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ABSTRACT 

This article is concern with the numerical solution of Fractional order Fredholm Integro-differential Equations 

using Catalan tau collocation method. The concept of Catalan tau collocation method was implemented on 

some of fractional Fredholm integro-differential equations to illustrate the efficienciency and practicability of 

the method. Fractional derivatives in Riemann-Liouvilles sense were adopted throughout this article.. The 

results showed the reliable, efficacy and accuracy that the method exhibited for this kind of problems when 

compared to the analytic solutions.  
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INTRODUCTION 

Fractional integro-differential equations were studied recently 

by many scholars in the field of physical science, technology 

and engineering due to their ability and appropriateness in the 

description of various natural and physical phenomenon (Ali 

et.al, 2020)). The mathematical models used in the area of 

banking and finance science and technology, mechanics, to 

describe the concept and notion of fractional integro-

differential equations have been useful and important in the 

area of numerical methods and analysis (Ullah et.al, 2024). 

The challenges arising from solving modelling equations of 

complex phenomenon are very difficult to handle analytically 

and this is mainly because most of the problems of integro-

differential equations do not have analytic solutions in the 

canonical or closed forms. Therefore, numerical methods are 

adopted to attempt to solve them (Oyedepo et. al, 2023).  

Catalau Tau collocation method has emerged as a pivotal 

numerical technique for addressing the computational 

challenges inherent in these intricate mathematical models 

(Odekunle, 2006). Numerical methods for solving fractional-

order equations have been a critical area of research. 

Investigations demonstrated the efficacy of tau methods in 

approximating solutions to fractional differential equations, 

showcasing improved computational accuracy (Shahmorad, 

2005; Mamadu, 2016). The comprehensive review 

emphasized the significance of collocation methods in 

handling complex mathematical models (Jiang & Gao, 2024). 

A detailed analysis provided insights into the method's 

computational capabilities, highlighting its potential for 

solving complex mathematical problems with enhanced 

precision. Empirical studies have consistently demonstrated 

the method's superior performance (Çevik et,at, 2025). Many 

scholars developed and implemented several numerical 

methods which includes, and not limited to, Iterative 

Decomposition Method (Wohlmuth, 2012)), Adomian 

Decomposition Method (Turkyilmazoglu, 2019), Collocation 

Method (Herrera et al, 2007)). Fractional spectral collocation 

method (Zayernouri, & Karniadakis, 2014). Variational 

Iteration Method (Tomar et al, 2023), , Laplace Transform 

Method (Abou-Hayt., & Dahl, 2023), Successive Substitution 

Method (García-Vidal, 2019), Galerkin Method (Bozyigit, 

2021), Homotopy Analysis Method (Guled et al, 2023) etc. 

Catalan tau collocation method is a method used in the field 

of numerical analysis that simplifies the problem by adding a 

perturbation term and using Catalan number which makes it 

easier to be solved. The system of equations derived as a result 

of using this method are presented in terms of arbitrary 

constant coefficients which will be solved and substituted into 

the assumed solution to obtain the approximate solution.  

Chebychev Galerkin method was applied by Mostafa et al, 

(2021) to solve integro-differential equations of the second 

kind, their method proves to be efficient and reliable for 

solving many kinds of integro-differential equations. 

A generalized Jacobi polynomials as basis functions for the 

approximate solution was applied, using Discrete Galerkin 

method to solve fractional integro-differential equations 

(Mokhtary, ,2016). Convergence analysis to approximate 

solutions on exact solution was carried out, the results 

produced using the method were in good agreement with the 

analytical solution. Pseudo-spectral Legendre Galerkin 

method was applied in (Fakhar‐Izadi & Dehghan, 2013) to 

solve problem in population dynamics that involved nonlinear 

partial integro-differential equations. Perturbed collocation 

method of Lane-Emden type was used to solve singular multi-

order fractional differential equations (Uwaheren et al, 2020). 

The scheme is to transform the differential equations to a 

system of linear algebraic equations using collocation 

method. From the numerical results, the method produced 

good estimate for the differential equations considered. 

Mahdy & Mohamed, (2016) and Mahdy et al, (2016) solved 

integro-differential equations of fractional order, using shifted 

Chebyshev basis functions by least squares method and the 

results obtained converge to the analytical solution. Fathy, 

(2021) obtained numerical solution of second kind nonlinear 

integral equation of Fredholm type using Chebyshev wavelets 

with a very good approximation result. Iweobodo et al. (2023) 

applied Homotopy Perturbation method combined with 

Wavelet-Galerkin method to solve some classes of integro-

differential equations. In this research, we present the Catalan 

tau collocation method for solving linear fractional order 

Fredholm integro-differential equations.  

The advantage of our proposed method is that it can solve 

fractional integro-differential equations without discretization 

of the equations.  
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MATERIALS AND METHODS 

Collocation Tau Method 

Let  𝑦(𝑥) be an unknown function that satisfies the equation 

𝐷𝛼𝑦(𝑥) = 𝑓(𝑥) + 𝜆 ∫
b

a
𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡           𝑎 ≤ 𝑥 ≤ 𝑏   (1) 

where 𝐷𝛼𝑦(𝑥) represents the fractional derivative of order 𝛼 

of 𝑦(𝑥), 𝐾(𝑥, 𝑡) is a kernel of the function. Approximating 

the (1) by the power series solution of the form    

𝑦(𝑥) = ∑ 𝑎𝑖𝑥𝑖𝑛
𝑖=0      (2) 

so that equation (1) can be perturbed to become 

𝐷𝛼𝑦(𝑥) = 𝑓(𝑥) + 𝜆 ∫
b

a
𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 + 𝐻(𝑥)  𝑎 ≤ 𝑥 ≤ 𝑏  (3) 

where 𝐻(𝑥) is the perturbation term. 

 

Catalan Polynomial 

Among the known mathematical constants, Catalan 

polynomials have attracted attention in recent years. Catalan 

constants can be written in the form (Kim & Kim, 2017) 

𝐶𝑛 = ∑
(−1)𝑘

(2𝑛+1)2
∞
𝑖=0       (4) 

It status is not known, whether Catalan constants  𝐶𝑛  is 

rational or irrational. Previously, Catalan constants in 

differential equations involves rewriting in the form such as 

Hurwitz zeta function, Dirichlet beta function, Legendrry chi-

function. In this work, we attempt to apply the constants in 

solving fractional integro-differential equation directly 

without rewriting them in terms of any other functions. 

 

Definition of Terms 

Fractional Derivative 

Fractional derivative is a non-integer type of derivative of a 

function. Its has a lot of benefits  and importance. Riemann-

Liouvilles differential operator of a noninteger/fractional 

order 𝛽 is given as 

(𝐷𝑎
𝛽

𝑓)(𝑥) =
1

Γ(𝑛−𝛽)

𝑑𝑛

𝑑𝑥𝑛 ∫
𝑥

0
(𝑥 − 𝑡)𝑛−𝛽−1𝑓(𝑡)𝑑𝑡. (5) 

The differential operator in Caputo sense  𝐷𝛽
∗  is defined by  

(𝐷𝛽
∗𝑓)(𝑥) =

1

Γ(𝑛−𝛽)
∫

𝑥

0
(𝑥 − 𝑡)𝑛−𝛽−1 𝑑𝑛

𝑑𝑡𝑛 𝑓(𝑡)𝑑𝑡 (6) 

for 0 ≤ 𝑥 ≤ 1. 

 

Fractional Integro-Differential Equations 

An integro-differential equation is a  differential equation  that 

contains integrals. if the unknown function 𝑢(𝑥) is both inside 

and outside of the integral, the is called an integro-differential 

equation that is either the Fredholm (with costants limits of 

integratin) or Volterra (with variable limits of integratin) type. 

Where the integro-differential equation contains a fractional 

derivative 𝐷𝛽 It is known as fractional integro-

differential.The general form of fractional integro-differential 

equation is:  

𝐷𝛼𝑦(𝑥) = 𝑓(𝑥) + 𝜆 ∫
𝑝(𝑥)

𝑙(𝑥)
𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 (7) 

 subject to the initial conditions: 𝐷𝛼𝑦𝑘(0) = 𝜙𝑘, and 𝐾(𝑥, 𝑡) 

is a given smooth function.     

 

Riemann-Liouvilles Fractional Integral 

A continous function 𝑢: (0, ∞) → 𝑅 has a Riemann-

Liouvilles fractional integral of order 𝛼 > 0 is defined as 

𝐼𝛼𝑢(𝑥) =
1

Γ(𝛼)
∫ (𝑥𝑖 − 𝑡)𝛼−1𝑢(𝑡)

𝑥

0
𝑑𝑡    (8) 

 

Integral of 𝒏𝒕𝒉 Derivative 

It is defined as   

𝐼𝛼𝐷𝛼𝑢(𝑥) = 𝑓(𝑡) − ∑
𝑐𝑘𝑡𝑘

𝑘!
𝛼−1
𝑘=0      (9) 

 

 

 

 

Fredholm Fractional Integro-Differential Equation 

A fractional integro-differential equation is called a Fredholm 

fractional integro-differential equation if the upper and the 

lower limits of the equation are both constants. For instance:  

𝐷𝛼𝑦(𝑥) = 𝑓(𝑥) + 𝜆 ∫
1

0
𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 (10) 

subject to the conditions: y(𝛼)(0) = 𝜙𝑘. (11)  

 

Volterra Fractional Integro-Differential Equation 

When the limits of such equation are not both constants but 

one a constant and the other a variable, then the equation is 

called Volterra fractional integro-differential equation:  

𝐷𝛼𝑦(𝑥) = 𝑓(𝑥) + 𝜆 ∫
𝑥

0
𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 (12) 

Catalan number: A series of numbers given by the equation 

𝐶𝑛 =
1

𝑛+1
(

2𝑛
𝑛

) ,       𝑛 = 0, 1, 2, ⋯  (13) 

where (
𝑛
𝑚

) =
𝑛!

𝑚!(𝑛−𝑚)!
 ,  𝑛, 𝑚 = 0,1,2, ⋯ is known as the 

Catalan numbers. Using (12), it is therefore  
𝐶0 = 1,     𝐶1 = 1,    𝐶2 = 2,    𝑪𝟑 = 5,     𝐶4 = 14,    𝐶5 = 42,     𝐶6 =

132,        (14) 

Catalan polynomial: The Catalan polynomial 𝐶𝑛(𝑥) can be 

defined as  

𝐶𝑛(𝑥) = ∑ 𝐶𝑛𝑥𝑛∞
𝑛=0 = ∑ ⌈

1

𝑛+1
(2𝑛

𝑛
)⌉ 𝑥𝑛∞

𝑛=0 , 𝑛 = 0, 1, 2,  (15) 

 

Main Tools 

Let the perturbation term be defined as  

𝐻𝑖(𝑥) = 𝜏𝐶𝑖(𝑥)       (16) 

where 𝐶𝑖(𝑥) is the Catalan polynomial of order  𝑖.  
A polynomial 𝑦𝑛(𝑥) of degree n can be expressed as 

𝑦𝑛(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝐴𝑇𝑋    (17) 

 

Mathematical Background 

From the Fredholm integral differential equation of fractional 

order, using (7) into perturbed equation (3) subject to the 

initial condition given in (10), to obtain  

𝐼𝛼𝐷𝛼𝑦(𝑥) = 𝐼𝛼𝑓(𝑥) + 𝐼𝛼𝐻(𝑥) + 𝐼𝛼 (𝜆 ∫
1

0
𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡) 

     (18) 

Using (8), equation 17 becomes  

𝑦(𝑥) − ∑
𝑦𝑗(0)𝑥𝑗

𝑗!
𝛼−1
𝑘=0 = 𝐼𝛼𝑓(𝑥) + 𝐼𝛼𝐻(𝑥) +

𝐼𝛼 (𝜆 ∫
1

0
𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡)   (19) 

Substituting the initial condition equation (10) into equation 

(18), to have  

𝑦(𝑥) = ∑
𝜙𝑗𝑥𝑗

𝑗!

𝑛
𝑗=0 + 𝐼𝛼𝑓(𝑥) + +𝐼𝛼𝐻(𝑥) +

𝐼𝛼 (𝜆 ∫
1

0
𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡)     (20) 

 

RESULTS AND DISCUSSION 

Method of Solution 

Substituting (16) into equation (19), we obtain  

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = ∑

𝜙𝑗𝑥𝑗

𝑗!

𝑛
𝑗=0 + 𝐼𝛼𝑓(𝑥) + 𝐼𝛼𝐻(𝑥) +

𝐼𝛼 (𝜆 ∫
1

0
𝐾(𝑥, 𝑡)(∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 )𝑑𝑡)  (21) 

or 

∑ 𝑎𝑛
∞
𝑛=0 (𝑥𝑛 − 𝐼𝛼 (𝜆 ∫

1

0
𝐾(𝑥, 𝑡)𝑡𝑛𝑑𝑡)) = ∑

𝜙𝑗𝑥𝑗

𝑗!

𝑛
𝑗=0    +

𝐼𝛼𝑓(𝑥)   + 𝐼𝛼𝐻(𝑥)     (22) 

Using (7) into (22), we obtain 

∑ 𝑎𝑛
∞
𝑛=0 (𝑥𝑛 −

1

Γ(𝛼)
∫ (𝑥 − 𝑠)𝛼−1𝑥

0
(𝜆 ∫

1

0
𝐾(𝑥, 𝑠)𝑡𝑛𝑑𝑡) 𝑑𝑠) =

∑
𝜙𝑗𝑥𝑗

𝑗!

𝑛
𝑗=0    +

1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1(𝑓(𝑡) + 𝐻𝑛(𝑡))

𝑥

0
𝑑𝑡  

     (23) 
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Substituting the perturbation term and collocating the 

resulting equation at 

𝑥𝑗 =
𝑏−𝑎

𝑖+1
𝑗   𝑗 = 1,2,3, ⋯  𝑖 + 1   (24) 

to obtain.   

∑ 𝑎𝑛
∞
𝑛=0 (𝑥𝑖

𝑛 −
1

Γ(𝛼)
∫ (𝑥𝑖 −

𝑥

0

𝑠)𝛼−1 (𝜆 ∫
1

0
𝐾(𝑥, 𝑠)𝑡𝑛𝑑𝑡) 𝑑𝑠) = ∑

𝜙𝑗𝑥𝑖
𝑗

𝑗!

𝑛
𝑗=0    +

1

Γ(𝛼)
∫ (𝑥𝑖 −

𝑥

0

𝑡)𝛼−1(𝑓(𝑡) + 𝜏(1 + 𝑡 + 2𝑡2 + 5𝑡3 + ⋯ )) 𝑑𝑡    (25) 

After evaluating the integral in (25). The resulting equation is 

then collocated at equally spaced point to give 

𝑎0 (1 −
1

Γ(𝛼)
∫ (𝑥𝑖 − 𝑠)𝛼−1𝜆 ∫ 𝐾(𝑠, 𝑡)𝑑𝑡

1

0

𝑥

0
𝑑𝑠) + 𝑎1 (𝑥𝑖 −

1

Γ(𝛼)
∫ (𝑥𝑖 − 𝑠)𝛼−1𝜆 ∫ 𝐾(𝑠, 𝑡)(𝑡)𝑑𝑡

1

0

𝑥

0
𝑑𝑠) + 𝑎2 (𝑥𝑖

2 −

1

Γ(𝛼)
∫ (𝑥𝑖 − 𝑠)𝛼−1𝜆 ∫ 𝐾(𝑠, 𝑡)(𝑡2)𝑑𝑡

1

0

𝑥

0
𝑑𝑠) ⋯ + 𝑎𝑗 (𝑥𝑖

𝑗
−

1

Γ(𝛼)
∫ (𝑥𝑖 − 𝑠)𝛼−1𝜆 ∫ 𝐾(𝑠, 𝑡)(𝑡𝑗)𝑑𝑡

1

0

𝑥

0
𝑑𝑠) = 𝜙0 + 𝜙1𝑥𝑖 +

1

2
𝜙2𝑥𝑖

2 +
1

6
𝜙3𝑥𝑖

3 +
1

𝑗!
𝜙𝑗𝑥𝑖

𝑗
+

1

Γ(𝛼)
∫ (𝑥𝑖 − 𝑡)𝛼−1(𝑓(𝑡) +

𝑥

0

𝜏(1 + 𝑡 + 2𝑡2 + 5𝑡3)) 𝑑𝑡     (26) 

Solving equation (26) subject to the given initial conditions 

will result in (i+2)  

system of equation in (i+2) unknown 𝑎0, 𝑎1, 𝑎1, · and 𝜏 which 

can be determined later     

 

Numerical Examples 

We present three different numerical examples which are 

solved by Catalan tau collocation method to show efficiently 

and accuracy of our proposed method. All the numerical 

computations are carried out with Maple 18. 

Example One 

Consider the fractional integro-differential equation 

𝐷
1

2𝑦(𝑥) =
𝑥

12
+

8

3
 𝑥3\2 −2√𝑥

√𝜋 
+ ∫ 𝑥𝑡𝑦(𝑡)

1

0
  

with an initial condition 𝑦(0)  =  0. The exact solution of this 

problem is 𝑦(𝑥)  =  𝑥2  −  𝑥. 

 

Solution  

Using (24), with 𝜆 = 1 , 𝑓(𝑥) =
𝑥

12
+

8

3
 𝑥3\2 −2√𝑥

√𝜋 
, 𝐻(𝑡) =

𝜏(14𝑥4 + 5𝑥3 + 2𝑥2 + 𝑥 + 1) 

𝑦4(𝑥) = 𝑎0 (1 −
1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1(∫ 𝐾(𝑠, 𝑡)𝑑𝑠

1

0
)𝑑𝑡

𝑥

0
) + 𝑎1 (𝑥 −

1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1(∫ 𝐾(𝑠, 𝑡)𝑡𝑑𝑠

1

0
)𝑑𝑡

𝑥

0
) + 𝑎2 (𝑥2 −

1

Γ(𝛼)
∫ (𝑥 −

𝑥

0

𝑡)𝛼−1(∫ 𝐾(𝑠, 𝑡)𝑡2𝑑𝑠
1

0
)𝑑𝑡) + 𝑎3 (𝑥3 −

1

Γ(𝛼)
∫ (𝑥 −

𝑥

0

𝑡)𝛼−1(∫ 𝐾(𝑠, 𝑡)𝑡3𝑑𝑠
1

0
)𝑑𝑡) + 𝑎4 (𝑥4 −

1

Γ(𝛼)
∫ (𝑥 −

𝑥

0

𝑡)𝛼−1(∫ 𝐾(𝑠, 𝑡)𝑡4𝑑𝑠
1

0
)𝑑𝑡) =

1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1(𝑓(𝑡) + 𝐻(𝑡))𝑑𝑡

𝑥

0
 

     (27) 

Which gives  

𝑦4(𝑥) = 𝑎0 (1 −
2

3

𝑥
3
2

√𝜋 
) + 𝑎1 (𝑥 −

4

9

𝑥
3
2

√𝜋 
) + 𝑎2 (𝑥2 −

1

3

𝑥
3
2

√𝜋 
) +

𝑎3 (𝑥3 −
4

15

𝑥
3
2

√𝜋 
) + 𝑎4 (𝑥4 −

2

9

𝑥
3
2

√𝜋 
) =

1

Γ(𝛼)
∫ (

1

√𝑥−1
+

𝑡

12
+

𝑥

0

8

3
 𝑡3\2 −2√𝑡

√𝜋 
+ 𝜏(14𝑡4 + 5𝑡3 + 2𝑡2 + 𝑡 + 1)) 𝑑𝑡   (28) 

Collocating (28) at a point in (24) with 𝑖 = 4, couple with the 

initial condition, such that 𝑎0 = 0,  we obtain the following of 

equations  
0. 9663582330𝑎0 + 0.1775721554𝑎1 + 0.2317911652𝑒 − 1𝑎2 −
0.5456706790𝑒 − 2𝑎3 − 0.9613922320𝑒 − 2𝑎4  =
 −0.1543930389 + 0.6072614474𝜏 

0.9048467139𝑎0 + 0.3365644759𝑎1 + 0.1124233569𝑎2 +
0.2593868555𝑒 − 1𝑎3 − 0.611776205𝑒 − 2𝑎4  =
 −0.2241411189 + 1.234081936𝜏  

. 8251922511𝑎0 + .4834615008𝑎1 + .2725961256𝑎2 +

.1460769004𝑎3 + 0.7133075037𝑒 − 1𝑎4  =  −.2108653752 +
2.635221819𝜏  

. 7308658643𝑎0 + .6205772430𝑎1 + .5054329322𝑎2 +

.4043463458𝑎3 + .3198886215𝑎4  =  −.1151443107 +
5.769349010𝜏  

. 6238736110𝑎0 + .7492490740𝑎1 + .8119368055𝑎2 +

.8495494444𝑎3 + .8746245370𝑎4  =  12.08261248𝜏 +

0.6268773149𝑒 − 1 𝑎0 = 0 

The six unknowns {𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝜏} can be obtained using 

Gaussian elimination method.  

 

Table 1: Exact and Approximate Solutions and Absolute Error for (n = 4&5) Example 1 

x 𝒚(𝒙) 𝒚𝟒(𝒙) |𝒚(𝒙) − 𝒚𝟒(𝒙)| 𝒚𝟓(𝒙) |𝒚(𝒙) − 𝒚𝟓(𝒙)| 

0.1 -0.9e-1 -0.8999999744e-1 2.56 ∗ 10−9 -0.8999998017e-1 1.983 ∗ 10−8 

0.2 -.16 -.1599999949 5.1 ∗ 10−9 -.1599999603 3.97 ∗ 10−8  
0.3 -.21 -.2099999920 8.0 ∗ 10−9 -.2099999362 6.38 ∗ 10−8 

0.4 -.24 -.2399999884 1.16 ∗ 10−8 -.2399999029 9.71 ∗ 10−8  
0.5 -.25 -.2499999834 1.66 ∗ 10−8 -.2499998528 1.472 ∗ 10−7  

0.6 -.24 -.2399999764 2.36 ∗ 10−8 -.2399997740 2.260 ∗ 10−7 

0.7 -.21 -.2099999665 3.35 ∗ 10−8 -.2099996483 3.517 ∗ 10−7 

0.8 -.16 -.1599999529 4.71 ∗ 10−8 -.1599994486 5.514 ∗ 10−7 

0.9 -0.9e-1 -0.8999993439e-1 6.561 ∗ 10−8 -0.8999913915e-1 8.6085 ∗ 10−7 

1 0 9.11 ∗ 10−8  9.11 ∗ 10−8 0.0000013300 0.0000013300 

 

Table 1: shows the exact solutions and approximation 

solutions obtained by the Catalan tau collocation method and 

the absolute error in 𝑥 ∈ [0.1, 1] are compared in Table 1. 

From Table 1 above, it shows that the approximate solutions 

(𝑦4(𝑥) and 𝑦5(𝑥)) are quite near to the exact solution for all 

 𝑥 ∈ [0.1, 1].  𝑦4(𝑥) errors vary from 2.56 × 10−9  to 

9.11 × 10−8 , whereas 𝑦5(𝑥) mistakes are significantly 

greater but still on the order of 10−8 to 10−7. The error tends 

to increase slightly as x approaches one. The two 

approximations yield extremely good results, but 𝑦4(𝑥) is 

better than 𝑦5(𝑥) in terms of error magnitude.  

Example 2 

Consider the fractional integro-differential equation 

𝐷
5

3𝑦(𝑥) =
3√(3)Γ(

2

3
)𝑥

1
3

Π
− (

1

5
) 𝑥2 − (

1

4
) 𝑥 + ∫ (𝑥𝑡 +

1

0

𝑥2𝑡2)𝑦(𝑡)  

with an initial condition 𝑦(0)  =  0. The exact solution of this 

problem is 𝑦(𝑥)  =  𝑥2 . 
 

Solution 

𝑦4(𝑥) = −3.653100213 ∗ 10−8𝑥4 + 3.171432180 ∗
10−8𝑥3 + .9999999805𝑥2 + 5.993272047 ∗ 10−10𝑥  

𝑦5(𝑥) = 1.224332709 ∗ 10−7𝑥5 − 1.309968256 ∗
10−7𝑥4 + 6.871680473 ∗ 10−8𝑥3 + .9999999972𝑥2 +
1.988575130 ∗ 10−9𝑥  
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Table 2: Exact and Approximate Solutions and Absolute Error for (n = 4&5) Example 2 

x 𝒚(𝒙) 𝒚𝟒(𝒙) |𝒚(𝒙) − 𝒚𝟒(𝒙)| 𝒚𝟓(𝒙) |𝒚(𝒙) − 𝒚𝟓(𝒙)| 
0.1 0.01 0.009999999893 1.07 ∗ 10−10 0.01000000023 2.3 ∗ 10−10 

0.2 0.04 0.03999999954 4.6 ∗ 10−10 0.04000000068 6.8 ∗ 10−10 

0.3 0.09 0.08999999898 1.02 ∗ 10−9 0.09000000141 1.41 ∗ 10−9 

0.4 0.16 0.1599999982 1.8 ∗ 10−9 0.1600000027 2.7 ∗ 10−9 

0.5 0.25 0.2499999971 2.9 ∗ 10−9 0.2500000045 4.5 ∗ 10−9 

0.6 0.36 0.3599999954 4.6 ∗ 10−9 0.3600000077 7.7 ∗ 10−9 

0.7 0.49 0.4899999930 7.0 ∗ 10−9 0.4900000127 1.27 ∗ 10−8  

0.8 0.64 0.6399999893 1.07 ∗ 10−8 0.6400000214 2.14 ∗ 10−8 

0.9 0.81 0.8099999840 1.60 ∗ 10−8 0.8100000358 3.58 ∗ 10−8 

1 1 0.9999999763 2.37 ∗ 10−8 1.000000059 5.9 ∗ 10−8 

 

Table 2: shows the exact solutions and approximation 

solutions obtained by the Catalan tau collocation method and 

the absolute error in 𝑥 ∈ [0.1, 1] are compared in Table 2. 

Table 2 shows that the approximate solutions; 𝑦4(𝑥) and 

𝑦5(𝑥) are very near to the exact solution for all  𝑥 ∈ [0.1, 1].  
𝑦4(𝑥) errors vary from 1.07 ∗ 10−10 to 2.37 ∗ 10−8 , whereas 

𝑦5(𝑥) mistakes are significantly greater but still on the order 

of 10−10 to 10−8. The error tends to increase slightly as x 

approaches one. The two approximations yield extremely 

good results,  

 

 

Example 3 

Consider the Fredholm integro-differential equation 

𝐷𝛼𝑦(𝑥) = 2𝑥 − 3𝑥2 +
1

30
− ∫ 𝑦(𝑡)𝑑𝑡

1

0
  

Subject to the initial condition 𝑦(0) = 𝑦′(0) = 0.  For  𝛼 =

 2 , the exact solution is  𝑦(𝑥) =
1

3
𝑥3  −

1

4
𝑥4. 

𝑦5(𝑥) = 3.547603876 ∗ 10−8𝑥5 − .2500000447𝑥4 +
.3333333585𝑥3 − 4.064677763 ∗ 10−9𝑥2 +
4.481541350 ∗ 10−10𝑥  

𝑦4(𝑥) = −.2500000005𝑥4 + .3333333337𝑥3 −
1.923396909 ∗ 10−10𝑥2 + 8.257575665 ∗ 10−12𝑥 

Table 3: Exact and Approximate Solutions and Absolute error for (n = 4&5) Example 3 

x 𝒚(𝒙) 𝒚𝟒(𝒙) |𝒚(𝒙) − 𝒚𝟒(𝒙)| 𝒚𝟓(𝒙) |𝒚(𝒙) − 𝒚𝟓(𝒙)| 

0.1 0.0003083333333 0.0003083333325 8.0 ∗ 10−13 0.0003083333586 2.53 ∗ 10−11 

0.2 0.002266666667 0.002266666664 3.0 ∗ 10−12 0.002266666736 6.9 ∗ 10−11 

0.3 0.006975000000 0.006974999994 6.0 ∗ 10−12 0.006975000174 1.74 ∗ 10−10 

0.4 0.01493333333 0.01493333332 1.0 ∗ 10−11 0.01493333369 3.6 ∗ 10−10 

0.5 0.02604166667 0.02604166666 1.0 ∗ 10−11 0.02604166732 6.5 ∗ 10−10 

0.6 0.03960000000 0.03959999993 7.0 ∗ 10−11 0.03960000121 1.21 ∗ 10−9 

0.7 0.05430833330 0.05430833323 7.0 ∗ 10−11 0.05430833549 2.19 ∗ 10−9 

0.8 0.0682666667 0.06826666650 2.0 ∗ 10−10 0.06826667063 3.93 ∗ 10−9 

0.9 0.0789750000 0.07897499983 1.7 ∗ 10−10 0.07897500708 7.08 ∗ 10−9 

1 0.08333333333 0.08333333302 3.1 ∗ 10−10 0.08333334569 1.236 ∗ 10−8 

 

Table 3 shows the exact solutions, approximation solutions 

and the absolute error obtained in 𝑥 ∈ [0.1, 1].  Table 3 

shows that the approximate solutions; 𝑦4(𝑥) and 𝑦5(𝑥) are 

very near to the exact solution for all  𝑥 ∈ [0.1, 1].  𝑦4(𝑥) 

errors vary from 8.0 ∗ 10−13  to 3.1 ∗ 10−10 , whereas 𝑦5(𝑥) 

mistakes are significantly greater but still on the order of 

10−11 to 10−8. The error tends to increase slightly as x 

approaches one.  

 

CONCLUSION 

In this paper, a numerical method to solve the linear fractional 

type Fredholm integro-differential equation using the Catalan 

tau collocation method was proposed. For the approximate 

solution, we used the Riemann-Liouvilles differential 

operator and power series and Catalan polynomial. The 

fractional derivatives of Riemann-Liouvilles and power series 

transformed the equation into an algebraic system.  Using 

Gaussian elimination method, Maple 18 software; gave the 

solution of the power series coefficients and the perturbation 

term, which allowed us to describe the approximate solution.  

Three numerical examples were used to illustrate the 

approximate results. As a result, Therefore, it is observed that 

Catalan tau collocation method is resilient, computationally 

viable and effective for variety of fractional order integro-

differential equation of Fredholm types with high accuracy. 
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