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ABSTRACT 

Accurate short-term load forecasting is vital for efficient microgrid energy management, unit commitment, and 

renewable energy integration. Traditional and deep learning models often struggle with the complex, time-

varying patterns in residential, commercial, and industrial loads. To address this, clustering algorithms are 

applied to group similar consumption patterns, enhancing forecasting accuracy. This study presents a 

clustering-enhanced long short-term memory (LSTM) framework that segments hourly load profiles using K-

means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models 

(GMM), and Hierarchical Clustering before training. Using 8,760-point synthetic load profiles per sector, 

baseline models and standalone LSTMs were compared against clustering-enhanced LSTMs. Results show that 

clustering reduces mean squared error (MSE) by up to 48% and mean absolute error (MAE) by up to 28% in 

residential forecasts (GMM), improves commercial forecasting by 18.7% (MSE) and 14.4% (MAE) with 

Hierarchical Clustering, and yields modest gains of up to 2.4% (MSE) and -0.026% (MAE) in stable industrial 

profiles with K-means. The proposed framework offers a scalable, sector-specific solution to improve microgrid 

forecasting and support renewable integration. 
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INTRODUCTION 

The accelerating adoption of microgrids has brought about a 

paradigm shift in the way electricity is generated, distributed, 

and consumed. Microgrids which are localized energy 

systems capable of operating independently or in connection 

with the main power grid have emerged as vital components 

in modern energy infrastructure. They promote energy 

resilience, enable integration of renewable energy sources, 

and support sustainable power delivery for residential, 

commercial, and industrial consumers (Mallah et al., 2024; 

Saxena et al., 2024). However, effective microgrid operation 

hinges on the ability to forecast short-term electricity demand 

with high precision. Accurate short-term load forecasting 

(STLF) is essential for real-time decision-making in power 

dispatch, demand response, battery storage utilization, and 

peak load management (Mukhtiar et al., 2024). 

The diversity and volatility of electricity consumption 

patterns within different microgrid types introduce significant 

forecasting challenges. Residential loads, for instance, exhibit 

high variability influenced by human activity, seasonality, 

and weather conditions, often peaking in the morning and 

evening (Karn & Kakran, 2022). Commercial loads are 

largely dependent on business hours, with notable drops 

during weekends and holidays (Glazunova et al., 2024), while 

industrial load profiles remain relatively stable but can 

fluctuate due to machinery cycles or production schedules. 

Traditional forecasting models such as autoregressive 

integrated moving average (ARIMA), linear regression, and 

persistence methods often fail to capture the complex, 

nonlinear, and time-dependent characteristics of these diverse 

load profiles. These models struggle particularly in dynamic 

environments that involve renewable energy sources and 

demand-side uncertainties (Cai et al., 2019; Makris et al., 

2024). 

Recent advancements in artificial intelligence (AI) and 

machine learning (ML) have opened new pathways for 

improving forecasting performance in microgrids. Among 

these, deep learning models, particularly Long Short-Term 

Memory (LSTM) networks, have gained prominence due to 

their strength in capturing temporal dependencies and 

handling large, nonlinear time-series datasets (Rafi et al., 

2021). LSTMs have been widely applied in STLF due to their 

ability to retain long-term information and model sequential 

behaviour. They outperform traditional models and shallow 

networks like feed-forward neural networks (FNNs), 

especially when exogenous variables such as weather or 

calendar events are considered (Bashir et al., 2022; Husein & 

Chung, 2019) . 

Several studies have demonstrated the efficacy of LSTM-

based forecasting systems. Muzaffar and Afshari (2019) 

found that LSTM outperformed ARIMA and ARMAX 

models by up to 20% in forecasting error, while Aurangzeb et 

al. (2021) employed a CNN-LSTM framework enhanced with 

clustering techniques to forecast smart grid loads. Han et al. 

(2020) applied K-means clustering to segment residential load 

profiles, achieving improvements in forecasting accuracy by 

tailoring models to homogeneous clusters. However, these 

approaches often face limitations, such as the use of static 

clustering assumptions or their inability to adapt to evolving 

load patterns. Moreover, many studies focus on a single sector 

typically residential without generalizing the framework 

across commercial and industrial sectors. In some cases, 

clustering techniques are used without validating their 

effectiveness against other methods such as DBSCAN, 

Gaussian Mixture Models (GMMs), or hierarchical clustering 

(Han et al., 2020; Indralaksono et al., 2022). 

In this research, we propose a hybrid short-term load 

forecasting framework that combines deep LSTM neural 

networks with unsupervised clustering techniques to improve 

prediction accuracy across residential, commercial, and 

industrial microgrids. While previous studies have explored 

LSTM or clustering independently for load forecasting, few 

have systematically combined both approaches (Han et al., 

2020). Our results demonstrate that integrating clustering with 

LSTM yields significant improvements in forecasting 

accuracy for sectors with high consumption variability. 

Notably, most studies reviewed focused on single-sector 

analysis, often using residential data only, which limits the 
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generalisability of their findings. In contrast, our approach is 

evaluated across three distinct microgrid types, each with 

unique consumption behaviour, providing a more 

comprehensive understanding of model performance. 

Additionally, prior studies have primarily emphasized 

prediction accuracy without evaluating how segmentation 

strategies contribute to model adaptability. In this work, we 

show that clustering enhances LSTM performance by 

allowing models to specialize in different consumption 

regimes, offering a scalable and sector-aware forecasting 

solution for smart microgrid management 

In summary, the contributions of this work to the literature are 

threefold. First, we develop a hybrid forecasting framework 

that combines clustering algorithms with LSTM neural 

networks to improve short-term load forecasting across 

diverse microgrid sectors. This approach allows models to be 

trained on segmented data groups with similar consumption 

patterns, enhancing their ability to capture nuanced 

behaviours without requiring additional domain-specific 

feature engineering. Second, we demonstrate that LSTM 

consistently outperform traditional methods such as 

persistence and feed-forward neural networks (FFNN), with 

even greater accuracy achieved when clustering is integrated. 

The hybrid models achieved lower forecasting errors across 

all sectors, outperforming the benchmark models. Third, by 

evaluating the framework on synthetic hourly data 

representing residential, commercial, and industrial 

microgrids, we show the adaptability and scalability of the 

approach across different consumption environments. This 

multi-sector validation demonstrates not only the forecasting 

capability of the proposed method but also its practical value 

for microgrid energy management, where accurate demand 

prediction is critical for operational efficiency, cost 

optimization, and integration of renewable energy resources. 

The remainder of this paper is structured as follows. Section 

2 outlines the research methodology, including data 

collection, preprocessing, and the design of the forecasting 

models. Section 3 presents the results and discusses the 

performance of the benchmark models, LSTM model, and 

hybrid models across different microgrid . Finally, Section 4 

summarizes the findings, discusses the limitations of the 

study, and provides recommendations for future research. 

 

MATERIALS AND METHODS 

Data Description 

The dataset used in this study comprises of synthetic hourly 

load profiles generated using EnergyPlus simulations, as 

curated by Angizeh et al. (2020). These profiles span a full 

calendar year with 8,760 hourly observations per sector, 

representing typical consumption patterns in residential, 

commercial, and industrial microgrids. 

The analysis of load profiles across residential, commercial, 

and industrial microgrids revealed distinct consumption 

patterns that significantly influenced forecasting model 

performance. Each sector exhibited unique temporal 

characteristics, variability profiles, and demand behaviours, 

as evidenced by statistical and visual diagnostics. 

 

Residential Load Data 

The residential microgrid dataset reflects electricity usage 

trends typical of household consumption. The hourly load 

time-series in Figure 1 illustrates demand across the year, 

segmented by months. Residential demand shows pronounced 

seasonal variation, with peaks occurring more frequently 

during colder months when heating is required or hotter 

months when cooling is necessary. Within each 24-hour 

cycle, demand also fluctuates significantly due to human 

behaviour, such as morning and evening household activities. 

 

 
Figure 1: Hourly Electricity Load Time Series (Residential) 

 

The histogram in Figure 2 indicates a right-skewed load 

distribution, as most demand values cluster near the average 

while occasional high-demand events extend the curve to the 

right. Demand surges are particularly noticeable on extremely 

hot or cold days when heating or air-conditioning use 

intensifies. 

 
Figure 2: Load Distribution (Residential) 
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A strong positive correlation is observed at 24-hour intervals 

in the residential load, as shown by the autocorrelation 

function (ACF) in Figure 3. This pattern confirms daily 

periodicity, suggesting that load values at the same hour on 

consecutive days serve as reliable predictors of one another. 

 

 
Figure 3: Autocorrelation Function (Residential) 

 

The hourly average load curve in Figure 4 highlights the 

familiar double-peak profile of residential demand. 

Consumption rises in the morning, declines slightly around 

midday, and then climbs sharply in the evening when 

households engage in meal preparation, heating or cooling, 

and lighting. 

 

 
Figure 4: Hourly Average Load (Residential) 

 

Commercial Load Data 

The commercial microgrid dataset displays usage 

characteristics that differ from residential demand, showing 

more consistent patterns during working hours. The annual 

hourly time-series in Figure 5 reflects steady weekday profiles 

with marked reductions on weekends and holidays. Activity 

is higher during weekdays and falls consistently on Saturdays 

and Sundays. 

 
Figure 5: Hourly Electricity Load Time Series (Commercial) 

 

The histogram in Figure 6 shows a symmetrical distribution 

centred around the mean, reflecting controlled and predictable 

usage in commercial buildings, unlike residential loads. The 

absence of a heavy tail indicates that extreme consumption 

spikes occur infrequently. 
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Figure 6: Load Distribution (Commercial) 

 

As shown in Figure 7, the autocorrelation function displays 

24-hour periodicity similar to residential demand but with 

quicker decay. This suggests that while commercial load 

follows structured daily cycles, its autocorrelation weakens 

over longer periods due to minor operational variations. 

Current demand is a useful indicator for same-hour usage on 

subsequent days, though fluctuations accumulate gradually. 

 

 
Figure 7: Autocorrelation Function (Commercial) 

 

The hourly average load pattern in Figure 8 shows a sharp 

morning rise at the start of business hours, sustained high 

demand throughout the day, and a decline after evening 

closure. The profile is characterized by a single peak, 

consistent with standard commercial and retail working hours. 

 
Figure 8: Hourly Average Load (Commercial) 

 

Industrial Load Profile 

The industrial microgrid dataset presents distinct 

characteristics compared to residential and commercial loads, 

with generally steady, high-level usage interrupted 

occasionally by operational changes. Figure 9 shows that 

industrial facilities maintain stable consumption across the 

year, reflecting their continuous operations and contribution 

to a strong base load. 
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Figure 9: Hourly Electricity Load Time Series (Industrial) 

 
The load distribution in Figure 10 demonstrates a bimodal 

pattern with uneven peaks. The dominant peak corresponds to 

baseline energy demand from regular production, while the 

smaller secondary peak captures intermittent high-load events 

such as machinery startups, batch cycles, or maintenance. 

 

 
Figure 10: Load Distribution (Industrial) 

 

The ACF in Figure 11 confirms 24-hour periodicity, though 

with lower peak intensity than residential or commercial 

loads. Industrial processes operate more continuously, with 

minimal influence from daily human behavioural routines. 

 

 
Figure 11: Autocorrelation Function (Industrial) 

 

The hourly average load shown in Figure 12 reveals a sharp 

rise during morning work hours, sustained high demand 

throughout the day, and a drop-off after 4 p.m. This pattern 

aligns with the operational schedules of production and 

manufacturing facilities. 

 

 
Figure 12: Hourly Average Load (Industrial) 
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Data Preprocessing 

Upon loading the datasets, each time series was indexed by 

datetime, starting from January 1st, 2020. The data was 

cleaned to remove anomalies and missing values using linear 

interpolation, ensuring a continuous and reliable sequence for 

modelling. Exploratory Data Analysis (EDA) was then 

conducted to understand the temporal behaviour of each 

sector. This included plotting hourly load patterns, examining 

histograms to assess distribution, and calculating 

autocorrelation to determine temporal dependencies. These 

insights informed the selection of a 24-hour sliding window 

approach for supervised learning, where past daily 

consumption was used to forecast the next hour’s load. 

To prepare the data for neural network training, all values 

were normalized to the range [0, 1] using Min-Max scaling. 

This step ensures that the model training process is stable and 

that features contribute proportionally during gradient descent 

optimization. 

 

Clustering Load Profiles 

Clustering was employed to segment the dataset into 

homogeneous groups before applying LSTM models. The 

objective was to exploit similarities in consumption patterns 

to train specialized forecasting models tailored to each cluster. 

For clustering purposes, the 24-hour daily load profiles were 

extracted by reshaping the time series into 365 daily 

segments, each containing 24 hourly values. 

Four clustering algorithms were applied: K-Means, 

Hierarchical Agglomerative Clustering, DBSCAN, and 

Gaussian Mixture Models (GMM). These are four widely 

used clustering algorithms, each with distinct theoretical 

foundations and applications in data segmentation. 

K-Means is a partition-based algorithm that divides the 

dataset into k clusters by minimizing the within-cluster sum 

of squared distances. It iteratively assigns data points to the 

nearest centroid and then recalculates centroids until 

convergence. K-Means assumes that clusters are spherical and 

of roughly equal size, which makes it effective for well-

separated, uniformly distributed datasets. However, it 

requires the number of clusters to be specified in advance and 

can be sensitive to the initial placement of centroids. 

Hierarchical Agglomerative Clustering builds a hierarchy of 

clusters using a bottom-up approach. Initially, each data point 

is treated as an individual cluster, and pairs of clusters are 

merged step by step based on their similarity, often measured 

by linkage criteria such as single linkage, complete linkage, 

or average linkage. The process produces a dendrogram that 

visually represents the clustering structure. Unlike K-Means, 

it does not require specifying the number of clusters 

beforehand, but its computational cost increases significantly 

with larger datasets, and once clusters are merged, they cannot 

be undone. 

DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise) identifies clusters as dense regions of points 

separated by areas of low density. It requires two parameters: 

ε (the neighbourhood radius) and minPts (minimum number 

of points in a neighbourhood to form a cluster). DBSCAN is 

capable of detecting clusters of arbitrary shapes and is robust 

to noise and outliers. However, it struggles with datasets 

where cluster densities vary greatly and can be 

computationally demanding in high-dimensional spaces. 

Gaussian Mixture Models (GMM) provide a probabilistic 

approach to clustering by assuming that data points are 

generated from a mixture of several Gaussian distributions, 

each characterized by its mean and covariance. Unlike K-

Means, which assigns points to the nearest cluster centroid, 

GMM performs soft clustering, assigning probabilities to each 

point’s membership across clusters. This allows GMM to 

model elliptical clusters with different orientations and scales. 

However, it requires specifying the number of clusters in 

advance, is sensitive to initialization, and can become 

computationally intensive for large datasets. 

Table 1 shows the clustering parameters used to segment 

residential, commercial, and industrial load profiles. These 

settings ensured effective grouping of load patterns to 

improve LSTM forecasting accuracy. 

 

Table 1: Clustering Parameters Used in the Study 

Algorithm Key Parameters Notes on Use 

K-Means Number of clusters (k) = 3–5, Initialization = k-

means++ 

Applied to segment load profiles into distinct 

groups based on similarity. 

Hierarchical 

Clustering 

Linkage method = Ward, Distance metric = 

Euclidean 

Generated dendrograms to visualize 

relationships and identify optimal splits. 

DBSCAN ϵ (neighbourhood radius) = 0.5, MinPts = 5 Captured arbitrary-shaped clusters and handled 

noise effectively. 

Gaussian Mixture 

Model 

Number of components = 3, Initialization = k-

means, Covariance type = full 

Allowed soft clustering with probabilistic 

assignments of load patterns. 

 

Model Architecture  

The study employed three categories of forecasting models: 

baseline models, Long Short-Term Memory (LSTM) 

network, and clustering-enhanced LSTM models. 

 

Baseline Models 

The baseline methods included the Persistence model and 

Feedforward Neural Networks (FFNN). The Persistence 

model assumes that the next load value is equal to the most 

recent observed value, serving as a simple benchmark. FFNNs 

consist of fully connected layers where data flows 

unidirectionally from input to output without feedback loops, 

making them suitable for nonlinear regression but limited in 

handling sequential dependencies. 

Long Short-Term Memory (LSTM) Model 

The LSTM is a type of Recurrent Neural Network (RNN) 

designed to address the vanishing gradient problem of 

standard RNNs. It achieves this by introducing memory cells 

and gating mechanisms (input, output, and forget gates) that 

regulate the flow of information over time. This allows 

LSTMs to capture long-term dependencies in sequential data, 

which is essential for electricity demand forecasting where 

past patterns strongly influence future load. The architecture 

in this study consisted of stacked LSTM layers followed by 

dense layers for final prediction. 

 

Clustering-Enhanced LSTM Models 

To improve forecasting accuracy in heterogeneous datasets, 

clustering algorithms were applied as a preprocessing step 

before LSTM training. K-Means clustering partitions data 

into k clusters based on minimizing intra-cluster variance. 

Hierarchical Agglomerative Clustering builds a hierarchy of 

clusters through successive merging, producing a dendrogram 

for structure visualization. DBSCAN identifies dense regions 
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of data to form clusters, while Gaussian Mixture Models 

(GMMs) adopt a probabilistic approach, modelling the data 

as a mixture of Gaussian distributions and enabling soft 

assignments of points to multiple clusters. By grouping 

similar load profiles, these clustering methods ensured that 

the LSTM learned from more homogeneous patterns, thereby 

enhancing generalization and predictive performance. 

 

Training Process 

The dataset was transformed into supervised learning format 

using a sliding window approach, with the previous 24 hourly 

load values as input features and the next hour’s load as the 

target output. The data was normalized to ensure stability 

during gradient descent optimization. The training and testing 

sets were split in an 80:20 ratio, and the LSTM models were 

trained using backpropagation through time (BPTT) with the 

Adam optimizer. Mean Squared Error (MSE) was used as the 

loss function, while performance was evaluated using both 

MSE and Mean Absolute Error (MAE). 

 

Model Hyperparameters 

The configuration of hyperparameters played a critical role in 

shaping the performance of the models. For the baseline 

Feedforward Neural Network (FFNN), the architecture was 

kept relatively simple, consisting of two hidden layers with 64 

and 32 neurons respectively. The Rectified Linear Unit 

(ReLU) activation function was applied to capture nonlinear 

patterns, while the Adam optimizer with a learning rate of 

0.001 was used to ensure stable and efficient convergence. A 

batch size of 32 was selected to balance training speed and 

gradient stability, and early stopping was implemented to 

avoid overfitting. 

For the Long Short-Term Memory (LSTM) models, the 

hyperparameters were chosen to optimize their ability to 

capture long-term dependencies in the load data. Each LSTM 

layer contained 50 units, which provided sufficient memory 

capacity without leading to excessive computational cost. The 

learning rate of 0.001 was selected after empirical testing, as 

higher values led to unstable training, while lower values 

slowed convergence. A batch size of 64 and sequence length 

of 24 (corresponding to the 24-hour look-back window) were 

applied to reflect the daily periodicity of electricity 

consumption. Dropout with a rate of 0.2 was introduced to 

reduce overfitting by randomly deactivating neurons during 

training. 

The clustering-enhanced LSTM models required additional 

hyperparameter selection for the clustering stage. For K-

Means, the number of clusters was determined using the 

Elbow Method and Silhouette Score, ensuring a balance 

between compactness and separation of load profiles. 

DBSCAN parameters ε (neighbourhood radius) and minPts 

(minimum points per cluster) were selected through 

experimentation to capture meaningful consumption patterns 

while avoiding excessive noise. For Gaussian Mixture Models 

(GMM), the number of components was set in line with the 

optimal cluster count from K-Means for consistency. 

Hierarchical clustering applied Ward’s linkage criterion to 

minimize intra-cluster variance, providing interpretable 

dendrogram-based grouping. 

Overall, hyperparameters were carefully tuned through cross-

validation and iterative testing to achieve robust forecasting 

performance while maintaining computational efficiency. 

Their selection reflects a balance between accuracy, 

generalizability, and practicality for real-world microgrid 

applications. Table 2 below summarizes the hyperparameters 

and configurations of the key forecasting models used in this 

study. 

 

Table 2: Summary of Model Hyperparameters 

Hyperparameter Value/Range Used Purpose in Training 

Look-back Window 24 hours Captures past daily consumption patterns to forecast the next hour 

load. 

Forecast Horizon 1 hour ahead Ensures short-term forecasting suitable for operational microgrid 

management. 

Number of LSTM 

Units 

64 Provides sufficient capacity to learn temporal dependencies without 

overfitting. 

Hidden Layers 2 Balances model depth to capture nonlinear features while avoiding 

excess complexity. 

Batch Size 32 Allows efficient training with stable gradient updates. 

Epochs 100 (with early 

stopping) 

Provides enough training cycles with a safeguard to prevent 

overfitting. 

Optimizer Adam Chosen for adaptive learning rate adjustment and efficient 

convergence. 

Learning Rate 0.001 Balances convergence speed and model stability. 

Loss Function Mean Squared Error 

(MSE) 

Measures prediction errors, suitable for continuous regression tasks. 

Regularization Dropout (0.2) Reduces overfitting by randomly disabling neurons during training. 

 

Evaluation Metrics 

To assess the performance of the forecasting models 

developed in this study, two standard error metrics were 

employed: Mean Squared Error (MSE) and Mean Absolute 

Error (MAE). These metrics were chosen for their widespread 

use in regression-based forecasting tasks and their ability to 

capture different aspects of prediction error (Terven et al., 

2025). 

Mean Squared Error (MSE) measures the average of the 

squared differences between actual and predicted values. It is 

especially useful for penalizing large errors more heavily, 

making it effective in detecting models that perform poorly 

on sudden demand changes or anomalies in the load profile. 

The mathematical formulation of MSE is given by: 

MSE  =  
1

N
  ∑ (yi  −  yî)

2N
i=1    (1) 

where yi is the actual value, yî is the predicted value, and N is 

the total number of observations. The MSE provides a 

measure of the average error magnitude, with greater 

emphasis on larger errors due to the squaring of differences. 

Mean Absolute Error (MAE) provides the average magnitude 

of the prediction errors, offering a more interpretable and less 

sensitive measure compared to MSE. It treats all errors 
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equally, regardless of their direction or size, making it a 

reliable metric for evaluating the overall accuracy of the 

forecasting model. The MAE is calculated as: 

MAE =
1

N
∑ |yi − yî|
N
i=1    (2) 

where yi is the actual value, yî is the predicted value, and N is 

the total number of observations. The MAE provides a 

straightforward measure of the average error magnitude, 

making it easy to interpret. 

Both metrics were computed using the test dataset, which 

consisted of 20% of the total data, withheld during training to 

ensure unbiased evaluation. For clustering-enhanced models, 

MSE and MAE were calculated for each cluster individually 

and then aggregated to determine overall performance. 

 

Implementation Setup 

All experiments were conducted using Google Colaboratory 

leveraging cloud-based GPU acceleration. The 

implementation utilized Python 3.10, with TensorFlow/Keras 

for deep learning, Scikit-learn for clustering, and Matplotlib 

and Seaborn for visualization. A fixed random seed was used 

throughout to ensure the reproducibility of results. Each 

model was trained and evaluated independently for the 

residential, commercial, and industrial datasets, enabling a 

sector-specific analysis of forecasting performance.  

 

 

 

RESULTS AND DISCUSSION 

Baseline Models vs LSTM 

Table 3 presents the comparative performance of the baseline 

models, Persistence and Feedforward Neural Networks 

(FFNN), against the Long Short-Term Memory (LSTM) 

model across residential, commercial, and industrial 

microgrids. The results clearly demonstrate that LSTM 

consistently outperformed the baseline models in terms of 

both Mean Squared Error (MSE) and Mean Absolute Error 

(MAE). For the residential dataset, Persistence produced the 

highest error values with an MSE of 60.13 kW and MAE of 

6.05 kW, while FFNN significantly reduced errors (MSE 5.83 

kW, MAE 2.05 kW). However, the LSTM achieved superior 

accuracy with MSE 4.42 kW and MAE 1.53 kW, confirming 

its ability to capture temporal dependencies within household 

consumption patterns. Similarly, in the commercial sector, 

Persistence delivered very poor results with an MSE of 8007 

and MAE of 46.85 kW, while FFNN reduced errors 

considerably (MSE 796.79 kW, MAE 20.56 kW). The LSTM 

again outperformed with MSE 621.92 kW and MAE 17.43 

kW, reflecting its robustness in identifying consistent 

weekday–weekend and operational load variations. In the 

industrial sector, where load profiles were more stable, all 

models performed better compared to residential and 

commercial cases. Still, LSTM achieved the lowest errors 

with MSE 93.14 and MAE 4.53 kW, outperforming 

Persistence (MSE 550.85 kW, MAE 8.88 kW) and FFNN 

(MSE 98.91 kW, MAE 5.43 kW). 

 

Table 3: Performance Comparison of Baseline and LSTM Models Across Load Profiles 

Load Profile Model MSE (kW) MAE (kW) 

Residential Persistence 60.1305 6.0525  
FFNN 5.8279 2.0503  
LSTM 4.4184 1.5312 

Commercial Persistence 8007.000 46.8516  
FFNN 796.789 20.5649  
LSTM 621.921 17.4252 

Industrial Persistence 550.850 8.8803  
FFNN 98.911 5.4288  
LSTM 93.143 4.5347 

 

LSTM vs Clustering-Enhanced LSTM 

Table 4 reports the performance of clustering-enhanced 

LSTM hybrids across residential, commercial, and industrial 

microgrids, with the baseline LSTM shown for reference. In 

the residential case, every clustered variant improves upon the 

standalone LSTM (MSE = 4.42 kW, MAE = 1.53 kW): the 

best performer is LSTM+GMM (MSE = 2.30 kW, MAE = 

1.10 kW), delivering a 48.0% reduction in MSE and 28.3% 

reduction in MAE relative to LSTM, closely followed by 

LSTM+K-Means (MSE = 2.32 kW, MAE = 1.12 kW; 47.5% 

MSE and 26.8% MAE gains). LSTM+DBSCAN and 

LSTM+Hierarchical also lower errors substantially (MSE 

improvements of 36.2% and 37.5%, respectively), though 

they trail the probabilistic and centroid-based approaches. In 

the commercial sector, clustering yields a more nuanced 

picture: LSTM+Hierarchical is dominant (MSE = 505.44 kW, 

MAE = 14.92 kW), improving on LSTM by 18.7% in MSE 

and 14.4% in MAE, while LSTM+GMM offers modest MSE 

gains (8.3%) and roughly parity in MAE (0.8% better). In 

contrast, LSTM+K-Means and LSTM+DBSCAN 

underperform the baseline, indicating that commercial load 

regularities benefit from multi-scale structure discovery 

(hierarchical) more than from rigid centroid or density 

partitions. For the industrial profile, where load is 

comparatively stable, clustering has limited effect: LSTM+K-

Means yields a small 2.4% MSE improvement with 

essentially unchanged MAE, and the other hybrids are neutral 

to slightly worse, underscoring that segmentation adds little 

when variability is low and patterns are already well captured 

by the sequence model. 

 

Table 4: Performance of Clustered LSTM Models Across Load Profiles 

Model Residential (kW) Commercial (kW) Industrial (kW) 

Performance metric MSE MAE MSE MAE MSE MAE 

LSTM (baseline) 4.418 1.531 621.921 17.425 93.143 4.535 

LSTM + K-Means 2.322 1.121 1182.900 24.819 90.889 4.536 

LSTM + DBSCAN 2.820 1.196 1025.590 23.134 90.916 5.007 

LSTM + GMM 2.296 1.097 570.079 17.288 96.522 5.323 

LSTM + Hierarchical 2.763 1.313 505.442 14.924 97.562 5.590 
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Visually, Figure 13 shows the actual versus predicted 

residential load for LSTM models enhanced with K-Means, 

DBSCAN, GMM, and Hierarchical clustering, illustrating 

how each clustering technique affects forecasting precision in 

highly variable household consumption patterns. 

 

 
(a) (b) 

(c) (d) 

Figure 13: Actual vs Predicted Graph of (a) K-means, (b) DBSCAN, (c) GMM and (d) Hierarchical (Residential) 

 

Figure 14 compares the actual versus predicted load values 

for commercial microgrids using four clustering-enhanced 

LSTM models (K-means, DBSCAN, GMM, and 

Hierarchical), demonstrating their relative forecasting 

accuracy across different demand patterns. 

 

(a) 
(b) 
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(c) (d) 

Figure 14: Actual vs Predicted Graph of (a) K-means, (b) DBSCAN, (c) GMM and (d) Hierarchical (Commercial) 

 

Figure 15 contrasts the actual and predicted load values for 

industrial microgrids across four clustering-enhanced LSTM 

approaches (K-means, DBSCAN, GMM, and Hierarchical), 

revealing their comparative performance in handling stable 

industrial demand patterns with minimal fluctuations. 

 

(a) 
(b) 

(c) (d) 

Figure 15: Actual vs Predicted Graph of (a) K-means, (b) DBSCAN, (c) GMM and (d) Hierarchical (Industrial) 

 

Collectively, these findings indicate that clustering is most 

valuable where intraclass heterogeneity is high (residential), 

selectively helpful where multi-regime structure exists 

(commercial), and least impactful where profiles are 

homogeneous (industrial). 

 

Discussion 

The findings of this study highlight important implications for 

the application of deep learning and clustering techniques in 

short-term load forecasting across different microgrid sectors. 

The comparative results show that while Long Short-Term 

Memory (LSTM) networks consistently outperform 

Feedforward Neural Networks (FFNN), the extent of this 

improvement diminishes across residential, commercial, and 

industrial load profiles. This reduction in relative performance 

suggests that the benefit of sequential modelling becomes less 

pronounced in environments with more stable and predictable 

consumption patterns. In particular, the industrial sector, 

characterized by steady operational demand, presents fewer 

temporal variations, thereby narrowing the advantage of 

LSTM over simpler models like FFNN. 



SHORT-TERM LOAD FORECASTING IN…        Salihu and Husein,     FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 327 – 338 337 

The integration of clustering methods further demonstrates 

the potential of data segmentation in improving forecasting 

accuracy. Clustering enhanced LSTM models achieved 

notable performance gains, especially in the residential sector 

where load profiles are highly heterogeneous and influenced 

by diverse behavioural patterns. By grouping similar patterns, 

clustering reduced variability and enabled LSTM models to 

capture clearer relationships between past and future 

consumption. However, the improvements introduced by 

clustering were less substantial in the industrial sector, where 

consumption patterns were already uniform. This trend 

underlines the importance of tailoring forecasting methods to 

the specific characteristics of each load profile rather than 

applying a uniform approach across all sectors. 

Despite these promising results, the study also has limitations 

that may influence its overall findings. The use of synthetic 

datasets, while providing control over data quality and 

availability, may not fully capture the irregularities and noise 

present in real-world microgrid operations. Additionally, 

clustering algorithms such as K-Means and GMM required 

predefined parameters, which may have constrained their 

adaptability to dynamic consumption behaviours. The study 

also focused on a fixed set of exogenous factors, and the 

exclusion of additional contextual variables such as socio-

economic activities or real-time renewable energy 

fluctuations could have limited the models’ ability to 

generalize. Finally, the computational overhead of clustering 

enhanced approaches may restrict their applicability in real-

time microgrid management where speed and efficiency are 

critical. 

 

CONCLUSION 

This research proposed a hybrid short-term load forecasting 

framework that combines clustering algorithms with LSTM 

neural networks to improve prediction accuracy across 

residential, commercial, and industrial microgrids. The results 

demonstrated that baseline models, Persistence and 

Feedforward Neural Networks (FFNN), were consistently 

outperformed by Long Short-Term Memory (LSTM) 

networks, reflecting LSTM’s ability to capture sequential 

dependencies in consumption patterns. In residential loads, 

Persistence exhibited an MSE of 60.13 kW and MAE of 6.05 

kW, FFNN reduced these errors to 5.83 kW and 2.05 kW, 

while standalone LSTM further improved accuracy to an 

MSE of 4.42 kW and MAE of 1.53 kW. Similar trends were 

observed in commercial and industrial sectors; however, the 

relative improvement of LSTM over FFNN diminished for 

industrial loads due to their stable and predictable demand 

patterns.  

Incorporating clustering prior to LSTM training further 

enhanced forecasting accuracy by segmenting load profiles 

into more homogeneous groups. Residential forecasts 

benefited most, with GMM reducing MSE by 48% and MAE 

by 28% compared to standalone LSTM, reflecting the high 

variability and behavioural heterogeneity in this sector. 

Commercial forecasting showed meaningful improvements, 

with Hierarchical Clustering yielding an 18.7% reduction in 

MSE and 14.4% reduction in MAE. Industrial profiles, due to 

their uniformity, exhibited modest gains, with K-Means 

delivering a 2.4% improvement in MSE and negligible 

change in MAE. These findings underscore the importance of 

tailoring forecasting strategies to sector-specific consumption 

characteristics rather than applying uniform methods across 

all microgrid contexts.  

Despite the promising results, the study was based on 

synthetic datasets, which may not capture the full complexity 

of real-world consumption behaviours. Future work should 

focus on applying the framework to real-time microgrid data, 

incorporating external features such as weather, holidays, and 

socioeconomic variables to improve generalization. 

Additionally, adaptive or online clustering techniques and 

probabilistic forecasting should be explored to enhance 

responsiveness in dynamic environments. 
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