. Therefore, aKa−1⊆HX×G. The subgroup 

HX is normal in H≀G, and K∩HX is normal in HX. As HX is 

normal in H≀G and K∩HX is normal in HX, the subgroup K is 

normal in H≀G. 

Thus, the wreath product H≀G is regular, as every subgroup is 

normal. 

 

Theorem 6 

Let 𝐻 ≤ 𝐺 be groups and 𝑔 ∈ 𝐺. Then: (i) 𝑔 ∈ 𝑔𝐻 (ii) Two 

left cosets of H in G are either identical or disjoint. (iii) The 

number of elements in 𝑔𝐻 is |𝐻|  
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Proof::  

(i) Since, 1 ∈ 𝐻, we have that 𝑔 −1 ∈ 𝑔𝐻 (ii) Take the left coset 

aH of H in G. By (i) above, 𝑎 ∈ 𝑎𝐻. Suppose that 𝑎 ∈ 𝑏𝐻 for 

some 𝑏 ∈ 𝐺. Then we have to show that 𝑎𝐻 = 𝑏𝐻 since Since 

𝑎 ∈ 𝑏𝐻. We have that, 𝑎 = 𝑏ℎ1 for some ℎ1 ∈ 𝐻, so that for 

any ℎ ∈ 𝐻,. 𝑎ℎ = (𝑏ℎ1 )ℎ = 𝑏(ℎ1ℎ) ∈ 𝑏𝐻 That is, 𝑎𝐻 ⊆ 𝑏𝐻: 

and, Thus 𝑏ℎ = (𝑎ℎ1
 −1 )ℎ = 𝑎(ℎ1

 −1ℎ) ∈ 𝑎𝐻 That is, 𝑏𝐻 ⊆ 𝑎𝐻. 

Thus 𝑎𝐻 = 𝑏𝐻. It follows that if 𝑎𝐻 ∩ 𝑏𝐻 ≠ ∅, then 𝑎𝐻 = 𝑏𝐻 

and as such distinct left cosets are disjoint (iii) The map 𝐻 → 

𝑔𝐻 defined by ℎ → 𝑔ℎ is bijective. Thus, |𝐻| = |𝑔𝐻|  

 

Theorem 7 (Langrange’s Theorem)  

The order of a subgroup of a finite group is a factor of the 

order of the group.  

Proof:  

Let |𝐺| = 𝑛 < ∞ 𝑙𝑒𝑡 𝐻 ≤ 𝐺 and let |𝐻| = 𝑚 Now, 𝐺 is the union 

of pairwise disjoint cosets of H. Let there be j distinct cosets 

of 𝐻 in 𝐺. We know that for any 𝑎 ∈ 𝐺 |𝑎𝐻| = |𝐻| = 𝑚. 

Therefore, the total number of elements in 𝐺 is mj So n=mj, 

that is, m divides n and the result follow |𝐺| = |𝐺: 𝐻||𝐻|. 

 

Theorem 8 

Every subgroup of a cyclic group is cyclic.  

Proof: 

Let 𝐻 ≤ 𝐺 = 〈𝑔〉 If 𝐻 = {1}, 𝑡ℎ𝑒𝑛 𝐻 = {𝑔 0 } is trivially cyclic. 

Then 𝐻 ≠ {1} and choose ℎ ∈ 𝐻. Then ℎ = 𝑔 𝑠 for some 𝑠 ∈ 𝑍. 

And ℎ −1 = 𝑔 –𝑠. Thus there are positive integers 𝑡 ∋ 𝑔 𝑡 ∈ 𝐻. 

Take the least of such positive integers and call it I. By the 

well-ordering principle of natural number, any set of positive 

integers contains a smallest number. By division algorithm we 

may write 𝑆 = 𝑞𝑙 + 𝑟, 0 ≤ 𝑟 < 𝑙. 𝑇ℎ𝑒𝑛 ℎ = 𝑞 𝑠 = 𝑔 𝑞𝑙+𝑟 = (𝑔 𝑙 ) 
𝑞𝑔 𝑟 so that 𝑔 𝑟 = (𝑔 𝑙 )–𝑞 ℎ ∈ 𝐻 If 𝑟 ≠ 0,𝑡ℎ𝑒𝑛 𝑟 < 𝑙 which 

contradicts the choice of l. thus, 𝑟 = 0 𝑎𝑛𝑑 𝑠𝑜 ℎ = (𝑔 𝑙 ) 𝑞 Hence 

H⊆ 〈𝑔 𝑙 〉. 𝑛𝑜𝑤 𝑔 𝑙 ∈ 𝐻 𝑎𝑛𝑑 𝑠𝑜 〈𝑔 𝑙 〉 ∈ 𝐻. Accordingly, 𝐻 = 

〈𝑔 𝑙 〉 and the theorem follows.  

 

Theorem 9 (First Sylow’s Theorem) 

Let G be a finite group, p a prime and 𝑝 𝑟 the highest power 

of P diving the order of G. Then there is a subgroup of G of 

order of G. Then there is a subgroup of G of order 𝑝 𝑟. 

Proof:;  

We will prove the theorem by induction on the order n of G. 

For |𝐺| = 1 the theorem is trivial. Assume 𝑛 > 1 and the 

theorem is true for groups of order < 𝑛. Suppose |𝑍(𝐺)| = 𝑐 We 

have two possibilities; (i) 𝑐|𝑝 or (ii) 𝑝 † 𝑐,  

i. Suppose 𝑐|𝑝 𝑍(𝐺) is an abelian group. Therefore, Z(G) has 

an element of order p. Let N be a cyclic subgroup of Z(G) 

is normal in G consider G/N. Then |𝐺/𝑁| = 𝑛/𝑝 by theorem 

3.1 Hence by our induction assumption, G/N has a 

subgroup H of order 𝑝 𝑟−1 therefore ∃ a subgroup H of 𝐺∃ 

𝐻⁄𝑁 = �̅� as 𝑝 𝑟−1 = |𝐻| = |𝐻|⁄|𝑁| = |𝐻|⁄𝑝, We conclude that 

|𝐻| = 𝑞 𝑟. Thus, in this case, G has a subgroup of order 𝑝 
𝑟.  

ii. Suppose 𝑝|𝑐. The class equation for G is of the form |𝐺| = 

|𝑍(𝐺)| + ∑ [𝐺: 𝐶(𝑅)] 𝑅∈ℜ. Since 𝑝||𝐺| 𝑎𝑛𝑑 𝑝 † 𝑐, we have 

𝑝 † ∑ [𝐺: 𝐶(𝑅)] 𝑅∈ℜ . 

Therefore, for at least one 𝑅 ∈ ℜ∗, 𝑝 † |𝐺: 𝐶(𝑅)| But |𝐺| = |𝐺: 

𝐶(𝑅)|/|𝐶(𝑅)| by Theorem 3.1 Hence 𝑝 𝑟 ||𝐶(𝑅)|, 𝑆𝑖𝑛𝑐𝑒 𝑝 𝑟 ||𝐺|. 

Now |𝐶(𝑅)| ≠ |𝐺|; 𝑓𝑜𝑟 𝑖𝑓 |𝐶(𝑅)| = |𝐺|, Then C(R) = G and 𝑅 ∩ 

𝑍(𝐺) = 𝜙. Thus, by the induction assumption, C(R) has a 

subgroup H of order Pr. Consequently, so does G. In either 

case we have found a subgroup H of order Pr. AS require 

 

RESULTS AND DISCUSSION 

In this section, we Generate Dihedral groups of degree 2p. We 

stated a proposition and provided its proofs using the concepts 

of Group Theory. Also is the introduction and test of primitive 

and regular nature of the groups generated, GAP 4.11.1 was 

use to validate our claim. Application of this work was 

presented in Musical note. 

Throughout the letter p is an odd prime number  

 

Primitivity and Regularity of Dihedral Group of Degree 

2p 

Our main result on the dihedral group of degree 2p is as 

below. 

 

Proposition 1 

Suppose G is a dihedral group of degree 2p. Then G is 

imprimitive and irregular. 

Proof: 

Let |G| = 2×2p and Ω = {1, 2, 3,…….., 2p}. That G is 

transitive follows easily from a lemma by Passman Now, 

name the vertices of G as 1,2,3,…, 2p and let l be the line of 

symmetry joining the middle of the vertex 1 and with the 

middle of the vertices 𝑝 𝑎𝑛𝑑 𝑝 + 1 𝑠𝑜 𝑡ℎ𝑎𝑡  
𝛼 = (2, 2p)(3, 2p − 1) … (𝑝, 𝑝 + 1), is the reflection in 𝑙.  
Then 𝐺1 = {(1), (2, 2p)(3, 2p − 1) … (𝑝, 𝑝 + 1 )} is the 

stabilizer of the point 1. We readily see that 𝐺1 is a non-

identity proper subgroup of G which has  

𝐻 =  {(1), (2, 2𝑝), (3, 2𝑝 − 1), (4, 2𝑝 − 2), … , (𝑝, 𝑝 +
1), 𝛼}… 

as a subgroup properly lying between G1 and G. i.e, G1 < H < 

G. It follows by virtue of Theorem 3, G is imprimitive proved.  

Now |G| = 2×2p = 22p. Therefore, G has Sylow 2-subgroups 

(Syl2 (G)) of order 4 and Sylow p-subgroups (Sylp (G)) of 

order p. 

Let np denote the number of Sylow p-subgroups in G of order 

p. Then, by Sylow Therefore np ≡1modulo p and np divides 4 

⇒ np = 1 (for p > 3)  

This clearly implies that Sylp (G) say H is unique and hence 

normal in G from a Corollary by Thanos. H has order p 

implying |G:H| = 1, therefore the factor group G/H is of order 

p and hence abelian. However, there exist a subgroup of G say 

K = Syl2 (G) which is not normal in G since n2 = {1, p}. Thus, 

G is irregular by Dedekind. Also, from (Orbit-formula) 
|𝛼𝐺||𝐺𝛼| = |𝐺| we have that, |𝐺𝛼|  = 2 ≠ 1 and again, |G| = 

4p ≠ 2p = |Ω| by theorems 5 and a Proposition by Neuman, 

that G is irregular as required 

 

Comparison of Result 1 with a Standard Programme 

Groups, Algorithms, and Programming 

We shall now generate a dihedral groups of degree 2p where 

(p = 3) regular polygon and discuss whether they are 

transitive, primitive and regular using the concepts of Sylow 

p-subgroups and group actions. We use GAP to generate the 

group. 
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gap> G :=DihedralGroup(IsGroup,12); 
Group([ (1,2,3,4,5,6), (2,6)(3,5) ]) 

gap> Order(G); 

12 
gap> Elements(G); 

[ (), (2,6)(3,5), (1,2)(3,6)(4,5), (1,2,3,4,5,6), (1,3)(4,6), (1,3,5)(2,4,6), (1,4)(2,3)(5,6), (1,4)(2,5)(3,6), (1,5)(2,4), (1,5,3)(2,6,4), 

(1,6,5,4,3,2), (1,6)(2,5)(3,4) ] 
gap> NG :=NormalSubgroups(G); 

[Group([(1,2,3,4,5,6),(2,6)(3,5)]),Group([(1,2,3,4,5,6),(1,3,5)(2,4,6)]),Group([(1,6)(2,5)(3,4),(1,3,5)(2,4,6)]),Group([(2,6)(3,5),(1,3,5)(

2,4,6)]),Group([(1,4)(2,5)(3,6)]),Group([(1,3,5)(2,4,6)]),Group(())] 
gap> SG :=AllSubgroups(G); 

[Group(()),Group([(2,6)(3,5)]),Group([(1,3)(4,6)]),Group([(1,5)(2,4)]),Group([(1,4)(2,5)(3,6)]),Group([(1,2)(3,6)(4,5)]),Group([(1,4)(

2,3)(5,6)]),Group([(1,6)(2,5)(3,4) ]), 
Group([(1,3,5)(2,4,6)]),Group([(2,6)(3,5),(1,4)(2,5)(3,6)]),Group([(1,5)(2,4),(1,4)(2,5)(3,6)]),Group([(1,3)(4,6),(1,4)(2,5)(3,6)]),Group

([ (1,3,5)(2,4,6),(2,6)(3,5)]), Group([(1,3,5)(2,4,6),(1,2,3,4,5,6)]),Group([(1,3,5)(2,4,6),(1,2)(3,6)(4,5)]),Group([ 

(1,3,5)(2,4,6),(2,6)(3,5),(1,2,3,4,5,6)]) ] 
gap> Size(NG); 

7 

gap> IsTransitive(G); 

true 

gap> IsPrimitive(G); 

false 
gap> IsAbelian(G); 

false 

gap> IsRegular(G); 
false 

gap> OrbitsDomain(G); 
[ [ 1, 2, 3, 6, 4, 5 ] ] 

gap> S2 :=SylowSubgroup(G,2); 

Group([ (2,6)(3,5), (1,4)(2,5)(3,6) ]) 
gap> Order(S2); 

4 

gap> List(S2); 
[ (), (2,6)(3,5), (1,4)(2,5)(3,6), (1,4)(2,3)(5,6) ] 

gap> S3 :=SylowSubgroup(G,5); 

Group(()) 
gap> S3 :=SylowSubgroup(G,3); 

Group([ (1,3,5)(2,4,6) ]) 

gap> Order(S3); 
3 

gap> List(S3); 

[ (), (1,5,3)(2,6,4), (1,3,5)(2,4,6) ] 
gap> IsNormal(G,S3); 

true 

gap> Stb1 :=Stabilizer(G,1); 
Group([ (2,6)(3,5) ]) 

gap> Order(Stb1); 

2 
gap> Elements(Stb1); 

[ (), (2,6)(3,5) ] 

gap> CC :=ConjugacyClasses(G); 
[ ()^G, (2,6)(3,5)^G, (1,2)(3,6)(4,5)^G, (1,2,3,4,5,6)^G, (1,3,5)(2,4,6)^G, (1,4)(2,5)(3,6)^G ] 

gap> Size(CC); 

6 
gap> List(CC,X->Order(Representative(X))); 

[ 1, 2, 2, 6, 3, 2 ] 

gap> Display (CharacterTable(G)); 
CT1 

 

 2 2 2 2 1 1 2 
 3 1 . . 1 1 1 

 

 1a 2a 2b 6a 3a 2c 
 2P 1a 1a 1a 3a 3a 1a 

 3P 1a 2a 2b 2c 1a 2c 

 5P 1a 2a 2b 6a 3a 2c 
 

X.1 1 1 1 1 1 1 

X.2 1 -1 -1 1 1 1 
X.3 1 -1 1 -1 1 -1 

X.4 1 1 -1 -1 1 -1 

X.5 2 . . 1 -1 -2 
X.6 2 . . -1 -1 2 

gap> 
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From the Gap Result above the group of symmetry G = D12 

of the regular polygon viz:  

Now |D12 | = 12 and Ω = {1,2,3,4,5,6} is the set of points of 

G. It follows from a Lemma by Passman that G is transitive 

as we can see from the result above 𝛼𝐺 = Ω ∀𝛼 ∈ Ω. Also the 

stabilizer of the point 1 in G is given by G1= {(),(2,6)(3,5)} 

which is obviously a non-identity proper subgroup of G. we 

readily see from the subgroups of G that G has a subgroup. 

H= {[(),(2,6)(3,5),(1,4)(2,5)(3,6),(1,4)(2,3)(5,6)]} 

 H=Syl2(G) properly lying between G1 and G that is 𝐺1 <
𝐻 < 𝐺 hence G is imprimitive by theorem 3 

D12 = {(),(2,6)(3,5),(1,2)(3,6)(4,5),(1,2,3,4,5,6),(1,3)(4,6), 

(1,3,5)(2,4,6),(1,4)(2,3)(5,6),(1,4)(2,5)(3,6),(1,5)(2,4),(1,5,3)

(2,6,4),(1,6,5,4,3,2),(1,6)(2,5)(3,4)} 

Now |D12| = 12 = 22∙3  

i. The Sylow 2-subgroups of D12 have order 4. The 

number is congruent to 1 modulo 2 and it divides 3, n2 

= {1, 3,9,15,21,27, . . . } hence, not normal in D12. 

ii. The Sylow 3-subgroups of D12 have order 3 and it 

divides 4. We readily see that D12 has a normal Sylow 

3-subgroup given by K = {(),(1,5,3)(2,6,4),(1,3,5) 

(2,4,6)}  

Hence n3 = {1}  

This implies by Sylow’s, K is normal in D12 . K has order 3 

and | D12:K| = 4, therefore the factor group D12/K is of order 4 

which is a p-Group and hence abelian as in a Corollary by 

Thanos . Now the stabilizer of the point 1 in D12 is given by 

D12(1) = {(1),(2,10)(3,9)(4,8)(5,7)}. We can see that |D12| ≠ 

Ω Thus |D12(1)| = 2, ∀ α ∈ Ω where Ω = {1, 2,...,6}, Since |Dα 

(1)| = 2 therefore, D12 is transitive and not semi regular, then 

as |D12(1)| ≠ 1 it implies that D12 is irregular by theorems 5 

and Proposition by Neuman. 

 

Comparison of Result 1 With A Standard Programme 

Groups, Algorithms, and Programming 

We shall now generate dihedral groups of degree 2p regular 

polygon where (p = 5) and discuss whether they are transitive, 

primitive and regular using the concepts of Sylow p-

subgroups and group actions. We use GAP to generate the 

group. 

 
GAP 4.11.1 of 2021-03-02 

GAP │ https://www.gap-system.org 

└───────┘ Architecture: x86_64-pc-cygwin-default64-kv7 

Configuration: gmp 6.2.0, GASMAN, readline 

Loading the library and packages ... 

Packages: AClib 1.3.2, Alnuth 3.1.2, AtlasRep 2.1.0, AutoDoc 2020.08.11, AutPGrp 1.10.2, Browse 1.8.11, 

  

gap> # Dihedral group of Degree 2p (where p = 5) # 

gap> G:=DihedralGroup(IsGroup,20); 

Group([ (1,2,3,4,5,6,7,8,9,10),(2,10)(3,9)(4,8)(5,7) ]) 

gap> Order(G); 

20 

gap> Elements(G); 

[(),(2,10)(3,9)(4,8)(5,7),(1,2)(3,10)(4,9)(5,8)(6,7),(1,2,3,4,5,6,7,8,9,10),(1,3)(4,10)(5,9)(6,8),(1,3,5,7,9)(2,4,6,8,10),(1,4)(2,3)(5

,10)(6,9)(7,8),(1,4,7,10,3,6,9,2,5,8),(1,5)(2,4)(6,10)(7,9),(1,5,9,3,7)(2,6,10,4,8),(1,6)(2,5)(3,4)(7,10)(8,9),(1,6)(2,7)(3,8)(4,9)(5

,10),(1,7)(2,6)(3,5)(8,10),(1,7,3,9,5)(2,8,4,10,6),(1,8)(2,7)(3,6)(4,5)(9,10),(1,8,5,2,9,6,3,10,7,4),(1,9)(2,8)(3,7)(4,6),(1,9,7,5,3)(

2,10,8,6,4),(1,10,9,8,7,6,5,4,3,2),(1,10)(2,9)(3,8)(4,7)(5,6)] 

gap> SG :=AllSubgroups(G); 

[Group(()),Group([(2,10)(3,9)(4,8)(5,7)]),Group([(1,3)(4,10)(5,9)(6,8)]),Group([(1,5)(2,4)(6,10)(7,9)]),Group([(1,7)(2,6)(3,5)(

8,10)]),Group([(1,9)(2,8)(3,7)(4,6)]),Group([(1,6)(2,7)(3,8)(4,9)(5,10)]),Group([(1,2)(3,10)(4,9)(5,8)(6,7)]),Group([(1,4)(2,3)(

5,10)(6,9)(7,8)]),Group([(1,6)(2,5)(3,4)(7,10)(8,9)]),Group([(1,8)(2,7)(3,6)(4,5)(9,10)]),Group([(1,10)(2,9)(3,8)(4,7)(5,6)]),Gr

oup([(2,10)(3,9)(4,8)(5,7),(1,6)(2,7)(3,8)(4,9)(5,10)]),Group([(1,7)(2,6)(3,5)(8,10),(1,6)(2,7)(3,8)(4,9)(5,10)]),Group([(1,3)(4,

10)(5,9)(6,8),(1,6)(2,7)(3,8)(4,9)(5,10)]),Group([(1,9)(2,8)(3,7)(4,6),(1,6)(2,7)(3,8)(4,9)(5,10)]),Group([(1,5)(2,4)(6,10)(7,9),(

1,6)(2,7)(3,8)(4,9)(5,10)]),Group([(1,3,5,7,9)(2,4,6,8,10)]),Group([(1,3,5,7,9)(2,4,6,8,10),(2,10)(3,9)(4,8)(5,7)]),Group([(1,3,5,

7,9)(2,4,6,8,10),(1,2,3,4,5,6,7,8,9,10)]),Group([(1,3,5,7,9)(2,4,6,8,10),(1,2)(3,10)(4,9)(5,8)(6,7)]),Group([(1,3,5,7,9)(2,4,6,8,10

),(2,10)(3,9)(4,8)(5,7),(1,2,3,4,5,6,7,8,9,10)])] 

gap> Size(SG); 

22 

gap> NG :=NormalSubgroups(G); 

[Group([(1,2,3,4,5,6,7,8,9,10),(2,10)(3,9)(4,8)(5,7)]),Group([(1,2,3,4,5,6,7,8,9,10),(1,3,5,7,9)(2,4,6,8,10)]),Group([(1,10)(2,9)(

3,8)(4,7)(5,6),(1,3,5,7,9)(2,4,6,8,10)]),Group([(2,10)(3,9)(4,8)(5,7),(1,3,5,7,9)(2,4,6,8,10)]),Group([(1,6)(2,7)(3,8)(4,9)(5,10)])

,Group([(1,3,5,7,9)(2,4,6,8,10)]),Group(())] 

gap> Size(NG); 

7 

gap> IsTransitive(G); 

true 

gap> IsPrimitive(G); 

false 

gap> IsAbelian(G); 

false 

gap> IsRegular(G); 

false 

gap> OrbitsDomain(G); 

[ [ 1, 2, 3, 10, 4, 9, 5, 8, 6, 7 ] ] 

gap> S2 :=SylowSubgroup(G,2); 

Group([(2,10)(3,9)(4,8)(5,7),(1,6)(2,7)(3,8)(4,9)(5,10)]) 

gap> Order(S2); 

4 
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gap> List(S2); 

[(),(2,10)(3,9)(4,8)(5,7),(1,6)(2,7)(3,8)(4,9)(5,10),(1,6)(2,5)(3,4)(7,10)(8,9)] 

gap> S5 :=SylowSubgroup(G,5); 

Group([ (1,7,3,9,5)(2,8,4,10,6) ]) 

gap> Order(S5); 

5 

gap> List(S5); 

[(), (1,5,9,3,7)(2,6,10,4,8),(1,9,7,5,3)(2,10,8,6,4),(1,3,5,7,9)(2,4,6,8,10), (1,7,3,9,5)(2,8,4,10,6)] 

gap> IsNormal(G,S2); 

false 

gap> IsNormal(G,S5); 

true 

gap> Sb1 :=Stabilizer(G,1); 

Group([(2,10)(3,9)(4,8)(5,7)]) 

gap> Order(Sb1); 

2 

gap> Elements(Sb1); 

[(), (2,10)(3,9)(4,8)(5,7)] 

gap> Sb2 :=Stabilizer(G,2); 

Group([(1,3)(4,10)(5,9)(6,8)]) 

gap> Order(Sb2); 

2 

gap> Sb5 :=Stabilizer(G,5); 

Group([(1,9)(2,8)(3,7)(4,6)]) 

gap> Order(Sb5); 

2 

gap> 

gap> Sb2 :=Stabilizer(G,2);  

Group([(1,3)(4,10)(5,9)(6,8)]) 

gap> Order(Sb2); 

2 

gap> Sb5 :=Stabilizer(G,5); 

Group([(1,9)(2,8)(3,7)(4,6)]) 

gap> Order(Sb5); 

2 

gap> 

 

Example 2 

From the Gap Result above the group of symmetry G = D20 

of the regular polygon viz:  

Now |D20 | = 20 and Ω = {1,2,3,4,5,6,7,8,9,10} is the set of 

points of G. It follows from a Lemma by Passman that G is 

transitive as we can see from the result above 𝛼𝐺 = Ω ∀𝛼 ∈
Ω. Also the stabilizer of the point 1 in G is given by 

G1={(1),(2,10)(3,9)(4,8)(5,7)} which is obviously a non-

identity proper subgroup of G. we readily see from the 

subgroups of G that G has a subgroup. 

H={[(),(2,10)(3,9)(4,8)(5,7),(1,6)(2,7)(3,8)(4,9)(5,10),(1,6)(

2,5)(3,4)(7,10)(8,9)]} 

 H=Syl2(G) properly lying between G1 and G that is 𝐺1 <
𝐻 < 𝐺 hence G is imprimitive by theorem 3 

D20={(),(2,10)(3,9)(4,8)(5,7),(1,2)(3,10)(4,9)(5,8)(6,7),(1,2,3

,4,5,6,7,8,9,10),(1,3)(4,10)(5,9)(6,8),(1,3,5,7,9)(2,4,6,8,10),(

1,4)(2,3)(5,10)(6,9)(7,8),(1,4,7,10,3,6,9,2,5,8),(1,5)(2,4)(6,1

0)(7,9),(1,5,9,3,7)(2,6,10,4,8),(1,6)(2,5)(3,4)(7,10)(8,9),(1,6)

(2,7)(3,8)(4,9)(5,10),(1,7)(2,6)(3,5)(8,10),(1,7,3,9,5)(2,8,4,1

0,6),(1,8)(2,7)(3,6)(4,5)(9,10),(1,8,5,2,9,6,3,10,7,4),(1,9)(2,8

)(3,7)(4,6),(1,9,7,5,3)(2,10,8,6,4),(1,10,9,8,7,6,5,4,3,2),(1,10

)(2,9)(3,8)(4,7)(5,6)} 

Now |D20| = 20 = 22∙5  

i. The Sylow 2-subgroups of D20 have order 4. The 

number is congruent to 1 modulo 2 and it divides 5, n2 

= {1, 5} hence, not normal in D20. 

ii. The Sylow 5-subgroups of D20 have order 5 and it 

divides 4. We readily see that D20 has a unique Sylow 

5-subgroup given by K = {(1),(1,5,9,3,7) 

(2,6,10,4,8),(1,9,7,5,3)(2,10,8,6,4),(1,3,5,7,9)(2,4,6,8,1

0),(1,7,3,9,5)(2,8,4,10,6)}  

Hence n5 = 1   

This implies by Sylow’s, K is normal in D20 . K has order 5 

and | D20:K| = 4, therefore the factor group D20/K is of order 4 

which is a p-Group and hence abelian by Thanos. Now the 

stabilizer of the point 1 in D20 is given by D20(1) = 

{(1),(2,10)(3,9)(4,8)(5,7)}. We can see that |D20| ≠ Ω Thus 

|D20(1)| = 2, ∀ α ∈ Ω where Ω = {1, 2,...,10}, Since |Dα (1)| = 2 

therefore, D20 is transitive and not semi regular, then as 

|D20(1)| ≠ 1 it implies that D20 is irregular by theorems 5 and 

Proposition by Neumann. 

 

Musical Application of Permutation Groups of degree 2p 

Using Dihedral group 

We decided to bring the application of our work through the 

means of musical note which reveal that the musical note 

operate base on their pitch classes and musical intervals. 

In fact, Group theory helps in understanding the structure and 

symmetry within musical compositions, providing insights 

into harmony, chord progressions, and more. Every finite 

group has a sylow p-subgroup which is in line with the first 

sylow’s theorem. Group theory as a Structure for Atonal 

Music Theory the numbering of the pitch classes reveals their 

isomorphism to 𝑍12. More interestingly, the group of 

transpositions and inversions, denoted 𝑇𝑛 𝑇1−𝑛⁄  is isomorphic 

to the dihedral group 𝐷12.  

Thomas M. Flore (1993). He referred to C, C#, D, D#, E, F, 

F#, G, G#, A, A#, B. As the 𝑍12 Model of pitch class.  

He constructed a musical clock as below:  
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Figure 1: Musical Clock 

 

Figure 1: Musical Clock He also said, we have a bijection 

between the set of pitch classes and he defined transposition 

as: 𝑇𝑛 ∶ 𝑍12 → 𝑍12 ∋ 𝑇𝑛 (𝑋):𝑋 + 𝑛 and invertion was also 

defined as 𝐼𝑛 ∶ 𝑍12 → 𝑍12 ∋ 𝐼𝑛 (𝑋) ∶ −𝑥 + 𝑛 where n is in 

mod12 Ada Zhang, (2009).  

Considered possibly musical notes with their corresponding 

integers as: 

 C C# D D# E F F# G G# A A# 0 1 2 3 4 5 6 7 8 9 10 He 

defined transposition, 𝑇𝑛 as that which moves a pitch-class or 

pitch-class set up by n (mod12). And inversion was also 

defined here as 𝑇𝑛𝐼 as the pitch (A) about C(0) and then 

transposes it by n. that is , 𝑇𝑛𝐼(𝑎) = −𝑎 + 𝑛(𝑚𝑜𝑑12). Then 

further, laid out all the pitches in a circular pattern on a 12-

sided polygon. That is, consider the transposition 𝑇11. It 

sends C to B, C# to C, Alissa (2009). Assert that the musical 

actions of the dihedral groups. This paper considers two ways 

in which the dihedral groups act on the set of major and minor 

triads. 0 1 11 11 10 2 9 3 6 5 4 7 8 to Emma, (2011), referred 

to the musical notes with their corresponding integers as in 

Ada Zhang, (2009) as 𝑀12, that is the Mathieu group. He 

asserts that this can be generated by just two permutations 

Expressed below in both two-line notation and cycle notation. 

We denote these generating permutations as 𝑃1 and 𝑃0  

𝑃1 = (
0 1 2 3 4 5 6 7 8 9 10 11
5 6 4 4 7 8 2 9 1 10 0 11

)  

= (0 5 8 1 6 2 4 7 9 10)(11)  

𝑃0 = (
0 1 2 3 4 5 6 7 8 9 10 11
6 5 7 4 8 3 9 2 10 1 11 0

)  

= (0 6 9 1 5 3 4 8 10 11)(2 7)  

Adam, (2011) defined transposition and inversion as: 

Transposition is defining as 𝑇𝑛 ∶ 𝑍12 → 𝑍12 ∋ 𝑇𝑛 (𝑋): 𝑥 + 𝑛 

mod12 and he also define Inversion as 𝐼𝑛 ∶ 𝑍12 → 𝑍12 ∋ 𝐼𝑛 (𝑋) 

∶ −𝑥 + 𝑛 where n is in mod12. This operation was composite 

function.  

Numbering of the Musical Notes 

𝐶 𝐶# 𝐷 𝐷# 𝐸 𝐹 𝐹# 𝐺 𝐺# 𝐴 𝐴# 𝐵  

0 1 2 3 4 5 6 7 8 9 10 11 

Note that 𝐵# = C. It shows that the musical notes form a group 

of integers of Modulo 12.  

That is 𝑍12= {𝐶, 𝐶#, 𝐷, 𝐷#, 𝐸, 𝐹, 𝐹#, 𝐺, 𝐺#, 𝐴, 𝐴#, 𝐵 }. Let 

the operation be ∗ = # = + Result of the behavior of the 

musical note on Groups Musical Notes as it related to groups 

axiom. Without loss of generality  

i. Closureness , 𝐹 ∈ 𝑍12 , hence 𝐸 ∗ 𝐹 = 𝐴 ∈ 𝑍12  

ii. Associativity : 𝐸, 𝐹 𝑎𝑛𝑑 𝐹# ∈ 𝑍12,  
hence, (𝐸 ∗ 𝐹) ∗ 𝐹# = 𝐸 ∗ (𝐹 ∗ 𝐹#)  

 = 𝐴 ∗ 𝐹# = 𝐸 ∗ 𝐵  

= 𝐷# = 𝐷#  

iii. Identity ∈ 𝑍12 ∃ 𝐶 ∈ 𝑍12 , hence 𝐹 ∗ 𝐶 = 𝐶 ∗ 𝐹 = 𝐹 

iv.  Inverse 𝐹 ∈ 𝑍12 ∃𝐺 ∈ 𝑍12 , hence 𝐹 ∗ 𝐺 = 𝐺 ∗ 𝐹 = 𝐶 ∈ 

𝑍12  

Therefore, musical note behavior satisfied all the 

mathematical group axioms.  

v.  Furthermore, ∀𝐹, 𝐺 ∈ 𝑍12 𝐹 ∗ 𝐺 = 𝐺 ∗ 𝐹 = 𝐶 ∈ 𝑍12 This 

shows that it is not just a group, but also an abelian 

group.  

With the behavior of the musical notes we have just seen, we 

personally suggest for the root note of musical scales (notes) 

to be algebraically named as the identity note.  

 

Table 1: List of Musical Notes and their inverse Note  

Note Inverse 

C 

C# 

D 

D # 

E 

F 

F# 

C 

B 

A# 

A 

G # 

G 

F# 

 

The behavior of the musical note as related to Table 1. Gave 

us insight to formulate this Proposition 2.  

 

Proposition 2  

If G is cyclic, then there is at least an element which is unique 

with its inverse  

Proof: 

Suppose G is cyclic ⟹ ∀𝑥 ∈ 𝐺, each 𝑥 ∈ 𝐺 can be written in 

the form 𝑥 = 𝑔𝑚 for some 𝑔 ∈ 𝐺, Where 𝑚 ∈ 𝑍 ∃ 𝑠𝑜𝑚𝑒 𝑦 ∈ 

𝐺 ∋ 𝑥 ∗ 𝑦 = 𝑒 ∈ 𝐺 ⟹ 𝑥 = 𝑦 where e is the identity element 𝑦 

= 𝑥−1 ⟹ 𝑥 = 𝑥−1  

This completes the proof. Remark table 1 give better 

understanding of the proposition above The Result of theorem 

3.2.3 𝑍12 = {𝐶, 𝐶#,𝐷,𝐷#, 𝐸, 𝐹, 𝐹#, 𝐺, 𝐺#, 𝐴, 𝐴#, 𝐵}. 𝐻 = { 𝐶, 

𝐶#,𝐵 } ⟹ 𝐻 ≤ 𝑍12  

𝐷𝐻 = {𝐷 ∗ 𝐶, 𝐷 ∗ 𝐶#,𝐷 ∗ 𝐵} 𝐷𝐻 = {𝐷,#, 𝐶#} Clearly, 𝐷 ∈ 

𝐷𝐻 . And again, |𝐻| = |𝐷𝐻| = 3. Furthermore, for some 𝐴, 𝐹 ∈ 

𝑍12 (𝐴 ∗ 𝐹) 𝐻 = 𝐷𝐻 ⟹ two left cosets are identical in this 
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case for some 𝐴, 𝐺 ∈ 𝑍12 𝐴 ∗ 𝐺 ∈ 𝑍12 but 𝐴 ∗ 𝐺 = 𝐸 ≠ 𝐷 , 𝐸𝐻 

≠ 𝐷𝐻  

Two left cosets are disjoint in this case.  

The Result of [Theorem 3.2.6 previous results ] |𝑍12| = 12 

Since |𝑍12| = 12 and |𝐻| = 3  

⇒ 
|𝑍12|

|𝐻|⁄ =
12

3
= 4  

It is true that the order of a subgroup divides the order of a 

group. The Result of theorem 3..2.5 From  

𝑍12 = {𝐶, 𝐶#,𝐷,𝐷#, 𝐸, 𝐹, 𝐹#, 𝐺, 𝐺#, 𝐴, 𝐴#, 𝐵}  

For 𝐶 ∈ 𝑍12 , 𝐶 0 = C , 𝐶 1 = 𝐶#, 𝐶 2 = 𝐷, 𝐶 3 = 𝐷# , 𝐶 4 = 𝐸 , 

𝐶 5 = 𝐹, 𝐶6 = 𝐹# , 𝐶 7 = 𝐺, 𝐶8 = 𝐺#, 𝐶9 = 𝐴, 𝐶10 = 𝐴#, 𝐶11 = 𝐵, 

𝐶12 = 𝐶 

Musical notes are cyclic. That is 𝑍12 = 〈𝐶〉 .  
Consider the subgroup 𝐻 = {C , 𝐶#, 𝐵}, 𝐵 ∈ 𝐻 ≤ 𝑍12 𝐵0 = 𝐵 

𝐵1 = 𝐶 𝐵2 = 𝐶# Clearly, H is cyclic. 

Using musical notes, we are satisfied with the theorem which 

states that “every cyclic group has a subgroup which is also 

cyclic.  

 

Proposition 3: Every musical note is a generator of 𝒁𝟏𝟐 

Proof:  

𝐶0 = C, 𝐶1 = 𝐶, 𝐶2 = 𝐷, 𝐶3 = 𝐷#, 𝐶4 = 𝐸, 𝐶5 = 𝐹, 𝐶6 = 𝐹#, 𝐶7 = 

𝐺, 𝐶8 = 𝐺#, 𝐶9 = 𝐴, 𝐶10 = 𝐴#, 𝐶11 = 𝐵, 𝐶12
 = 𝐶 Therefore, C 

has generated 𝑍12. Similarly, every other note can behave as 

such. The Result from first Sylow’s Theorem Recall that the 

|𝑍12| = 12, since 12 = 2𝑥2𝑥3 = 22𝑥3 ∃𝐻 ≤ 𝑍12 ∋ |𝐻| = 22 which 

is sylow-2 subgroup of 𝑍12  

It is true that every finite group has a sylow p-subgroup which 

is in line with the first sylow’s theorem. Group theory is a 

Structure for Atonal Music Theory The numbering of the 

pitch classes reveals their isomorphism to 𝑍12.  

Tsok S. (2018), More interestingly, the group of 

transpositions and inversions, denoted 𝑇𝑛 𝑇1−𝑛⁄  is isomorphic 

to the dihedral group 𝐷12.  

The result of these findings shows those musicals notes 

behaviors satisfied all group axioms and are related to group 

theory. Since music is food for the soul and mind, we suggest 

that a good understanding of group theory to musician can 

help in composing best musical composition that will give 

satisfaction to Audience and as well bring healings to their 

minds. 

 

We used GAP package to get the follows information on the 

Group of the Musical Note Modulo 12 which is isomorphic to 

D12 : 

 
gap> # Dihedral group of Degree 2p (where p = 3) # 

gap>  

gap> G := DihedralGroup(IsGroup,12); 

Group([ (1,2,3,4,5,6), (2,6)(3,5) ]) 

gap> Order(Z12); 

12 

gap> Elements(Z12); 

[ (), (2,6)(3,5), (1,2)(3,6)(4,5), (1,2,3,4,5,6), (1,3)(4,6), (1,3,5)(2,4,6), (1,4)(2,3)(5,6), (1,4) (2,5)(3,6), (1,5)(2,4), (1,5,3)(2,6,4), 

(1,6,5,4,3,2), (1,6)(2,5)(3,4) ] 

gap> CC :=ConjugacyClasses(Z12); 

[ ()^G, (2,6)(3,5)^G, (1,2)(3,6)(4,5)^G, (1,2,3,4,5,6)^G, (1,3,5)(2,4,6)^G, (1,4)(2,5)(3,6)^G ] 

gap> List(CC,x->Order(Representative(x))); 

[ 1, 2, 2, 6, 3, 2 ] 

gap> Display(CharacterTable(Z12)); 

CT1 

 

Table 2: The Representatives of Conjugacy Classes of Musical Note Modulo 12 

S/N Representative Size Name 

1  1  1a 

2 (2,6)(3,5) 2  2a 

3 (1,2)(3,6)(4,5) 2  2b 

4 (1,2,3,4,5,6) 6  6a 

5 (1,3,5)(2,4,6) 3  3a 

6 (1,4)(2,5)(3,6) 2  2c 

  

Table 3: Character Table for Musical note Modulo12 

  1a  2a  2b  6a  3a 2c 

2P 1a  1a 1a  3a 3a  1a 

3P 1a 2a 2b  2c 1a  2c 

5P 1a  2a 2b  6a  3a  2c 

𝝌𝟏 1  1  1  1  1 1 

𝝌𝟐  1  1 1  1 1 1 

𝝌𝟑 1 1 1 1 1 1 

𝝌𝟒 1 1 1 1 1 1 

𝝌𝟓 2 0  0 1 1 2 

𝝌𝟔 2 0 0 1 1 2 

 

Table 2 display the Representation of Conjugacy Classes of 

Musical Note Modulo 12 which have 6 conjugacy classes of 

different sizes with their names as seen in the table above. 

Table 3 Represent the Character of the Musical Note Modulo 

12. This table shows 6 characters of the Musical Notes. 
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CONCLUSION  

The results of the numerical experiments were discussed, 

particularly focusing on which values of p lead to non-primitive 

actions and the conditions under which (D2p}) fails to be regular. 

This work shows that the Dihedral Group of degree 2p (p=3) is 

found to be isomorphic to musical notes 

In Conclusion the findings as summarize and highlighted proof 

numerical approaches provide useful insights into the primitive 

and regular nature of Dihedral groups of degree 2p. These 

methods, computationally intensive, offer a clear pathway to 

understanding these fundamental group-theoretic properties as 

clearly shown by our results that the Dihedral groups of degree 

2p where p is odd prime number are Imprimitive and irregular  

 

Contributions to Knowledge 

i. We generated a new group of degrees 2p using dihedral 

method procedures, which shade more light to the 

Primitivity and Regularity nature of the groups generated as 

our contribution.  

ii. We proved that dihedral Group of degree 2p that are not p-

groups are imprimitive and irregular. A proposition was 

formulated and proved to back up our claims while a 

standard program namely Groups, Algorithms and 

Programming (GAP) version 4.11.1, 2021), was employed 

to compare the results. These findings cannot be found in 

any text of higher learning. 

iii. We add to the research space the novel discovery of an 

Application to our generated dihedral Group of degree 2p 

(where p = 3) in Musical note. 
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