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ABSTRACT 

This paper presents a new four stage fourth-order Parallel diagonally implicit Runge-Kutta-Nystrom (RKN) 

method for the numerical integration of second order initial value problems (IVPs) possessing oscillatory 

solutions. The stability analysis of the method was also investigated to show that the method can approximate 

oscillatory systems. Numerical example was presented to show the applicability of the method. The results 

obtained shows that the method compares favourably in terms of accuracy and convergence with existing 

methods in current literatures.  
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INTRODUCTION  

In applied sciences and engineering, oscillatory equations are 

commonly encountered. Numerical integration of oscillatory 

systems related to initial value problems of the of the form (1) 

is the focus of this research: 

𝑦′′(𝑡) = 𝑓(𝑡, 𝑦),    𝑦(𝑡0) = 𝑦0, 𝑦
′(𝑡0) = 𝑦0

′  (1) 

𝑦 ∈→ ℝ𝑛 , 𝑓: ℝ × ℝ𝑛 → ℝ𝑛  

Where the first order derivative does not appear explicitly. 

The solution to (1) can be obtained directly by the Runge-

Kutta-Nystrom method (RKN) developed by E. J. Nystrom in 

1925, without converting to a system of first order differential 

equations as in the case of the classical Runge-Kutta method. 

Numerous techniques for the numerical integration of 

equations from (1) have been proposed in the literature. Many 

studies have focused on the development and implementation 

of the explicit type of RKN method because they are not only 

easy to implement but also efficient.  

However, since explicit Runge-Kutta methods have a limited 

region of absolute stability, they are not appropriate for the 

solution of (1). Implicit methods were developed in response 

to the volatility of explicit methods, these methods have been 

studied by Van der Houwen and Sommeijer (1989), Sharp et 

al. (1990), Ozawa (1999), Franco (2004), Imoni et al. (2006), 

Ismail (2009), Senu et al. (2010), Senu et al. (2011), Senu et 

al. (2012) and Moo et al. (2014), which shows that these 

methods are more efficient in terms of time and effectiveness 

than the explicit type in solving (1) and using the classical 

Runge-Kutta method by transforming the IVPs to a system of 

first order ODEs.  

According to Wu (2012), stability analysis is crucial in 

numerical analysis of multidimensional adapted Runge–

Kutta–Nyström (ARKN) methods for oscillatory systems. 

The test equation used in Franco (2006) and Wu and Wang 

(2010) to examine the stability of a multidimensional ARKN 

method does not fully capture stability; rather, there is a gap 

because of the assumptions made in the original works, which 

results in an incomplete stability region for an ARKN method. 

A diagonally implicit Runge–Kutta–Nystrom (DIRKN) 

formula-pair of order 5(4) by Imoni and Ikhile (2014) shows 

that because of its diagonally implicit structure, it has a 

suitable region of stability and is computationally less 

expensive. Based on Simos (1998) technique, an explicit 

trigonometrically-fitted Runge–Kutta–Nystrom (ETFRKN) 

method is developed (Demba et al., 2016). The derived 

method demonstrates that the new method's global error is 

both less and more efficient than those of the other methods 

now in use. An optimization of the sixth-order explicit Runge-

Kutta-Nystrom method with six stages derived by El-

Mikkawy and Rahmo (2003) utilising the phase-fitted and 

amplification-fitted procedures with constant step-size was 

developed by Demba et al. (2021). The stability analysis is 

discussed, demonstrating the periodicity interval of the 

derived approach. Comparing the suggested scheme to other 

RKN codes that are currently in use with six stages and the 

same order, the numerical experiments show that it performs 

exceptionally well. Using the Verhulst logistic growth model, 

Lee et al. (2024) developed a five-stage, exponentially-fitted 

two-derivative Runge–Kutta–Nyström approach. In solving 

second-order ODEs with exponential solutions, the suggested 

method's exponentially-fitting strategy contributes to 

exceptional accuracy and efficiency by precisely simulating a 

few typical exponential functions. Numerical experiments are 

conducted for a suggested method using fitting methodology 

and other current methods in terms of maximum global error 

versus computation time. 

In this paper, we develop a new four-stage fourth order 

parallel diagonally implicit Runge-Kutta-Nystrom (PDIRKN) 

method using constant step size to solve special second order 

differential equations having oscillatory solutions. The 

numerical example tested shows the effectiveness of the 

method in obtaining the solution to (1). 

 

MATERIALS AND METHODS 

The Runge-Kutta-Nystrom method is broadly divided to two 

types namely explicit (𝑎𝑖𝑗 = 0 for 𝑖 ≤ 𝑗,   𝑖, 𝑗 = 1,2,… , 𝑠) and 

implicit elsewhere. The implicit type takes the form 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2∑ 𝑏𝑖𝑘𝑖

𝑠
𝑖=1

𝑦𝑛+1
′ = 𝑦𝑛

′ + ℎ∑ 𝑏𝑖
′𝑠

𝑖=1 𝑘𝑖
   (2) 

𝑘𝑖 = 𝑓(𝑡𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + 𝑐𝑖ℎ𝑦𝑛
′ + ℎ2∑ 𝑎𝑖𝑗𝑘𝑗

𝑠
𝑗=1 )  

where: 

 ℎ is the step size, 

𝑠 is the number of stages, 

𝑘𝑖 are the stage derivatives (intermediate stages), 

𝑐𝑖 , 𝑎𝑖𝑗, 𝑏𝑖 and 𝑏𝑖
′  are the coefficients of the RKN method 

The 𝑐𝑖satisfies the simplify assumptions 
1

2
𝑐𝑖
2 = ∑ 𝑎𝑖𝑗

𝑠
𝑗=1      𝑖 = 1, … , 𝑠  (3) 

𝑏𝑖 = 𝑏𝑖
′(1 − 𝑐𝑖), 𝑖 = 1,… , 𝑠    (4) 

The method’s coefficients can be represented by the Butcher’s 

tableau in matrix format as 

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 9 No. 8, August, 2025, pp 261 – 266 

DOI: https://doi.org/10.33003/fjs-2025-0908-3758   

mailto:koladedavid@gmail.com
https://doi.org/10.33003/fjs-2025-0908-3758


ON A PARALLEL DIAGONALLY IMPLICIT…      Kolade et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 8, August, 2025, pp 261 – 266 262 

 𝒄  𝑨 

  𝑏𝑇 

 𝑏′𝑇 

where, 𝑐 = [𝑐1, ⋯ , 𝑐𝑠],𝑏 = [𝑏1, … , 𝑏𝑠]
𝑇 , 𝑏′ = [𝑏1

′ , … , 𝑏𝑠
′]𝑇  

and  𝐴 =  [𝑎𝑖𝑗] with  𝑐 ∈ ℝ, 𝑏𝑇 , 𝑏′𝑇 ∈ ℝ𝑠 and 𝐴 ∈ ℝ𝑠𝑥𝑠  

Construction of the Method  

We construct a four-stage fourth order 2-parallel, 2-

processors diagonally implicit RKN technique. The sparsity 

pattern and the diagraph of the method are shown in Table 1.  

 

 

Table 1: Sparsity Pattern and Digraph of the Proposed Method 

Sparsity Pattern Digraph 

(

×
𝟎
×
×

𝟎
×
×
×

𝟎
𝟎
×
𝟎

𝟎
𝟎
𝟎
×

) 

 
From the table above, the symbol  denotes non-zero elements, 𝑞1 𝑎𝑛𝑑 𝑞2 , denotes the number of processors 

 

Order Conditions for RKN Methods 

Algebraic conditions that an RKN method must satisfy are given in table 2 up to 𝑝 = 5 

 

Table 2: Order Conditions of RKN Methods 

 𝒚 → 𝒃𝒊    𝒚′ → 𝒃𝒊
′ 

1 ℎ2 𝟏

𝟐
=∑𝒃𝒊

𝒊

= 𝟏 
ℎ 

2 ℎ3 1

6
=∑𝑏𝑖

𝑖

𝑐𝑖 =
1

2
 

ℎ2 

3 ℎ4 1

12
=∑𝑏𝑖𝑐𝑖

2

𝑖

=
1

3
 

ℎ3∗ 

4 ℎ4∗ 1

24
=∑𝑏𝑖

𝑖

𝑎𝑖𝑗𝑐𝑗 =
1

6
 

ℎ3 

5 ℎ5 1

120
=
1

6
∑𝑏𝑖𝑐𝑖

3

𝑖

=
1

24
 

ℎ4 

6 ℎ5 1

120
=∑𝑏𝑖𝑎𝑖𝑗𝑐𝑗

𝑖,𝑗

=
1

24
 

ℎ4 

7 ℎ6 1

720
=
1

24
∑𝑏𝑖𝑐𝑖

4

𝑖

=
1

120
 

ℎ5 

8 ℎ6 1

180
= ∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗𝑖,𝑗 =

1

30
 ℎ5 

9 ℎ6 1

720
=
1

2
∑𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗

2

𝑖,𝑗

=
1

120
 

ℎ5 

(see Hairer et al. (2008) and Imoni (2020)) 

 

For the proposed method, the order conditions are expressed 

in (5) – (13) 

𝑜𝑟𝑑𝑒𝑟 𝑜𝑛𝑒: ∑ 𝑏𝑖
′4

𝑖=1 = 𝑏1
′  +  𝑏2

′  +  𝑏3
′  + 𝑏4

′  =  1 (5) 

𝑜𝑟𝑑𝑒𝑟 𝑡𝑤𝑜: ∑ 𝑏𝑖
′𝑐𝑖

4
𝑖=1 = 𝑏1

′𝑐1  +  𝑏2
′𝑐2  + 𝑏3

′𝑐3  + 𝑏4
′𝑐4  =

1

2
  

     (6) 

𝑜𝑟𝑑𝑒𝑟 𝑡ℎ𝑟𝑒𝑒: ∑ 𝑏𝑖
′𝑐𝑖
24

𝑖=1 = 𝑏1
′𝑐1
2  +  𝑏2

′𝑐2
2  + 𝑏3

′𝑐3
2  +  𝑏4

′𝑐4
2  =

1

3
 

     (7) 

𝑜𝑟𝑑𝑒𝑟 𝑓𝑜𝑢𝑟: ∑ 𝑏𝑖
′𝑐𝑖
34

𝑖=1 = 𝑏1
′𝑐1
3  +  𝑏2

′𝑐2
3  +  𝑏3

′𝑐3
3  +  𝑏4

′𝑐4
3 =

1

4
  

     (8) 

∑ 𝑏𝑖
′𝑎𝑖𝑗𝑐𝑗

4
𝑖,𝑗=1 = 𝑏1

′𝑎11𝑐1  +  𝑏2
′𝑎21𝑐2 + 𝑏2

′𝑎22𝑐2 + 𝑏3
′𝑎31𝑐3 +

𝑏3
′𝑎32𝑐3 + 𝑏3

′𝑎33𝑐3 + 𝑏4
′𝑎41𝑐4 + 𝑏4

′𝑎42𝑐4 + 𝑏4
′𝑎43𝑐4 +

𝑏4
′𝑎44𝑐4 =

1

24
      (9) 

for 𝑦′, and 

 𝑜𝑟𝑑𝑒𝑟 𝑡𝑤𝑜:∑ 𝑏𝑖
4
𝑖=1 = 𝑏1  +  𝑏2  + 𝑏3  +  𝑏4  =

1

2
 (10) 

𝑜𝑟𝑑𝑒𝑟 𝑡ℎ𝑟𝑒𝑒: ∑ 𝑏𝑖𝑐𝑖
4
𝑖=1 =  𝑏1𝑐1  + 𝑏2𝑐2  + 𝑏3𝑐3  +  𝑏4𝑐4  =

1

6
 

     (11) 

𝑜𝑟𝑑𝑒𝑟 𝑓𝑜𝑢𝑟: ∑ 𝑏𝑖𝑐𝑖
24

𝑖=1 = 𝑏1𝑐1
2  +  𝑏2𝑐2

2 + 𝑏3𝑐3
2  +  𝑏4𝑐4

2  =
1

12

     (12) 

𝑜𝑟𝑑𝑒𝑟 𝑓𝑜𝑢𝑟: ∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗
4
𝑖,𝑗=1 = 𝑏1𝑎11𝑐1  +  𝑏2𝑎21𝑐1 + 𝑏2𝑎22𝑐2 +

+ 𝑏2𝑎22𝑐2 + 𝑏3𝑎31𝑐1 + 𝑏3𝑎32𝑐2 + 𝑏3𝑎33𝑐3 + 𝑏4𝑎41𝑐1 +

𝑏4𝑎42𝑐2 + 𝑏4𝑎43𝑐3 + 𝑏4𝑎44𝑐4 =
1

24
  (13) 

for 𝑦 

We have to satisfy nine equations, four for 𝑦 and, five for 𝑦′ 
and four compatibility conditions. Using the simplification 

assumption and since 𝑎21 = 𝑎43 = 0, we are left with eight 

equations in thirteen unknowns. There are six free parameters 

which are chosen to be 𝑐1, 𝑐2, 𝑐3, 𝑐4 𝑎𝑛𝑑 𝑎32. The Butcher’s 

tableau for the proposed method is table 3. 
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Table 3: The Coefficients of the 4-stage New PDIRKN Method 

𝑐1 𝑎11    

𝑐2 0 𝑎22   

 𝑐3 𝑎31 𝑎32 𝑎33  

𝑐4 𝑎41 𝑎42 0 𝑎44 

 𝑏1 𝑏2 𝑏3 𝑏3 

 𝑏1
′  𝑏2

′  𝑏3
′   𝑏4

′   

Equations (5) – (8) are solved to obtain the expression for 𝑏1
′ , 𝑏2

′ , 𝑏3
′  𝑎𝑛𝑑 𝑏4

′  by using Maple 2021 as, 

 

𝑏1
′  =  −

12𝑐2𝑐3𝑐4− 6𝑐2𝑐3− 6𝑐2𝑐4− 6𝑐3𝑐4+ 4𝑐2+ 4𝑐3+ 4𝑐4− 3

12(𝑐1− 𝑐2)(𝑐1 − 𝑐3)(𝑐1 − 𝑐4)

𝑏2
′  =  

12𝑐1𝑐3𝑐4− 6𝑐1𝑐3− 6𝑐1𝑐4− 6𝑐3𝑐4+ 4𝑐1+ 4𝑐3+ 4𝑐4− 3

12(𝑐1− 𝑐2)(𝑐2 − 𝑐3)(𝑐2 − 𝑐4)

𝑏3
′  =  −

12𝑐1𝑐2𝑐4− 6𝑐1𝑐2− 6𝑐1𝑐4− 6𝑐2𝑐4+ 4𝑐1+ 4𝑐2+ 4𝑐4− 3

12(𝑐3− 𝑐1)(𝑐3 − 𝑐2)(𝑐3 − 𝑐4)

𝑏4
′  =  

12𝑐1𝑐2𝑐3− 6𝑐1𝑐2− 6𝑐1𝑐3− 6𝑐2𝑐3+ 4𝑐1+ 4𝑐2+ 4𝑐3− 3

12(𝑐1− 𝑐4)(𝑐4 − 𝑐2)(𝑐4 − 𝑐3) }
  
 

  
 

  

     (14) 

Applying simplifying assumption (3) we have the following 

to obtain 𝑎11, 𝑎22, 𝑎31, 𝑎𝑛𝑑 𝑎41 expressed in (15) after 

simplification as: 

𝑎11 =
1

2
𝑐1
2,   𝑎22 =

1

2
𝑐1
2 ,  𝑎31 =

1

2
𝑐3
2 − 2𝑎32 − 

1

2
𝑐1
2 ,   𝑎41 =

1

2
𝑐4
2 −

1

2
𝑐1
2 − 2 𝑎42    (15) 

Also, from (9) and (13) we obtain expressions for 

𝑎32 𝑎𝑛𝑑 𝑎42 by using Maple 2021 as follows 

𝑎32 =
𝐴

 24𝑏3𝑐2
        (16) 

𝑎42 =
𝐵

 24𝑏4𝑐2
    (17) 

where,  

𝐴 = 24𝑎11𝑏1𝑐1 + 24𝑎21𝑏2𝑐1 + 24𝑎22𝑏2𝑐2 + 24𝑎31𝑏3𝑐1 +
24𝑎33𝑏3𝑐3 +  24𝑎41𝑏4𝑐1 + 24𝑎42𝑏4𝑐2 +  24𝑎43𝑏4𝑐3 +
 24𝑎44𝑏4𝑐4 −  1  

𝐵 = 24𝑎11𝑏1𝑐1 + 24𝑎21𝑏2𝑐1 + 24𝑎22𝑏2𝑐2 + 24𝑎31𝑏3𝑐1 +
24𝑎32𝑏3𝑐2 + 24𝑎33𝑏3𝑐3 +  24𝑎41𝑏4𝑐1 +  24𝑎43𝑏4𝑐3 +
 24𝑎44𝑏4𝑐4 −  1  

By applying the simplifying assumption (4) we obtain the 

expression for 𝑏1, 𝑏2, 𝑏3 𝑎𝑛𝑑 𝑏4 in (18) 

𝑏1 =  −
(1−𝑐1)(12𝑐2𝑐3𝑐4− 6𝑐2𝑐3− 6𝑐2𝑐4− 6𝑐3𝑐4+ 4𝑐2+ 4𝑐3+ 4𝑐4− 3)

12(𝑐1− 𝑐2)(𝑐1 − 𝑐3)(𝑐1 − 𝑐4)

𝑏2  =  
(1−𝑐2)(12𝑐1𝑐3𝑐4− 6𝑐1𝑐3− 6𝑐1𝑐4− 6𝑐3𝑐4+ 4𝑐1+ 4𝑐3+ 4𝑐4− 3)

12(𝑐1− 𝑐2)(𝑐2 − 𝑐3)(𝑐2 − 𝑐4)

𝑏3 =  −
(1−𝑐3)(12𝑐1𝑐2𝑐4− 6𝑐1𝑐2− 6𝑐1𝑐4− 6𝑐2𝑐4+ 4𝑐1+ 4𝑐2+ 4𝑐4− 3)

12(𝑐3− 𝑐1)(𝑐3 − 𝑐2)(𝑐3 − 𝑐4)

𝑏4 = 
(1−𝑐4)(12𝑐1𝑐2𝑐3− 6𝑐1𝑐2− 6𝑐1𝑐3− 6𝑐2𝑐3+ 4𝑐1+ 4𝑐2+ 4𝑐3− 3)

12(𝑐1− 𝑐4)(𝑐4 − 𝑐2)(𝑐4 − 𝑐3) }
  
 

  
 

  

     (18) 

The truncation error constant is given by  

‖𝜏(𝑝+1)‖
2
= √∑ (𝜏𝑖

(𝑝+1)
)
2

𝑝+1
𝑖=1 , ‖𝜏′(𝑝+1)‖

2
=

√∑ (𝜏𝑖
′(𝑝+1)

)
2

𝑝+1
𝑖=1     (19) 

(see Imoni (2020)) 

where, 𝜏(𝑝+1) and 𝜏′(𝑝+1) are the fifth order error equations 

associated with the method. Therefore, the truncation error 

constant for the proposed method is given by 

‖𝜏(5)‖
2
= √∑ (𝜏𝑖

(5)
)
2

5
𝑖=1 , ‖𝜏′(5)‖

2
= √∑ (𝜏𝑖

′(5)
)
2

5
𝑖=1  

     (20) 

where,  

𝜏1
(5)
=  ∑ 𝑏𝑖𝑐𝑖

34
𝑖=1 −

1

20
,  𝜏2

(5)
=  ∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗

4
𝑖=1 −

1

120
  

𝜏1
′(5)

=  ∑ 𝑏𝑖𝑐𝑖
44

𝑖=1 −
1

5
,  𝜏2

′(5)
=  ∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗

4
𝑖=1 −

1

30
 ,   𝜏5

′(5)
= ∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗

24
𝑖=1 −

1

60
  

Substituting the expressions obtained in (14) and (15) into the 

truncation error constant (20) and minimizing using Python 

3.0 subject to the bounds, 0 ≤ 𝑐𝑖 ≤ 1, 𝑖 = 1,2,3,4. The 4-

stage New DIRKN method obtained is expressed in the 

Butcher’s tableau in table 4. 

 

Table 4: The Coefficients of the New PDIRKN Method 
114

137
 

251

725
 

   

282

715
 

0 251

725
 

  

815

961
 

−332

781
 

435

992
 

251

725
 

 

11

232
 −

106

141
 

316

777
 

0 251

725
 

 −14

523
 

158

539
 

29

373
 

147

943
 

 
−
81

508
 

91

188
 

457

893
 

9

55
 

The coefficients of the Butcher’s tableau are substituted into the fifth-order error formula (20) to obtain the error constants for 

𝑦 and 𝑦′ respectively. ‖𝜏(5)‖
2
=  7.722466870818714 × 10−2, ‖𝜏′(5)‖

2
= 4.425073327346878 × 10−6 

 

Stability Analysis  

The stability characteristics of the derived method have been 

analyzed using the scalar harmonic oscillatory equation 

which is suitable for oscillatory systems.  

𝑦′′ = −𝜔2𝑦,    𝑦(0) = 1,   𝑦′(0) = 𝑖𝜔,   𝜔 ∈ ℝ (21) 

The application of the RKN method (2) on (21) results to the 

following relations 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′ + 𝑧𝑏𝑇𝑌𝑛 

ℎ𝑦𝑛+1
′ = ℎ𝑦𝑛

′ + 𝑧𝑏′𝑇𝑌𝑛 

𝑌𝑛 = 𝑒𝑦𝑛 + 𝑐ℎ𝑦𝑛
′ + 𝑧𝐴𝑦𝑛) 

Where 𝑧 = −𝜔2ℎ2, 𝑌𝑛 = (𝑒𝑦𝑛 + 𝑐ℎ𝑦𝑛
′ )𝑁−1, 𝑁 = 𝐼 + 𝑧𝐴 

By eliminating the auxiliary vector 𝑌𝑛 , yields 

𝑦𝑛+1 = 𝑦𝑛(𝐼 + 𝑧𝑏
𝑇(𝐼 − 𝑧𝐴)−1𝑒 + ℎ𝑦𝑛 

′ 𝐼 + 𝑧𝑏𝑇(𝐼 − 𝑧𝐴)−1𝑐) 
ℎ𝑦𝑛+1

′ = 𝑦𝑛𝑧𝑏
′𝑇(𝐼 − 𝑧𝐴)−1𝑒 + ℎ𝑦𝑛

′ (1 + 𝑧𝑏′𝑇(𝐼 − 𝑧𝐴)−1𝑐) 
𝑦𝑛+1 𝑎𝑛𝑑 ℎ𝑦𝑛+1

′  can be written in a compact form as  

(
𝑦𝑛+1
ℎ𝑦𝑛+1

′ ) = 𝐻(𝑧) (
𝑦𝑛
ℎ𝑦𝑛

′)   (22) 
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𝐻(𝑧) =  [
1 + 𝑧𝑏𝑇(𝐼 − 𝑧𝐴)−1𝑒 1 + 𝑧𝑏𝑇(𝐼 − 𝑧𝐴)−1𝑐)

𝑧𝑏′𝑇(𝐼 − 𝑧𝐴)−1𝑒 1 + 𝑧𝑏′𝑇(𝐼 − 𝑧𝐴)−1𝑐
] 

     (23) 

And 𝐴 = {𝑎𝑖𝑗}𝑖,𝑗=1
𝑠

  𝑒 = [1,… ,1],   𝑏 = [𝑏1, … , 𝑏𝑠]
𝑇 ,   𝑏′ =

[𝑏1
′ , … , 𝑏𝑠

′]𝑇 ,   𝑐 = [𝑐1 , … , 𝑐𝑠] 
The amplification matrix is the matrix 𝐻(𝑧) that is used to 

determine the method's stability (Imoni (2020)). The 

following functions, 𝑠(𝑧) and 𝑝(𝑧), are defined by Van der 

Houwen and Sommeijer (1989), where 𝑠(𝑧) = 𝑡𝑟𝑎𝑐𝑒(𝐻(𝑧)) 
and 𝑝(𝑧) = 𝑑𝑒𝑡(𝐻(𝑧)), 
The characteristic equation of the amplification matrix 𝑅(𝑧) 
is given by 

𝜁2 − 𝑠(𝑧)𝜁 + 𝑝(𝑧) = 0   (24) 

Sharp et al. (1990) stated that the RKN method is R-stable if 

𝜌(𝑅) ≤ 1 for all 𝑧 < 0 and the eigen values on the unit disc 

are simple, provided that 𝜌(𝑅) represents the spectral radius 

of 𝑅(𝑧). This indicates that for any 𝜔 and h, the amplitude of 

the numerical solution to the test equation does not grow with 

time. The RKN approach is considered P-stable if 𝜌(𝑅) = 1 

for every 𝑧 < 0, and RL-stable if the RKN approach is R-

stable and 𝜌(𝑅) → 0 as 𝑧 → ∞. The interval of stability is 

defined as (𝑧0, 0), (𝑧0 < 0), on which 𝜌(𝑅) ≤ 1. (See Chawla 

and Sharma, 1981, Imoni and Ikhile, 2014 and Imoni, 2020). 

The interval of stability of the method obtained from the 

amplification matrix 𝐻(𝑧) defined in (23) is approximately 

(−4.7, 0). The stability region of the method is given in figure 

1 

 

 
Figure 1: Stability region for the Fourth order New PDIRKN Method 

 

The stability region of the derived method, which was 

obtained from the amplification matrix in (23), is shown in 

Figure 1. A significant portion of the negative real axis is 

covered by the plot, which is mostly located in the left half of 

the complex plane. This demonstrates the stability of the 

method with a stability interval of approximately (-4.7, 0).  

 

RESULTS AND DISCUSSION 

Numerical Example 

The derived method will be applied to solve problems which 

appear in many papers on numerical methods for oscillatory 

problems. The following implicit RKN methods were selected 

for numerical comparison. 

i. New DIRKN(4): the new method derived in this paper 

ii. IRKN(4): four stage implicit RKN method derived by 

Ozawa (1999) 

iii. DIRKN 3(4): three stage fourth order DIRKN method 

derived by Senu et al. (2011) 

iv. DIRKN3(4,6): three stage fourth order DIRKN method 

derived by Sharp et al. (1990) 

v. DIRKN3(4,4): DIRKN method derived by Senu et al. 

(2012) 

 

Example  

Consider the Duffing Equations 

𝑦′′ =  −𝑦 − 𝑦3  +
1

500
  𝑐𝑜𝑠(1.01𝑥), 𝑦(0) =

 0.20042678067  , 𝑦′(0) = 0  

With exact solution  

𝑦(𝑥)  =  0.200179477536 𝑐𝑜𝑠(1.01𝑥)  +
 0.00246946143 𝑐𝑜𝑠(3.03𝑥)  + 0.304014 ×
10−6 𝑐𝑜𝑠(5.05𝑥)  +  0.374 × 10−9 𝑐𝑜𝑠(7.07𝑥)  
Source: Imoni and Ikhile (2014) and Li and Song (2006)) 

 

Notations 

h: step size 

Method: the method used 

𝒚𝒏 : Numerical solution for each method 

Error: ‖𝑦𝑛 − 𝑦(𝑥𝑛)‖ (absolute value of the numerical solution 

minus the exact solution) 

FE: Function Evaluation 

Time (s): Evaluation time in seconds 
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Table 5: Numerical Result for Example 

h Method 𝒚𝒏 Exact  Error FE Time (s) 

0.00125 New DIRKN(4) 0.178665 0.178963 0.000299 1599634   6.777  
IRKN(4) 0.178601 0.178963 0.000362 1437584     6.354  
DIRKN 3(4) 0.178601 0.178963 0.000362 1195224 4.028  
DIRKN3(4,6) 0.178601 0.178963 0.000362 1199450     4.071  
DIRKN3(4,4) 0.178601 0.178963 0.000362 1195584     5.204 

0.0025 New DIRKN(4) 0.178668 0.178963 0.000295 799960     3.002  
IRKN(4) 0.178601 0.178963 0.000362 719698     2.444  
DIRKN 3(4) 0.178601 0.178963 0.000362 599406 2.984  
DIRKN3(4,6) 0.178601 0.178963 0.000362 599932     2.032  
DIRKN3(4,4) 0.178601 0.178963 0.000362 599442     1.983 

0.0050 New DIRKN(4) 0.178682 0.178963 0.000281 399996     1.414  
IRKN(4) 0.178601 0.178963 0.000362 359964 1.243  
DIRKN 3(4) 0.178601 0.178963 0.000362 299926     1.267  
DIRKN3(4,6) 0.178601 0.178963 0.000362 299990     1.020  
DIRKN3(4,4) 0.178601 0.178963 0.000362 299930     0.972 

0.0100 New DIRKN(4) 0.178739 0.178963 0.000225 199998     0.684  
IRKN(4) 0.178601 0.178963 0.000362 179996  0.622  
DIRKN 3(4) 0.178601 0.178963 0.000362 149990     0.506  
DIRKN3(4,6) 0.178601 0.178963 0.000362 149998     0.505  
DIRKN3(4,4) 0.178601 0.178963 0.000362 149992     0.498 

 

 
Figure 2: Efficiency Plot of Example 

 

The New DIRKN(4) method’s efficiency (function evaluation 

vs absolute error) plot are shown in figure 2 in comparison to 

the selected existing methods (IRKN(4), DIRKN 3(4), 

DIRKN 3(4,6) and DIRKN 3(4,4) ). When compared to the 

other methods, that maintain the same error for all step sizes, 

as indicated by the straight lines, the New DIRKN(4) plot line, 

which is coloured blue, demonstrates least error about the 

exact solution across all step sizes tested, showing good 

accuracy of the method. 

 

Discussion 

From the results presented in Table 5 we have shown that the 

New DIRKN method derived in this paper shows the least 

error for all step sizes considered with respect to the exact 

solutions of the problems considered with more function 

evaluation being a four-stage method. This shows that New 

DIRKN method is more efficient and more accurate compared 

to the other order four methods it was compared with from the 

plot in Figure 2.  

 

CONCLUSION  

In this paper a four stage fourth-order Diagonally Implicit 

RKN method for the numerical integration of special second 

order IVPs of the form (1) possessing oscillatory solutions has 

been presented. The method has an appropriate region of 

stability. The derived method has also been applied to 

approximate second order IVPs possessing oscillatory 

solutions found in literatures to demonstrate its efficiency and 

accuracy. Results obtained compared favorably with the other 

methods derived by Ozawa (1999), Senu (2011), Sharp et al. 

(1990) and Senu (2012). However, it was observed that the 

new RKN method perform better in terms accuracy as shown 

in Table 5 and Figure2.  
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