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ABSTRACT 

In this paper we address the problem occurring in electrical circuit with discontinuity in power source, using 

the Heaviside function to represent the switches (on/off) existing in the electrical circuit component. Thus, this 

paper presents an analytical and simulation-based study of modified RLC circuits, focusing on their transient 

and frequency responses, using Laplace transform techniques and Heaviside step input modeling, the research 

evaluates underdamped, undamped, overdamped, and critically damped behaviors and the frequency domain 

analysis using the Bode plots  to reveals the filtering characteristics of RC and RLC configurations. The paper 

highlights how component values influence energy dissipation, signal attenuation, and resonance. The findings 

provide useful guidelines for circuit design in signal processing and communications. 

 

Keywords: RLC circuit, Transient response, Frequency response, Damping, Filtering, Laplace transform,  

Heaviside function, MATLAB simulation 

 

INTRODUCTION  

Transient and frequency domain analyses are essential for 

understanding the dynamic behavior of electrical circuits. 

Circuits composed of resistors (R), inductors (L), and 

capacitors (C) find widespread application in electronics, 

from signal filtering to resonance control (Alexander & 

Sadiku, 2017). RC circuits exhibit first-order exponential 

charging and discharging behavior, governed by the time 

constant, which dictates how quickly the circuit responds to 

step inputs (Hayt et al., 2019). Andi, Ibeh, and Umar (2017) 

applied this analytical approach to investigate how 

instantaneous inputs affect the transient and frequency 

responses of RC and RLC circuits. Their use of both 

analytical modeling and numerical simulations highlighted 

the critical role of input type and component values in 

determining circuit behavior. 

Andi, Ibeh, and Umar (2017) studied the behavior of RC and 

RLC circuits under instantaneous forcing functions, such as 

step and impulse inputs. Their results showed that the 

damping ratio and natural response of the circuit are highly 

dependent on the input type findings that support the use of 

Heaviside-based input modeling in this study. For instance, 

Ikechiamaka, Okpala, and Lawal (2017) conducted frequency 

response measurements of an audio amplifier, showcasing the 

relevance of such analytical methods in evaluating signal 

behavior in electrical systems. The analysis of electrical 

vibrations is vital to understanding circuit behavior, especially 

when discontinuities or abrupt changes in the power supply 

occur. Dorf and Svoboda (2018) examine the use alternating 

current analysis is particularly important for understanding 

filter design, signal modulation, power distribution networks 

and various types of time-varying signals that oscillate at 

specific frequencies 

Hayt, Kemmerly, and Durbin (2019) further expanded the 

analytical tools for AC circuit analysis by introducing phasor 

representation, impedance, and resonance concepts. These 

tools are particularly helpful in understanding the frequency 

domain behavior of RLC circuits. Boylestad and Nashelsky 

(2020) emphasized the importance of foundational theorems 

in circuit analysis such as Ohm’s Law, Kirchhoff’s Laws, 

Thevenin’s, and Norton’s Theorems. These theorems are 

essential in determining current and voltage distributions 

across linear networks and serve as the basis for more 

advanced simulation models, including those applied in this 

research. This has led to significant studies on the application 

of the Heaviside step function in modeling switching 

operations within electrical circuits. Heaviside ((Heaviside, 

1893; Operational Calculus, 2025) introduced a symbolic 

method known as operational calculus, which transforms 

differential equations into algebraic expressions. This laid the 

groundwork for modern Laplace-domain analysis, where the 

Heaviside function plays a critical role in defining step-input 

behaviors in RC and RLC circuits. 

 

Governing Equation 

The governing equation of the charging RC electrical circuit 

in the loop at time𝑡 = 0, switch 𝑆1 closes and switch 𝑆2  is 

open creating a new loop consisting of 𝑅1, 𝐶 𝑎𝑛𝑑 𝑉𝑠 as the 

voltage source. 

𝑉𝑠 ∙ 𝐻(𝑡) = 𝑅1𝑖(𝑡) + 𝑣𝑐(𝑡)   (1) 

The current through a capacitor is  

𝑖(𝑡) = 𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
    (2) 

Substituting equation (2) into (1) gives  

𝑉𝑠 ∙ 𝐻(𝑡) = 𝑅1𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑐(𝑡)  (3) 

Equation (3) is the governing equation for the RC loop 

 

Charging of a Capacitor through a Resistor 

A circuit consisting of a resistor R in series with a capacitor 

C, connected to a battery of voltage V, at time t = 0. The 

steady state current in this case is obviously zero, since no 

current will flow from a D.C supply through a capacitor hence 

𝑖𝑠 = 0 

𝑖 = 𝐵𝑒−(
𝑖

𝐶𝑅
)𝑡

    (4) 

When the switch is closed, there will be momentarily no 

voltage across the capacitor, so that the battery voltage V must 

all appear across the resistor R. Hence the initial current from 

the battery must be 𝑖 =
𝑉

𝑅
 at t =0, 

𝑖 =
𝑉

𝑅
= 𝐼,  

𝑖 =
𝑉

𝑅
𝑒−(

𝑖

𝐶𝑅
)𝑡 = 𝐼𝑒−(

𝑖

𝐶𝑅
)𝑡

   (5) 

This equation represents the exponential decay curve and a 

charging capacitor through a resistor  
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Figure 1: Charging a Capacitor through a Resistor 

 

The voltage across the resistor at any instant is 𝑣𝑅 

𝑣𝑅 = 𝑖𝑅 = 𝐼𝑅𝑒−(
𝑖

𝐶𝑅
)𝑡 = 𝑉𝑒−(

𝑖

𝐶𝑅
)𝑡

  (6) 

The voltage across the capacitor is 𝑣𝑐 

𝑣𝑐 = 𝑉 − 𝑣𝑅 = 𝑉 (1 − 𝑒
−(

𝑖

𝐶𝑅
)𝑡

)  (7)  

The charge 𝑞 of the capacitor at any instant 

𝑞 = 𝑣𝑐𝐶 = 𝑉𝐶 (1 − 𝑒
−(

𝑖

𝐶𝑅
)𝑡

) = 𝑄 (1 − 𝑒
−(

𝑖

𝐶𝑅
)𝑡

),  

     (8) 

Where 𝑄 = 𝑉𝐶 = final charge on the capacitor  

Discharge of a capacitor through a resistor 

Suppose that a capacitor which is originally charged to 𝑣𝑐 

volts is discharged through a resistor of R ohms, since there is 

no generator in the circuit the steady state current must be 

zero, so that the general equation for the circuit current is from 

equation (4). 

𝑖 = 𝐵𝑒−(
𝑖

𝐶𝑅
)𝑡

 

 

 
Figure 2: Discharging of a Capacitor through a Resistor 

 

The initial condition is that the voltage across the capacitor 

must be the same after the switch is closed as it was before. 

The general equation for the current is from (5)  

𝑖 =
𝑉

𝑅
𝑒−(

𝑖

𝐶𝑅
)𝑡 = 𝐼𝑒−(

𝑖

𝐶𝑅
)𝑡

  

This is the exponential decay curve shown above and the 

voltage at any instant is the same across both capacitor and 

the resistor 

𝑣 = 𝑖𝑅 = 𝑉𝑐𝑒−(
𝑖

𝐶𝑅
)𝑡

    (9) 

The charge on the capacitor at any instant is 

𝑞 = 𝐶𝑣 = 𝐶𝑉𝑐𝑒−(
𝑖

𝐶𝑅
)𝑡 = 𝑄𝑒−(

𝑖

𝐶𝑅
)𝑡

  (10) 

Where 𝑄(= 𝐶𝑉𝑐) is the initial charge on the capacitor. 

 

The Governing Equation of the Discharging RLC 

Electrical Circuit in the Loop 

At time𝑡 = 𝑡0, switch 𝑆2 closes, creating a new loop 

consisting of 𝑅2, 𝐿, 𝑎𝑛𝑑 𝐶 the capacitor has already been 

charged to  𝑉𝑠 

The charged capacitor 𝑉𝑐(𝑡0) now acts like a voltage source 

𝑉𝑠 of magnitude 𝑉0 that is suddenly applied to the RLC 

electrical circuit we model this using a Heaviside step 

function 

The Kirchhoff’s voltage law of the RLC series loop  

𝑣𝑖𝑛(𝑡) = 𝑣𝑅(𝑡) + 𝑣𝐿(𝑡) + 𝑣𝑐(𝑡)  

𝑉0. 𝐻(𝑡 − 𝑡0) = 𝑅2𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+

1

𝐶
∫ 𝑖(𝑇)𝑑𝑇

𝑡

0
 (11) 

In other to obtain the transient and frequency response, the 

Laplace transform method of solution is applied because it is 

a very powerful tool for solving linear differential equations 

with constant coefficient encountered in this study of 

electrical vibration problem. The use of Laplace transform 

methods in this project aligns with techniques outlined by 

Andi, Ibeh, and Umar (2017), who demonstrated that 

instantaneous inputs could be accurately represented and 

analyzed using this approach for transient and steady-state 

studies. 

Mathematically, the definition of Laplace transform is given 

as;  

𝐿{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡), 𝑑𝑡
∞

0
   𝑡 ≥ 0 (12) 

Where 𝑡 a real number and 𝑠 is a complex number 

While, the differentiation in time domain derivatives isturned 

into algebraic power of 𝑠 

𝐿
𝑑𝑓(𝑡)

𝑑(𝑡)
= 𝑠𝐹(𝑠) − 𝑓(0)   (13) 

𝐿 {
𝑑2𝑓(𝑡)

𝑑𝑡2 } = 𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0)  (14) 

In circuit context it model behavior of inductors and 

capacitors 

𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
⇒ 𝑠𝐿𝐼(𝑠) − 𝐿𝑖(0)   (15) 

𝐼𝑐 = 𝐶
𝑑𝑣

𝑑𝑡
⇒ 𝑠𝐶𝑉(𝑠) − 𝐶𝑣(0)   (16) 

We will need to also defineIntegration becoming division𝑠, 

helpful for systems with accumulating energy 
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𝐿{∫ 𝑓(𝑇)𝑑𝑇} =
𝐹(𝑠)

𝑠

𝑡

0
   (17) 

Appears when using 

𝑣𝐶(𝑡) =
1

𝐶
∫ 𝑖(𝑡)𝑑𝑡    

The Initial Value Theoremis applied only of 𝑓(𝑡) is causal 

(zero before 𝑡 = 0) 

lim
𝑡→0+

𝑓(𝑡) = lim
𝑠→∞

𝑠𝐹(𝑠)   (18) 

The Final Value Theorem also make all the poles of 𝑠𝐹(𝑠)to 

have negative real parts making the system stable 

lim
𝑡→∞

𝑓(𝑡) = lim
𝑠→0

𝑠𝐹(𝑠)   (19) 

The Convolution Theorem in the time domain becomes 

multiplication in Laplace domain  

𝐿{𝑓(𝑡) ∗ 𝑔(𝑡)} = 𝐹(𝑠) ∙ 𝐺(𝑠)   (20) 

The Heaviside step function, denoted 𝐻(𝑡 − 𝑎) is used to 

model the sudden application or removal of a voltage or 

current source in electrical circuits.  

𝑞′′(𝑡) + 𝑅𝑞′(𝑡) +
1

𝐶
𝑞(𝑡) = 𝐻(𝑡 − 𝑎)  (21) 

𝐸(𝑡) = 𝐻(𝑡 − 𝑎)The Heaviside forcing function define as; 

and it’s used for switches in an electrical circuit 𝐻(𝑡 − 𝑎) =

{
0
1

 𝑡 < 𝑎, 𝑡 ≥ 𝑎    (22) 

The function represents the instantaneous switching of 

voltage source at specific times, convert time domain 

discontinuities into algebraic expression in the Laplace 

domain using transformation. This occurs when there is a 

discontinuity in the power source, and the unit-step function 

is used to represent on/off switches. 

𝐿{𝐻(𝑡 − 𝑎)} =
𝑒−𝑎𝑠

𝑠
    (23) 

Enable the analysis of circuit responses to step inputs such as 

𝑉𝑠𝑢(𝑡) or delayed step 𝑉0𝐻(𝑡 − 𝑡0) and to model the charging 

and discharging phase of the RC and RLC circuit triggered by 

switching events. 

 

Solution of the Governing Equation  

The solution begins by getting the transient and frequency 

response of the RC charging stage and the Discharging into 

RLC loop  𝑡 ≥ 𝑡0. RC starting from the charging stage with 

the Heaviside forcing function  

Thus, in a loop, KVL gives  

𝑉𝑠 ∙ 𝐻(𝑡) = 𝑅1𝑖(𝑡) + 𝑣𝑐(𝑡)   (24) 

Current through a capacitor i 

𝑖(𝑡) = 𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
 

𝑉𝑠 ∙ 𝐻(𝑡) = 𝑅1𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑐(𝑡)  (25) 

Solution using the Laplace transform  

𝐿{𝑢(𝑡)} =
1

𝑠
 

𝐿{𝑣𝑐(𝑡)} = 𝑉𝑐(𝑠) 

𝐿 {
𝑑𝑣𝑐(𝑡)

𝑑𝑡
} = 𝑆𝑉𝑐(𝑠) − 𝑣𝑐 

Assume the capacitor is initially uncharged 

𝑣𝑐(0) = 0 

𝐿{𝑉𝑠𝐻(𝑡)} = 𝐿 {𝑅1𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑐(𝑡)}  (26)  

𝑉𝑆

𝑠
= 𝑅1𝐶(𝑆𝑉𝑐(𝑠) − 0) + 𝑉𝑐(𝑆)  

𝑉𝑆

𝑠
= 𝑉𝑐(𝑆)(𝑅1𝐶𝑆 + 1)  

𝑉𝑐(𝑆) =
𝑉𝑆

𝑅1𝐶
∙

1

𝑆(𝑆+
1

𝑅1𝐶
)
   (27) 

Taking inverse Laplace Transform  

𝑣𝑐(𝑡) = 𝑉𝑠 (1 − 𝑒
−

𝑡

𝑅1𝐶) 𝐻(𝑡)   (28) 

The expression 𝑣𝑐(𝑡) describes the voltage across the 

capacitor starting from 0, gradually increases and approaches 

𝑉𝑠 as t→ ∞ 

Discharging into RLC Loop 𝒕 ≥ 𝒕𝟎 

At time𝑡 = 𝑡0, switch 𝑆2 closes, creating a new loop 

consisting of 𝑅2, 𝐿, 𝑎𝑛𝑑 𝐶 

The capacitor has already been charged  

𝑉0 = 𝑉𝑐(𝑡0) = 𝑉𝑠(1 − 𝑒
−

𝑡0
𝑅1𝐶)   (29) 

The charged capacitor now acts like a voltage source of 

magnitude 𝑉0 that is suddenly applied to the RLC circuit we 

model this using a Heaviside step function. 

𝑣𝑖𝑛(𝑡) = 𝑉0 ∙ 𝐻(𝑡 − 𝑡0)   (30) 

The KVL of the RLC series loop  

𝑣𝑖𝑛(𝑡) = 𝑣𝑅(𝑡) + 𝑣𝐿(𝑡) + 𝑣𝑐(𝑡)  

𝑉0. 𝐻(𝑡 − 𝑡0) = 𝑅2𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+

1

𝐶
∫ 𝑖(𝑇)𝑑𝑇

𝑡

0
 (31) 

To simplify, differentiate both sides with respect to time 
𝑑

𝑑𝑡
[𝑉0. 𝐻(𝑡 − 𝑡0)] = 𝑅2

𝑑𝑖(𝑡)

𝑑𝑡
+ 𝐿

𝑑2𝑖(𝑡)

𝑑𝑡2
+

1

𝐶
𝑖(𝑡) (32) 

Where:    
𝑑

𝑑𝑡
[𝑉0. 𝐻(𝑡 − 𝑡0)] = 𝑉0 ∙ 𝛿(𝑡 − 𝑡0)  

Hence, we have  

𝑉0 ∙ 𝛿(𝑡 − 𝑡0) =  𝐿
𝑑2𝑖(𝑡)

𝑑𝑡2 + 𝑅2
𝑑𝑖(𝑡)

𝑑𝑡
+

1

𝐶
𝑖(𝑡) (33) 

Instead of solving it in the time domain, we proceed with the 

Laplace Transform to handle both the time shift and solve 

efficiently. 

Laplace of left-hand side of  𝑉0 ∙ 𝛿(𝑡 − 𝑡0) give us equation 

(33) 

𝐿{𝑉0 ∙ 𝛿(𝑡 − 𝑡0)} =
𝑉0𝑒−𝑠𝑡0

𝑠
   (34) 

Laplace of right-hand side of  𝐿
𝑑2𝑖(𝑡)

𝑑𝑡2
+ 𝑅2

𝑑𝑖(𝑡)

𝑑𝑡
+

1

𝐶
𝑖(𝑡) give 

us equation (33) 

𝐿𝑆2𝐼(𝑆) + 𝑅2𝑆𝐼(𝑆) +
1

𝐶
𝐼(𝑆) = 𝐼(𝑆) (𝐿𝑆2 + 𝑅2𝑆 +

1

𝐶
) 

     (35) 

Combination of both equations (34) and (35). 
𝑉0𝑒−𝑠𝑡0

𝑠
= 𝐼(𝑆) (𝐿𝑆2 + 𝑅2𝑆 +

1

𝐶
)  

𝐼(𝑆) =
𝑉0𝑒−𝑠𝑡0

𝑆(𝐿𝑆2+𝑅2𝑆+
1

𝐶
)
   (36) 

This is the Laplace domain current. Its time shifted due to the 

𝑒−𝑠𝑡0 

 

Using the time-shifting theorem  

𝐿−1{𝑒−𝑠𝑡0𝐹(𝑠)} = 𝑓(𝑡 − 𝑡0)𝐻(𝑡 − 𝑡0)  

𝐹(𝑆) =
𝑉0

𝑆(𝐿𝑆2+𝑅2𝑆+
1

𝐶
)

⇒ 𝑓(𝑡)  

𝑖(𝑡) =  𝑓(𝑡 − 𝑡0)𝐻(𝑡 − 𝑡0)   (37) 

This means the current response is delayed by 𝑡0 and the 

natural RLC response begins a 𝑡 = 𝑡0 

𝑖(𝑡) = 𝐿−1 {
𝑉0

𝑆(𝐿𝑆2+𝑅2𝑆+
1

𝐶
)
} ∙ 𝐻(𝑡 − 𝑡0)  (38) 

Inverse Laplace and Damped Response, from (36) to get the 

time-domain current𝑖(𝑡), we need to compute the inverse 

Laplace transform  

𝑖(𝑡) = 𝐿−1{𝐼(𝑠)}  

Isolate the core expression from (36) 

𝐼(𝑠) =
𝑉0

𝑆(𝐿𝑆2+𝑅2𝑆+
1

𝐶
)
   (39) 

Where: 

∝=
𝑅2

2𝐿
 (Damping coefficient) 

𝜔0 =
1

√𝐿𝐶
  (Undamped natural frequency) 

𝜔𝑑 = √𝜔0
2 −∝2 (Damped frequency, for underdamped 

case) 

The nature of the roots depends on the relationship between 

𝛼and 𝜔0: 

i. Overdamped Case (𝛼 > 𝜔0): Roots are real and distinct 

(two slow exponentials, no oscillation) 
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ii. Critically Damped Case (𝛼 = 𝜔0): Roots are real and 

equal (fastest non-oscillatory decay) 

iii. Underdamped Case (𝛼 < 𝜔0): Roots are complex 

conjugates (oscillatory decay) 

𝐿−1 {
1

𝑠[(𝑠+∝)2+𝜔𝑑
2]

} =
1

𝜔𝑑
(1 − 𝑒−∝𝑡 [cos(𝜔𝑑𝑡) +

∝

𝜔𝑑
sin(𝜔𝑑𝑡)])    (40) 

𝐿𝑆2 + 𝑅2𝑠 +
1

𝐶
= 𝐿 [𝑠2 +

𝑅2

𝐿
𝑠 +

1

𝐿𝐶
] = 𝐿(𝑠2 + 2 ∝ 𝑠 + 𝜔0

2)

  

𝑖(𝑡) =
𝑉0

𝐿𝜔𝑑
(1 − 𝑒−∝𝑡 [cos(𝜔𝑑𝑡) +

∝

𝜔𝑑
sin(𝜔𝑑𝑡)] (41) 

Applying a time delay 𝑡0 because of𝑒−𝑠𝑡0, we use the time-

shifting theorem 

𝐿−1{𝑒−𝑠𝑡0𝐹(𝑠)} = 𝑓(𝑡 − 𝑡0)𝐻(𝑡 − 𝑡0)  

𝑖(𝑡) =
𝑉0

𝐿𝜔𝑑
(1 − 𝑒−∝(𝑡−𝑡0) [cos(𝜔𝑑(𝑡 − 𝑡0)) +

∝

𝜔𝑑
sin(𝜔𝑑(𝑡 − 𝑡0))])  𝐻(𝑡 − 𝑡0)  (42) 

 

Frequency Response for RC 

The frequency response of the RC circuit was analyzed using 

Laplace transform methods, with the substitution 𝑠 =  𝑗𝜔 to 

enter the frequency domain. The resulting transfer functions 

showed that when the output is taken across the capacitor, the 

circuit behaves as a low-pass filter, attenuating high-

frequency components. Conversely, when the output is across 

the resistor, the system operates as a high-pass filter, 

attenuating low-frequency signals. Magnitude and phase 

responses were derived for both configurations to fully 

characterize the system's filtering behavior. 

 

Low-Pass Voltage 

𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑡𝑜 𝐾𝑉𝐿 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝  

𝑉𝑖𝑛(𝑠) = 𝐼(𝑠) (𝑅 +
1

𝐶𝑆
) ⇒ 𝐼(𝑠) =

𝑉𝑖𝑛(𝑠)

𝑅+
1

𝐶𝑆

  (43) 

𝑉𝑜𝑢𝑡 = 𝑉𝑐  

𝑉𝐶(𝑠) =
1

𝐶𝑆
∙ 𝐼(𝑠) =

1

𝐶𝑆
∙

𝑉𝑖𝑛(𝑠)

𝑅+
1

𝐶𝑆

=
𝑉𝑖𝑛(𝑠)

1+𝑅𝐶𝑆
  

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐻𝐿𝑃(𝑠) =
𝑉𝐶(𝑠)

𝑉𝑖𝑛(𝑠)
=  

1

1+𝑅𝐶𝑆
 (44) 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑠 = 𝑗𝜔 𝑓𝑜𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

𝐻(𝑗𝜔) =
1

1+𝑗𝜔𝑅𝐶
    (45) 

 

High-pass voltage 
𝑉𝑜𝑢𝑡 = 𝑉𝑅 

𝑉𝑅(s) = 𝑅 ∙
𝑉𝑖𝑛(𝑠)

𝑅+
1

𝐶𝑆

=
𝑅𝐶𝑆

1+𝑅𝐶𝑆
∙ 𝑉𝑖𝑛(s)  (46) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐻𝐻𝑃(𝑠) =
𝑉𝑅(𝑠)

𝑉𝑖𝑛(𝑠)
=  

𝑅𝐶𝑆

1+𝑅𝐶𝑆
 (47) 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑠 = 𝑗𝜔 𝑓𝑜𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

𝐻(𝑗𝜔) =
𝑗𝜔𝑅𝐶

1+𝑗𝜔𝑅𝐶
    (48) 

 

Frequency Response for RLC   

The frequency response of the series RLC circuit was 

analyzed by deriving the transfer function from Kirchhoff's 

voltage law and substituting 𝑠 = 𝑗𝜔 to enter the frequency 

domain. The output across the capacitor was expressed in 

terms of magnitude and phase. The resulting behavior showed 

a band-pass characteristic with maximum response occurring 

at the resonant frequency𝜔0 = 1
√𝐿𝐶

⁄ . The circuit’s 

bandwidth and sharpness were defined by the resistance and 

inductance values, measured via the bandwidth 𝛥𝜔 = 𝑅/𝐿𝜔 

and quality factor𝑄 = 𝜔0𝐿/𝑅. This analysis reveals how the 

RLC circuit selectively amplifies signals at its natural 

resonant frequency while attenuating others, making it useful 

for filtering and signal selection 

Using KVL on equation (2.35) 

𝑉𝑖𝑛(𝑠) = 𝐼(𝑠) (𝐿𝑠 + 𝑅 +
1

𝐶𝑆
) ⇒  𝑉𝑜𝑢𝑡(𝑠) =

1

𝐶𝑆
∙ 𝐼(𝑠) 

     (49) 

𝐻(𝑠) =
𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
 

𝐻(𝑠) =

1

𝐶𝑆

𝐿𝑠+𝑅+
1

𝐶𝑆

=
1

𝐿𝐶𝑠2+𝑅𝐶𝑠+1
  (50) 

𝑠 = 𝑗𝜔 

𝐻(𝑗𝜔) =
1

𝐿𝐶(𝑗𝜔)2+𝑅𝐶(𝑗𝜔)+1
=

1

−𝐿𝐶𝜔2+𝑗𝑅𝐶(𝜔)+1
 (51) 

In the frequency domain, the magnitude and phase of the 

response are 

Magnitude  

|𝐻(𝑗𝜔)| = |
1

1−𝐿𝐶𝜔2+𝑗𝑅𝐶𝜔
| =

1

√(1−𝐿𝐶𝜔2)2+(𝑅𝐶𝜔)2
 (52) 

Phase 

∠𝐻(𝑗𝜔) =  −𝑡𝑎𝑛−1 (
𝑅𝐶𝜔

1−𝐿𝐶𝜔2
)  (53) 

 

RESULTS AND DISCUSSION  

The study investigated the transient and frequency responses 

of both RC and RLC circuits subjected to a Heaviside step 

input, using Laplace transform analysis. For the RC circuit, 

the transient analysis revealed an exponential charging 

behavior of the capacitor voltage. The results confirmed that 

the circuit voltage rises asymptotically and approaches the 

supply voltage 𝑉𝑆 with the rate of change governed by the time 

constant 𝜏 =  𝑅𝐶. A MATLAB simulation supported this 

behavior, producing a smooth curve that demonstrated how 

the voltage approaches 𝑉𝑆 over time, with 63% of the supply 

voltage reached at t = τ. This behavior validated the 

theoretical model and illustrated the RC circuit’s role as a 

low-pass filter that attenuates high-frequencysignals for the 

RLC circuit, the transient response depended heavily on the 

damping factor. In the underdamped case in Figure 3, the 

response showed decaying oscillations as expected, with 

current peaking and then settling to zero over time. This 

behavior was visually confirmed by the waveform plotted in 

MATLAB, showing sinusoidal oscillations enveloped by 

exponential decay. The critically damped case in Figure 4. 

Shows the return of the system to equilibrium fastest without 

overshoot, while the overdamped in Figure 5, the response 

also avoided oscillations but took more time to settle. An 

undamped case in Figure 6, simulated for theoretical 

comparison, displayed persistent sinusoidal oscillations with 

no energy loss due to the absence of resistance. In the 

frequency domain, Bode plot analysis was used to explore 

filtering behavior. The RC circuit's frequency response shown 

in Figure, 7 & 8 followed that of a first-order low-pass filter, 

with a clear -3 dB cutoff frequency at 𝑓𝐶  =  1/(2𝜋𝑅𝐶), 
beyond which the gain steadily declined and phase lag 

increased. The RLC circuit exhibited a second-order band-

pass filter behavior, where the gain peaked at the resonant 

frequency𝑓₀ =  1/(2𝜋√𝐿𝐶). From the Bode plot analysis in 

Figure, 9 & 10 as frequency moved away from resonance, 

attenuation increased. Phase shifts in both cases aligned with 

theoretical expectations, supporting the filtering 

models.These results highlight the impact of circuit 

parameters (R, L, and C) on energy dissipation, transient 

decay, and signal frequency selectivity. RC circuits are 

suitable for smoothing applications where a simple low-pass 

response is sufficient, while RLC circuits are better suited for 

selective filtering and resonance-based applications. The 

combined analytical and simulation-based approach 
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confirmed the consistency of Laplace-transform methods 

with time-domain circuit behavior and underscored the 

effectiveness of the Heaviside step function for modeling 

switch-like transitions in circuit excitation. 

 

Table 1: The Numerical Data Tables for the Critically Damped, Undamped, Overdamped and Underdamped RLC 

discharge 

Time (s) Critically Damped i(t) (A) Undamped i(t) (A) Overdamped i(t) (A) Underdamped i(t) (A) 

2 0 0 0 0 

2.001 0 -0.054402 0.000001 0.115724 

2 0 0.091295 0 0.115476 

0.002 

2.003 0 -0.098803 0 0.115473 

2.004 0 0.074511 0 0.115473 

2.005 0 -0.026237 0 0.115473 

2.006 0 -0.030481 0 0.115473 

2.007 0 0.077389 0 0.115473 

2.008 0 -0.099389 0 0.115473 

2.009 0 0.0894 0 0.115473 

2.01 0 -0.050637 0 0.115473 

 

 
Figure 3: Underdamped Discharge Current in RLC Circuit 

 

The current peaks sharply just after the switch is closed, then 

quickly stabilizes and the initial rise reflects the energy 

discharge stored in the capacitor-inductor system. The under-

damping condition causes a small oscillation or overshoot, but 

the circuit is quickly settling from t=2.003 onward, the current 

remains nearly constant at 0.11547 A, indicating a pseudo 

steady-state due to minimal damping. 

 

 
Figure 4: Critically Damped Discharge Current in RLC Circuit 

 

In the critically damped condition, the circuit achieves the 

fastest non-oscillatory response. The current rapidly rises to a 

peak and decays smoothly to zero without crossing the time 

axis. This condition arises when the resistance R is precisely 

equal to  2√𝐿/𝐶. The energy stored in the capacitor and 

inductor is efficiently dissipated through the resistor with no 

oscillatory delay. 
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Figure 5: Overdamped Discharge Current in RLC Circuit 

 

In the overdamped configuration, where > 𝟐√𝑳/𝑪, the 

discharge is slow and non-oscillatory. The current increases 

gently and returns to zero over an extended time period 

without overshooting. The system’s return to equilibrium is 

highly stable, albeit at the cost of speed. 

 

 
Figure 6: Undamped Discharge Current in RLC Circuit 

 

The undamped case represents an idealized scenario 

where𝑹 = 𝟎, meaning no energy is dissipated as heat. As a 

result, the current oscillates sinusoidally with constant 

amplitude and no decay. While physically unrealistic due to 

inevitable resistive losses in real components, it serves as a 

benchmark for resonance-based applications. 

 

 
Figure 7: Bode Magnitude Response plot for RC Low-Pass Filter 
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Figure 8: Bode Phase Response plot for RC Low-Pass Filter 

 

The RC circuit, configured as a low-pass filter, demonstrates 

a classic first-order response. It passes low-frequency signals 

with minimal attenuation and gradually attenuates higher-

frequency components beyond its cutoff frequency. The 

magnitude response shows a smooth –20 dB/decade roll-off 

after the cutoff point, and the phase shifts from 0° toward –

90° as frequency increases. This makes the RC filter effective 

for noise suppression, analog signal conditioning, and anti-

aliasing in data acquisition systems. 

 

 
Figure 9: Bode Magnitude Response Plot for RLC Band-Pass Filter 

 
Figure 10: Bode Phase Response Plot for RLC Band-Pass Filter 

 

In contrast, the RLC circuit, acting as a band-pass filter, 

exhibits a second-order resonant behavior. It allows signals 

within a narrow frequency band centered at the resonant 

frequency to pass while attenuating both lower and higher 

frequencies. The magnitude response peaks sharply at 

resonance, and the phase shifts rapidly from 0° to 180°, 

reflecting the circuit’s resonant and reactive nature. This 

property makes the RLC filter well-suited for frequency 

selection, radio communications, and signal tuning 

applications. 

 

Table 2: Pole-Zero Map of RC and RLC Circuit Behaviors 

Circuit Poles Zeros Behavior 

RC Low-Pass 𝑆 = −10 None Stable, non-oscillatory 

RLC Band-Pass 𝑆 = −5000 ± 𝑗8660 𝑆 = 0 Resonant, underdamped 
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Figure 11: Pole-Zero Map for RC and RLC Circuit 

 

One real negative pole means a stable, exponentially 

decaying system, no zeros and two complex conjugate poles 

mean underdamped system, oscillatory behavior. 

 

CONCLUSION  

This study explored the transient and frequency response 

behavior of modified RC and RLC circuits subjected to a 

Heaviside step function using analytical methods and 

MATLAB simulations. Through the application of Laplace 

transforms, the time-domain behavior of each circuit 

configuration was successfully modeled, capturing the effects 

of component values on damping, energy dissipation, and 

system dynamics. The RC circuit exhibited first-order 

exponential charging behavior, verifying its role as a 

fundamental low-pass filter. Conversely, the RLC circuit 

revealed second-order responses across various damping 

regimesunderdamped, critically damped, and 

overdampeddemonstrating its suitability for applications 

requiring selective frequency filtering and resonance control. 

The frequency-domain analysis further reinforced these 

findings. The RC circuit attenuated high-frequency signals 

beyond its -3 dB cutoff, while the RLC configuration 

displayed a clear band-pass response centered around its 

natural resonant frequency. These observations validate the 

analytical models and emphasize the importance of selecting 

appropriate circuit parameters to achieve desired performance 

outcomes in electrical design. The results highlight the 

effectiveness of combining symbolic modeling through 

Laplace techniques with simulation-based tools like 

MATLAB to fully understand the behavior of linear circuits 

under step-input conditions. The Heaviside step function 

served as a robust representation of switching operations, 

accurately capturing real-world circuit behavior at activation 

points. 

 

REFERENCES 

Andi, E., Ibeh, G. J., & Umar, D. M. (2017). Effect of 

transient and frequency response of RC and RLC circuits to 

instantaneous forcing function. Academy Journal of Science 

and Engineering, 11, 81–93. 

 

Alexander, C. K., & Sadiku, M. N. O. (2017). Fundamentals 

of electric circuits (6th ed.). McGraw-Hill Education. 

 

Boylestad, R. L., & Nashelsky, L. (2020). Electronic devices 

and circuit theory (13th ed.). Pearson. 

 

Dorf, R. C., & Svoboda, J. A. (2018). Dorf's introduction to 

electric circuits (9th ed., Global Edition). Wiley  

 

Hayt, W. H., Kemmerly, J. E., & Durbin, S. M. (2019). 

Engineering circuit analysis (9th ed.). McGraw-Hill 

Education. 

 

Heaviside, O. (1893). Electromagnetic theory (Vol. 1). The 

Electrician Printing and Publishing Company.Operational 

calculus. (2025). In Wikipedia. Retrieved from 

https://en.wikipedia.org/wiki/Operational_calculus 
 

Ikechiamaka, F. N., Okpala, C., & Lawal, A. (2017). Design 

and implementation of a low cost hearing aid device. FUDMA 

Journal of Sciences, 1(1), 115–122. 

 

RLC circuit. (2025). In Wikipedia. Retrieved from 

https://en.wikipedia.org/wiki/RLC_circuit 

 

 

 

https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Operational_calculus
https://en.wikipedia.org/wiki/RLC_circuit

