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ABSTRACT 

Cholera, spread by the bacterium Vibrio cholerae, is still a major health problem in places with unsanitary 

conditions. The way it spreads relies on the host’s immunity, certain environmental aspects and how clean 

people keep themselves and their properties.  The model in this study applies Caputo fractional-order 

derivatives to capture the immunity of people, their hygiene, memory in diseases and various ways of 

controlling them.  It includes the study of how people respond and interact with their environment and disease-

related factors in a mathematical way. We perform solid analyses on the model, confirming the existence, 

uniqueness, positivity and boundedness of its solutions. A basic reproduction number is calculated to find out 

if the disease will continue to exist in a population. Analyzing what makes a disease-free state or an endemic 

equilibrium stable tells us how to best control the disease. Using the Laplace-Adomian Decomposition Method 

for solving the nonlinear fractional system results in simulations that match actual cholera behavior.  Findings 

point out that a decline in immunity and better hygiene help reduce how cholera spreads. The framework 

supports an understanding of cholera spread and is also useful for examining other diseases that are highly 

complex. 
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INTRODUCTION 

Cholera has not been fully controlled worldwide, as it is 

especially dangerous among people who have poor access to 

sanitation. V. cholerae research is synthesized in this study, 

especially focusing on how the bacteria become more 

virulent, how the immune system responds, improvements in 

vaccines, and the use of models to study the disease (Montero 

et al., (2023). Even though getting infected provides strong 

immunity, bestowing immunity for a longer duration is 

challenging with the existing vaccines (Sit et al., (2022). 

Modeling has an essential role in understanding how cholera 

is spread and what tools can help to combat it. Reliable 

predictions about the beginning of outbreaks are more likely 

when a fractional-order model with Bayesian neural networks 

and the Runge–Kutta method is used (Malik, S. (2024). A 

stochastic model combining neural networks and the Adam 

optimizer is used to study interventions among different 

populations (Alharbi, M. F. (2025). A stochastic model that 

uses the Levenberg–Marquardt algorithm achieves great 

accuracy when studying infections and environmental 

changes (Anwar et al., (2025). With the help of stability and 

sensitivity analyses, SEIRB frameworks confirm the 

importance of both treatment and early identification (Ali et 

al., (2025). Modern reviews of studies point out that many of 

these models are statistical, compartmental, and involve 

space, advising for the integration of vector-borne cases and 

accurate estimating of parameters (Anteneh et al., (2024). A 

Cameroon-based study based on a deterministic SEIRB 

model reveals spikes in the number of cases happening 

seasonally and points out the helpfulness of sudden 

interventions (Nkwayep et al., (2024). Reviews highlight that 

the disease’s spread depends on how and when it appears, 

human behavior, and how data are organized at different 

scales (Wang, J. (2022). Also, it explains that aside from the 

ill, the early spread is mostly due to people with the virus who 

have no symptoms (Ovi et al., (2025). Simulations from SPRI 

show that keeping fewer people from the protected group to 

the susceptible group is a good way to manage support 

actions. Researchers suggest that acting promptly against an 

epidemic in Haiti results in a quicker recovery (Avwerosuo et 

al., (2023); Ratnayake, R. C. (2024); Trevisin et al., (2022). 

Fractal and fractional models are used now, along with the 

Caputo-Fabrizio derivative, which offer better performance 

and indicate important factors contributing to virus spread and 

limitation (Ahmed et al., (2023); Rashid et al., (2022). They 

have recently become popular because they model the way 

diseases with memory act. The Caputo-Fabrizio model 

pointed out main aspects of vector-borne infections by 

performing stability and sensitivity analysis (Shah et al., 

(2025). Models that use fractal-fractional approaches with 

decay factors demonstrated the behavior of cholera and how 

people’s memories work (Farman et al., (2025); Ahmad et al., 

(2024). By using decomposition, other fractional methods 

were able to prove and measure equilibrium behavior and 

transmission in Ebola and malaria cases (Alhaji et al., 

(2024).In Sub-Saharan Africa, models for Ebola and malaria 

also explained the need for quick but long-lasting strategies 

(Yunus, A. O. & Olayiwola, M. O. (2024). Public health 

campaigns were proven to work in measles infection models 

and highlight their importance in controlling the disease 

(Bashiru et al., (2023); Dhandapani et al., (2023). Studies on 

cholera disease also highlighted the immediate but limited 

effect of treatment and the lasting impact vaccination can 

have (Kolawole, M. K. (2025). Using both types of 

simulations, experts confirmed that using immunization, 

treatment, and better sanitation helps in eradicating cholera 

(Adedeji, J. & Olayiwola, M. O. (2024); Ghosh et al., (2025). 

There are many new cholera outbreaks happening since 2021, 

mainly in Africa (Adeniyi, E. O. (2024). Many epidemics 

have taken place in Nigeria due to weak sanitation, poverty, 

not enough healthcare support, and changes in the climate. 

Along with laboratory experiments, there is now a ‘stage-

switching’ model of multidrug-resistant (MDR) cholera, 

which is supported by both mathematical and numerical 

analyses (Mushanyu et al., (2024). Various studies make it 

clear that better WASH infrastructure, more vaccination, 
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better surveillance, and safe antibiotic use are needed to stop 

cholera from spreading and causing deaths (Onwunta et al., 

(2025); Ojo, O. B. & Gbolahan, A. M. (2025); Oweibia et al., 

(2025); Eneh et al., (2024). 

 

MATERIALS AND METHODS 

Model formulation 

We first formulate a cholera transmission model using 

classical integer-order derivatives equation (1) and then 

reformulate it with the Caputo fractional derivative equation 

(2) to incorporate memory and hereditary effects. This 

extension allows for a more realistic representation of 

behavioral and immunological dynamics in disease spread. 

The compartmental diagram divides the human population 

into six epidemiological subgroups, while Table 1 defines the 

associated variables and parameters. From these 

formulations, we derive a system of fractional-order 

differential equations (FODEs), representing a novel Caputo 

fractional-order cholera model. The system is analyzed and 

solved 

𝑑𝑆

𝑑𝑡
= 𝛬 −

𝛽𝐵(𝑡)𝑆(𝑡)

𝐾+𝐵(𝑡)
+𝑤𝑅(𝑡) − 𝜇𝑆(𝑡),

𝑑𝐼

𝑑𝑡
=

𝛽𝐵(𝑡)𝑆(𝑡)

𝐾+𝐵(𝑡)
− (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡),

𝑑𝑄

𝑑𝑡
= 𝛿𝐼(𝑡) − (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡),

𝑑𝑅

𝑑𝑡
= 𝜉𝑄(𝑡) − (𝑤 + 𝜇)𝑅(𝑡),

𝑑𝐵

𝑑𝑡
= 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡),

𝑑𝐻

𝑑𝑡
= 𝜌 − 𝛼𝐻(𝑡). }

 
 
 
 

 
 
 
 

 (1) 

For simplicity, let the force of infection be constant such that  

𝜆 =
𝛽

𝐾+𝐵(𝑡)
  

𝐶𝐹𝑍𝑆(𝑡) = 𝛬 − 𝜆𝐵(𝑡)𝑆(𝑡) + 𝑤𝑅(𝑡) − 𝜇𝑆(𝑡),  
𝐶𝐹𝑍𝐼(𝑡) = 𝜆𝐵(𝑡)𝑆(𝑡) − (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡),  
𝐶𝐹𝑍𝑄(𝑡) = 𝛿𝐼(𝑡) − (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡),  
𝐶𝐹𝑍𝑅(𝑡) = 𝜉𝑄(𝑡) − (𝑤 + 𝜇)𝑅(𝑡),  (2) 
𝐶𝐹𝑍𝐵(𝑡) = 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡),  
𝐶𝐹𝑍𝐻(𝑡) = 𝜌 − 𝛼𝐻(𝑡). 

 
Figure 1: Diagram showing the six (6) subgroups of the total human population 

 

Table 1: Variable and Parameters Definition 

Symbols Definitions 

S(t) Susceptible Population 

I(t) Infected Population 

Q(t) Quarantined Population  

R(t) Recovered Population 

B(t) Bacteria Concentration 

H(t) Hygiene Efforts 

K Half Saturation Constant 

𝜦 Recruitment rate 

𝜷 Ingestion rate 

W Immunity waning rate 

𝝁 Natural Death 

𝜹 Quarantine rate 

𝜶𝟏 Death rate (Infected) 

𝜺 Recovery rate 

𝜶𝟐 Death rate (Quarantine) 

R Natural Growth of Bacteria 

𝜼 Shedding rate 

𝝀𝟏 Rate at which Human efforts reduces Bacteria Concentration 

D Bacteria Death rate 

𝝆 Efforts rate to increase hygiene level 

𝜶 Decay rate of Hygiene effort 

𝝀 Force of Infection 
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Positivity and Boundedness of Solution 

LEMMA: The Solutions X=(S (t), I (t), Q (t), R(t), Band H 

(t)) of the fractional order model (4) are non- negative for all 

𝑡 ≥ 0,with non-negative initial condition in𝑅6. 

Proof: We have the variables at 𝑋1|𝜀(𝑉) 

&𝐶𝐹𝑍𝑆1(𝑡) = 𝛬 + 𝑤𝑅(𝑡) ≻ 0,

&𝐶𝐹𝑍𝐼1(𝑡) = 𝛽𝐵(𝑡)𝑆(𝑡) ≻ 0,

&𝐶𝐹𝑍𝑄1(𝑡) = 𝛿𝐼(𝑡) ≻ 0,         

&𝐶𝐹𝑍𝑅1(𝑡) = 𝜀𝑄(𝑡) ≻ 0,        

&𝐶𝐹𝑍𝐵1(𝑡) = 𝜂𝐼(𝑡) ≻ 0,        

&𝐶𝐹𝑍𝐻1(𝑡) = 𝜌 ≻ 0.                }
  
 

  
 

  (3) 

Where 𝜀(𝑣) = [𝑣(𝑡) = 0] and 𝑣 ∈
{𝑆(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐵(𝑡), 𝐻(𝑡)} which exist in𝑅6+. 

Hence, the model has a bounded positive solution. 

LEMMA: Let 𝛺𝐻be the domain containing the human 

population group, 𝛺𝐵be the domain of pathogen population 

and 𝛺ℎ be the domain of time- dependent rate of hygiene 

measure, 

Then,  

𝛺𝐻=  

[(𝑆, 𝐼, 𝑄, 𝑅 ∈ 𝑅4+: 0 ≤ 𝑆 + 𝐼 + 𝑄 + 𝑅 ≤
𝛬

𝜇
]. (4) 

𝛺𝐵 = [𝐵 ∈ 𝑅: 0 ≤ 𝐵 ≤
𝛬𝛼𝜂

𝜇(𝛼𝑑−𝛼𝑟+𝜌𝜆1)
]. (5) 

and  

𝛺ℎ = [0 ≤ ℎ ≤
𝜌

𝛼
].    (6) 

They are positively invariant. 

Proof 

From (1) the total human population 

𝑁 = 𝑆 + 𝐼 + 𝑄 + 𝑅: 𝛬 − 𝜇(𝑆 + 𝐼 + 𝑄 + 𝑅). (7) 
𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑁.    (8) 

𝑁(0) = 𝑁0.    (9) 

Solving this linear differential equation at  

𝑁(𝑡) ≤
𝛬

𝜇
+ ℓ−𝜇𝑡 (𝜂0 −

𝛬

𝜇
).   (10) 

 As 𝑡 → ∞, 𝑤(𝑡) ≤
𝛬

𝜇
.   (11) 

Now 
𝑑𝐻

𝑑𝑡
≤ 𝜌 − 𝛼𝐻(𝑡), solving at 𝐻(0) = ℎ0.  (12) 

𝐻(𝑡) ≤
𝜌

𝛼
+ ℓ−𝛼𝑡(ℎ0 −

𝜌

𝛼
)𝑎𝑡𝑡 → ∞, 𝐻(𝑡) =

𝜌

𝛼
. (13) 

𝑑𝐵

𝑑𝑡
= 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡). (14) 

𝑑𝐵

𝑑𝑡
= 𝑟𝐵(𝑡) + 𝜂(

𝛬

𝜇
) − 𝜆1(

𝜌

𝛬
) − 𝑑𝐵(𝑡). (15) 

Solving this linear differential equation at 𝐵(0) = 𝑏0, 

𝐵(𝑡) =
𝛬𝛼𝜂

𝜇(𝛼𝑑−𝛼𝑟+𝜌𝜆1)
+ ℓ

−
(𝛼𝑑−𝛼𝑟+𝜌𝜆1)

𝛼 (𝑏0 −
𝛬𝛼𝜂

𝜇(𝛼𝑑−𝛼𝑟)
). as 𝑡 = ∞ 

     (16) 

𝐵(𝑡) ≤
𝛬𝛼𝜂

𝜇(𝛼𝑑−𝛼𝑟+𝜌𝜆1)
.   (17) 

Thus, three variables are bounded above.  Also, since all 

parameters are positive, 𝑁(𝑡), 𝐵(𝑡)and 𝐻(𝑡)are all positive. 

Hence, they belong to a positive invariant region. 

 

Existence and Uniqueness of Solution 

In this section, we investigated whether or not the solution to 

the problem exists and unique. This will help us to know if the 

model represents a physical problem. 

Let, 
𝑀1 = 𝛬 − 𝜆𝐵(𝑡)𝑆(𝑡) + 𝑤𝑅(𝑡) − 𝜇𝑆(𝑡),

𝑀2 = 𝜆𝐵(𝑡)𝑆(𝑡) − (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡),
𝑀3 = 𝛿𝐼(𝑡) − (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡),
𝑀4 = 𝜉𝑄(𝑡) − (𝑤 + 𝜇)𝑅(𝑡),

𝑀5 = 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡),
𝑀6 = 𝜌 − 𝛼𝐻(𝑡), }

 
 

 
 

 (18) 

 

Then,  

|
𝜕𝑀1

𝜕𝑆
| = −𝜆𝐵 − 𝜇;|

𝜕𝑀1

𝜕𝐼
| = 0; |

𝜕𝑀1

𝜕𝑄
| = 0;|

𝜕𝑀1

𝜕𝑅
| = 𝑤; |

𝜕𝑀1

𝜕𝐵
| =

0; |
𝜕𝑀1

𝜕𝐻
| = 0. 

|
𝜕𝑀2

𝜕𝑆
| = 𝜆𝐵; |

𝜕𝑀2

𝜕𝐼
| = −(𝛿 + 𝛼1 + 𝜇); |

𝜕𝑀2

𝜕𝑄
| = 0;|

𝜕𝑀2

𝜕𝑅
| =

0; |
𝜕𝑀2

𝜕𝐵
| = 0; |

𝜕𝑀2

𝜕𝐻
| = 0. 

|
𝜕𝑀3

𝜕𝑆
| = 0; |

𝜕𝑀3

𝜕𝐼
| = 𝛿; |

𝜕𝑀3

𝜕𝑄
| = −(𝜉 + 𝛼2 + 𝜇);  |

𝜕𝑀3

𝜕𝑅
| =

0; |
𝜕𝑀3

𝜕𝐵
| = 0; |

𝜕𝑀3

𝜕𝐻
| = 0. 

|
𝜕𝑀4

𝜕𝑆
| = 0; |

𝜕𝑀4

𝜕𝐼
| = 0; |

𝜕𝑀4

𝜕𝑄
| = 𝜉;  |

𝜕𝑀4

𝜕𝑅
| = −(𝑤 + 𝜇); |

𝜕𝑀4

𝜕𝐵
| =

0; |
𝜕𝑀4

𝜕𝐻
| = 0. 

|
𝜕𝑀5

𝜕𝑆
| = 0; |

𝜕𝑀5

𝜕𝐼
| = 𝜂; |

𝜕𝑀5

𝜕𝑄
| = 0  ; 

|
𝜕𝑀5

𝜕𝑅
| = 0; |

𝜕𝑀5

𝜕𝐵
| = 𝑟 − 𝜆1𝐻 − 𝑑; |

𝜕𝑀5

𝜕𝐻
| = −𝜆1𝐵.  

|
𝜕𝑀6

𝜕𝑆
| = 0; |

𝜕𝑀6

𝜕𝐼
| = 0; |

𝜕𝑀6

𝜕𝑄
| = 0  ; |

𝜕𝑀6

𝜕𝑅
| = 0; |

𝜕𝑀6

𝜕𝐵
| =

0; |
𝜕𝑀6

𝜕𝐻
| = −𝛼. 

Hence, since the partial derivative exists, the solution to the 

problem is continuous and bounded, therefore the model 

represents a physical problem and it is well posed. 

 

Disease Free Equilibrium 

This is a state where a disease is no longer present or prevalent 

in a population. For the disease-free equilibrium, I=0, B=0, 

Thus, solving at steady states  

Let 𝐶𝐹𝑍S = 𝐶𝐹𝑍I = 𝐶𝐹𝑍Q = 𝐶𝐹𝑍R = 𝐶𝐹𝑍B = 𝐶𝐹𝑍H= 0. 

𝑆
0

= 𝐼
0

= 𝑄
0

= 𝑅
0

= 𝐵
0

= 𝐻
0

= 0,DFE is given by; 

𝑆 =
𝛬

𝜇
, 𝐼 = 0, 𝑄 = 0, 𝑅 = 0, 𝐵 = 0,𝐻 =

𝜌

𝛼
.  

𝐸0 = (
𝛬

𝜇
, 0,0,0,0, 𝑎𝑛𝑑

𝜌

𝛼
).   (19) 

 

Endemic Equilibriums 

This is a state where a disease is consistently present and 

prevalent in a population, but at a relatively stable and low 

level. 

At this steady state, 𝐵 ≠ 𝐼 ≠ 𝑂. 
Thus, solving, we obtained 

𝑆∗ =
(𝛿+𝜇+𝛼1)(𝛼𝑑−𝛼𝑟−𝜆𝜌)

𝛼𝜂𝑘
.   (20) 

𝑄∗ =
𝛿(𝛼𝑑−𝛼𝑟−𝜆𝜌)

𝛼𝜂
.    (21) 

𝐼∗ =
[(𝛬𝑘𝜂−(𝛿+𝜇+𝛼1)𝜇(𝑑−𝑟)(𝑤+𝜇)+𝛿𝑤𝜀𝑘(𝑑−𝑟)]𝛼−[−𝛿𝜀𝑘𝑤+𝜆𝜌[(𝛿+𝜇+𝛼1)(𝑤+𝜇)𝜇]

(𝛿+𝜇+𝛼1)(𝑤+𝜇)𝑘𝛼𝜂
.

     (22) 

𝑅∗ =
𝜀𝛿(𝛼𝑑−𝛼𝑟−𝜆𝜌)

𝛼𝜂
.    (23) 

𝐵∗ =
𝐼∗𝛼𝜂

(𝛼𝑑−𝛼𝑟−𝜆𝜌)
.    (24) 

𝐻∗ =
𝜌

𝛼
.     (25) 

 

Basic Reproduction Number (𝑹𝟎) 

According to Anderson (2018), the basic reproduction 

number 𝑅0is defined as the average number of secondary 

cases generated by a single infective individual in a 

completely susceptible population. This is calculated using 

the next-generation matrix method as follows; 

𝑅0 = 𝜎(𝐹𝑉
−1) such that 𝜎is the spectral radius, 

𝐹 =

[
 
 
 
 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6]
 
 
 
 
 

=

[
 
 
 
 
 
0
𝜆𝑆𝐵
0
0
0
0 ]
 
 
 
 
 

.   (26) 
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𝑉 =

[
 
 
 
 
 
𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6]
 
 
 
 
 

=

[
 
 
 
 
 
𝛬 + 𝑤𝑅 − 𝜆𝛽𝑆 − 𝜇𝑆
−(𝛿 + 𝜇 + 𝛼1)𝐼

𝛿𝐼 − (𝜀 + 𝛼2 + 𝜇)𝑄
𝜀𝑄 − (𝑤 + 𝜇)𝑅

𝑟𝐵 + 𝜂𝐼 − 𝜆1𝐻𝐵 − 𝑑𝐵
𝜌 − 𝛼𝐻 ]

 
 
 
 
 

.        (27) 

𝐹 × 𝑉−1 =

[
 
 
 
 
 
 
0 0 0 0 0 0

0
𝜆𝜂𝛬𝛼

𝜇(𝛿+𝜇+𝛼1)(𝛼𝑑−𝛼𝑟+𝜆𝜌)
0 0

𝜆𝛬𝛼

𝜇(𝛼𝑑−𝛼𝑟+𝜆𝜌)
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −𝛼]

 
 
 
 
 
 

.       (28) 

 

Hence, 𝑅0 =
𝜆𝜂𝛬𝛼

𝜇(𝛿+𝜇+𝛼1)(𝛼𝑑−𝛼𝑟+𝜆𝜌)
.        (29) 

Equation (29) gives Basic Reproduction Number (𝑅0) 

 

Local Stability of Disease-Free Equilibriums 

To examine the Local Stability of DFE point, we obtain the Jacobian matrix of (4) such that 

,𝐽 =

[
 
 
 
 
 
−(𝐵𝑘 + 𝜇) 0 0 𝑤 −𝑘𝑆 0

𝐵𝑘 −(𝛿 + 𝜇 + 𝛼1) 0 0 𝑘𝑆 0
0 𝛿 −(𝜀 + 𝛼2 + 𝜇) 0 0 0

0 0 𝜀 −(𝜇 + 𝑤) 0 0
0 𝜂 0 0 −(𝐻𝜆 + 𝑑 + 𝑟) 0
0 0 0 0 0 −𝛼]

 
 
 
 
 

.  (30) 

𝜆1 = −𝛼1. 
𝜆2 = −𝜇. 
𝜆3 = −𝐷. 
𝜆4 = −𝐶. 

𝜆5 =
−1

2
[𝐵 + 𝐸 + 𝛿√(𝐵 − 𝐸)2 + 4𝐴𝜂]. 

𝜆6 =
−1

2
[𝐵 + 𝐸 + √(𝐵 − 𝐸)2 + 4𝐴𝜂]. 

 

Local Stability of Endemic Equilibrium Point 

Theorem: - The regional resilience of the persistence equilibrium of the proposed model is locally asymptotically stable if 

𝑅0 < 1 and unstable if otherwise. 

Proof: - Suppose,𝑆 = 𝑎 + 𝑆∗, 𝐼 = 𝑏 + 𝐼∗, 𝑄 = 𝑐 + 𝑄∗, 𝑅 = 𝑥 + 𝑅∗, 𝐵 = 𝑦 + 𝐵∗, 𝐻 = 𝑓 + 𝐻∗. 

Linearizing equation (1) to obtain 
𝑑𝑎

𝑑𝑡
= 𝛬 − 𝜆𝑎𝑦 + 𝑤𝑥 − 𝜇𝑎. 

The characteristic equation obtained from its Jacobian matrix is as follows; 

𝐽 =

[
 
 
 
 
 
−(𝐵𝜆 + 𝜇) 0 0 𝑤 −𝜆𝑆 0

𝐵𝜆 −(𝛿 + 𝜇 + 𝛼1) 0 0 𝜆𝑆 0
0 𝛿 −(𝜀 + 𝛼2 + 𝜇) 0 0 0

0 0 𝜀 −(𝜇 + 𝑤) 0 0
0 𝜂 0 0 −(𝐻𝜆 + 𝑑 + 𝑟) −𝜆𝐵
0 0 0 0 0 −𝛼 ]

 
 
 
 
 

.  (31) 

The resulting eigen value of the above matrix is obtained as  

𝜆6 − [(𝑝 + 𝑞 + 𝑠)(𝑟 + 𝑤 + 𝑤) + 𝑝𝑞 + 𝑟𝑠] + 𝜆5[(𝑝 + 𝑡)(𝑞 + 𝑠) + 𝑡𝑤 + 𝑟𝑠] − [𝑝𝑞𝑠(𝑟 + 𝑞) + 𝑝𝑡(𝑟 + 𝑡)𝜆4[𝑞𝑡𝑤(𝑝 + 𝑞) +
𝑞𝑟(𝑝 + 𝑞 + 𝑠)]𝜆3 + [𝑝𝑡 + 𝑝𝑠 + 𝑞𝑠 + 𝑝𝑟]𝜆2 + [(𝑡 + 𝑝)(𝑞 + 𝑟)]𝜆1 + 𝑝𝑞𝑟𝑠𝑡𝑤 = 0.  

Therefore, the regional resilience of the Eigen values in the model invariant region of 𝑅6
+ is asymptotically stable. 

 

Global Stability of the Disease Free Equilibrium 

To analyses the global stability of the disease-free equilibrium (DFE) of the given cholera model, at DFE, the infected 

compartments (I, Q, B) =0 i.e. the disease is absent in the population. 

Setting I=0, Q=0, B=0 in the system, we solve for the equilibrium values of the remaining variables; 

𝐸0 = (𝑆
∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝐵∗, 𝐻∗). 

𝐸0 = (
𝛬

𝜇
, 0,0,0,0,

𝜌

𝛼
).         (32) 

𝑑𝑉

𝑑𝑡
= 𝑎1(𝜆𝐵

𝛬

𝜇
− (𝛿 + 𝛼1 + 𝜇)𝐼 + 𝑎2𝛿𝐼 − (𝜉 + 𝛼2 + 𝜇)𝑄 + 𝑎3𝑟𝐵 + 𝜂𝑄 − 𝜆1𝐻

∗𝐵 − 𝑑𝐵,) 

𝑑𝑉

𝑑𝑡
=𝑎1𝜆𝐵

𝛬

𝜇
− 𝑎1(𝛿 + 𝛼1 + 𝜇)𝐼 + 𝑎2𝛿𝐼 − 𝑎2(𝜉 + 𝛼2 + 𝜇)𝑄 + 𝑎3𝑟𝐵 + 𝑎3𝜂𝑄 − 𝑎3𝜆1𝐻

∗𝐵 − 𝑎3𝑑𝐵,  (33) 

𝑑𝑉

𝑑𝑡
= (𝑎1𝜆

Λ

𝜇
+ 𝑎3𝑟 − 𝑎3𝜆1𝐻

∗ − 𝑎3𝜆1𝐻
∗)𝐵+( −𝑎1(𝛿 + 𝛼1 + 𝜇)+ 𝑎2𝛿)𝐼+(−𝑎2(𝜉 + 𝑎2 + 𝜇) + 𝑎3𝜂)𝑄, 

Choosing 𝑎1, 𝑎2, 𝑎3 such that   

𝑎1(𝛿 + 𝛼1 + 𝜇)>𝑎2𝛿, 𝑎1𝜆
𝛬

𝜇
+ 𝑎3𝑟<𝑎3𝜆1𝐻

∗ − 𝑎3𝑑,then 
𝑑𝑉

𝑑𝑡
≤ 0     (34) 

Since all terms are non-positive and zero only at the DFE, this proves global asymptotically stable’ 
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Therefore, if𝑅0 < 1, then 
𝑑𝑉

𝑑𝑡
≤ 0and 𝐸0 is globally asymptotically stable (i.e. Cholera dies out over time, regardless of initial 

conditions). 

 

Global Stability of Endemic Equilibrium 

THEOREM: - If 𝑆 = 𝑆∗, 𝐼 = 𝐼∗, 𝑄 = 𝑄∗, 𝑅 = 𝑅∗, 𝐵 = 𝐵∗𝑎𝑛𝑑𝐻 = 𝐻∗and𝑌 ≺ 𝑊, with unstable 𝑅 < 1,then system (4) is 

globally asymptotically stable for𝑅0 > 1. 

PROOF: - The Lyaponuv function is used to obtain global stability utilizing the developed Lyaponuv function by Cai and Li 

(2012). 

𝑃 = (𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝐵∗, 𝐻∗) = (𝑆 − 𝑆∗ − 𝑆∗ 𝑙𝑜𝑔
𝑆

𝑆∗
) + (𝐼 − 𝐼∗ − 𝐼∗ 𝑙𝑜𝑔

𝐼

𝐼∗
) + (𝑄 − 𝑄∗ − 𝑄∗ 𝑙𝑜𝑔

𝑄

𝑄∗
) + (𝑅 − 𝑅∗ − 𝑅∗ 𝑙𝑜𝑔

𝑅

𝑅∗
) +

(𝐵 − 𝐵∗ − 𝐵∗ 𝑙𝑜𝑔
𝐵

𝐵∗
) + (𝐻 − 𝐻∗ − 𝐻∗ 𝑙𝑜𝑔

𝐻

𝐻∗
)       (35) 

Through direct calculation, we derive the Lyaponuv function for the solution of equation (43) as follows; 
𝑑𝑃

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
− (

𝑆

𝑆∗
)
𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
− (

𝐼

𝐼∗
)
𝑑𝐼

𝑑𝑡
+
𝑑𝑄

𝑑𝑡
− (

𝑄

𝑄∗
)
𝑑𝑄

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
− (

𝑅

𝑅∗
)
𝑑𝑅

𝑑𝑡
+
𝑑𝐵

𝑑𝑡
− (

𝐵

𝐵∗
)
𝑑𝐵

𝑑𝑡
+
𝑑𝐻

𝑑𝑡
− (

𝐻

𝐻∗
)
𝑑𝐻

𝑑𝑡
  (36) 

 
𝑑𝑃

𝑑𝑡
= 𝛬 − 𝜆𝐵(𝑡)𝑆(𝑡) + 𝑤𝑅(𝑡) − 𝜇𝑆(𝑡) − (

𝑆

𝑆∗
)𝛬 − 𝜆𝐵(𝑡)𝑆(𝑡) + 𝑤𝑅(𝑡) − 𝜇𝑆(𝑡) + 𝜆𝐵(𝑡)𝑆(𝑡) − (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡) −

(
𝐼

𝐼∗
) 𝜆𝐵(𝑡)𝑆(𝑡) − (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡) + 𝛿𝐼(𝑡) − (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡) − (

𝑄

𝑄∗
) 𝛿𝐼(𝑡) − (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡) + 𝜉𝑄(𝑡) − (𝑤 +

𝜇)𝑅(𝑡) − (
𝑅

𝑅∗
) 𝜉𝑄(𝑡) − (𝑤 + 𝜇)𝑅(𝑡) + 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡) − (

𝐵

𝐵∗
) 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) −

𝑑𝐵(𝑡) + 𝜌 − 𝛼𝐻(𝑡) − (
𝐻

𝐻∗
) 𝜌 − 𝛼𝐻(𝑡)        (37) 

Since the polynomial has a positive sign throughout analysis, Descartes’s rule of signs is satisfied. Therefore, the polynomial 

cannot have any negative roots that are real numbers. After this result, applying the Routh Hurwitz condition gives another 

way to look at the polynomial and highlights its unique features. 
𝑑𝑃

𝑑𝑡
= 𝛬 − 𝜆𝐵(𝑡)𝑆(𝑡) + 𝑤𝑅(𝑡) − 𝜇𝑆(𝑡) − (

𝑆

𝑆∗
)𝛬 + (

𝑆

𝑆∗
) [𝜆𝐵(𝑡)𝑆(𝑡) − 𝑤𝑅(𝑡) + 𝜇𝑆(𝑡)] + 𝜆𝐵(𝑡)𝑆(𝑡) − (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡) −

(
𝐼

𝐼∗
) 𝜆𝐵(𝑡)𝑆(𝑡) + (

𝐼

𝐼∗
) (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡) + 𝛿𝐼(𝑡) − (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡) − (

𝑄

𝑄∗
) 𝛿𝐼(𝑡) + (

𝑄

𝑄∗
) (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡) + 𝜉𝑄(𝑡) −

(𝑤 + 𝜇)𝑅(𝑡) − (
𝑅

𝑅∗
) 𝜉𝑄(𝑡) + (

𝑅

𝑅∗
) (𝑤 + 𝜇)𝑅(𝑡) + 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡) − (

𝐵

𝐵∗
) 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) +

(
𝐵

𝐵∗
) [𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡) + 𝜌 − 𝛼𝐻(𝑡) − (

𝐻

𝐻∗
) 𝜌 (

𝐻

𝐻∗
)𝛼𝐻(𝑡)     (38) 

By rearranging terms i.e both positive and negative terms we have, 
𝑑𝑃

𝑑𝑡
= 𝑌 −𝑊 𝑌 = 𝛬 − 𝜆𝐵(𝑡)𝑆(𝑡) + 𝑤𝑅(𝑡) − 𝜇𝑆(𝑡) + (

𝑆

𝑆∗
) [𝜆𝐵(𝑡)𝑆(𝑡) − 𝑤𝑅(𝑡) + 𝜇𝑆(𝑡)] + 𝜆𝐵(𝑡)𝑆(𝑡) − (𝛿 + 𝛼1 +

𝜇)𝐼(𝑡) + (
𝐼

𝐼∗
) (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡) + 𝛿𝐼(𝑡) − (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡) + (

𝑄

𝑄∗
) (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡) + 𝜉𝑄(𝑡) − (𝑤 + 𝜇)𝑅(𝑡) +

(
𝑅

𝑅∗
) (𝑤 + 𝜇)𝑅(𝑡) + 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡) + (

𝐵

𝐵∗
) [𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡) + 𝜌 − 𝛼𝐻(𝑡) + (

𝐻

𝐻∗
)𝛼𝐻(𝑡) 

           (39) 

And 

𝑊 = −(
𝑆

𝑆∗
)𝛬 − (

𝐼

𝐼∗
) 𝜆𝐵(𝑡)𝑆(𝑡) − (

𝑄

𝑄∗
) 𝛿𝐼(𝑡) − (

𝑅

𝑅∗
) 𝜉𝑄(𝑡) − (

𝐵

𝐵∗
) 𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − (

𝐻

𝐻∗
)𝜌      (40) 

Hence, if 𝑌 < 𝑊, then 
𝑑𝑃

𝑑𝑡
=0 if and only if  

𝑆 = 𝑆∗, 𝐼 = 𝐼∗, 𝑄 = 𝑄∗, 𝑅 = 𝑅∗, 𝐵 = 𝐵∗and𝐻 = 𝐻∗      (41) 

Thus, we have the largest compartment invariant set to be equal to {(𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝐵∗, 𝐻∗) ∈ 𝛤,
𝑑𝑃

𝑑𝑡
= 0} where 𝐸∗is a singleton 

of the endemic equilibrium. For this reason, the Lasalle’s invariant approach shows that 𝛤if𝑌 < 𝑊, the𝐸∗is globally 

asymptotically stable. 

 

Numerical Simulation 

Application of Laplace-Adomian Decomposition Method (LADM) 

Using LADM, the equation is solved and the solution, an analytical series, is found by decomposing difficult non-linear 

functions into easy-to-calculate Adomian polynomials. Hence, LADM uses the formula below to solve equation (4). 

With initial conditions; 

𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑄(0) = 𝑄0, 𝑅(0) = 𝑅0, 𝐵(0) = 𝐵0. 𝐻(0) = 𝐻0  

𝐿{𝐶𝐹𝑍𝑆(𝑡)} = 𝐿{𝛬 − 𝜆𝐵(𝑡)𝑆(𝑡) + 𝑤𝑅(𝑡) − 𝜇𝑆(𝑡)},  

𝐿{𝑐𝐹𝑧𝐼(𝑡)} = 𝐿{𝜆𝐵(𝑡)𝑆(𝑡) − (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡)},       (42) 

𝐿{𝑐𝐹𝑧𝑄(𝑡)} = 𝐿{𝛿𝐼(𝑡) − (𝜉 + 𝛼2 + 𝜇)𝑄(𝑡)},  

𝐿{𝑐𝐹𝑧𝑅(𝑡)} = 𝐿{𝜉𝑄(𝑡) − (𝑤 + 𝜇)𝑅(𝑡)},  

𝐿{𝑐𝐹𝑧𝐵(𝑡)} = 𝐿{𝑟𝐵(𝑡) + 𝜂𝐼(𝑡) − 𝜆1𝐻(𝑡)𝐵(𝑡) − 𝑑𝐵(𝑡)},  

𝐿{𝑐𝐹𝑧𝐻(𝑡)} = 𝐿{𝜌 − 𝛼𝐻(𝑡)}.  

Let S, I, Q, R, B and H be infinite series such that; 

𝑆 = ∑ 𝑆𝑖
𝑧
𝑖=0 , 𝐼 = ∑ 𝐼𝑖

𝑧
𝑖=0 , 𝑄 = ∑ 𝑄𝑖

𝑧
𝑖=0 , 𝑅 = ∑ 𝑅𝑖

𝑧
𝑖=0 , 𝐵 = ∑ 𝐵𝑖

𝑧
𝑖=0 , 𝐻 = ∑ 𝐻𝑖

𝑧
𝑖=0    (43) 

BS and HB are non- linear term of the model and it can be broken down by Adomian. Let  

𝐵𝑆 = ∑ 𝑀𝑖
𝑧
𝑖=0 and 𝐻𝐵 = ∑ 𝑁𝑖

𝑧
𝑖=0         (44) 

Where 𝑀𝑖and 𝑁𝑖are Adomian polynomial such that: 

𝑀𝑖 =
1

𝛤(𝑖+1)

𝑑𝑖

𝑑𝜆𝑖
[∑ 𝜆𝑥𝐵𝑥

∞
𝑥=0 ∑ 𝜆𝑥𝑆𝑥

∞
𝑥=0 ]𝜆=0and       (45) 
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𝑁𝑖 =
1

𝛤(𝑖+1)

𝑑𝑖

𝑑𝜆𝑖
[∑ 𝜆𝑥𝐻𝑥

∞
𝑥=0 ∑ 𝜆𝑥𝐵𝑥

∞
𝑥=0 ]𝜆=0       (46) 

Taking  

𝑆0 = 𝑣1, 𝐼0 = 𝑣2, 𝑄0 = 𝑣3, 𝑅0 = 𝑣4, 𝐵0 = 𝑣5, 𝐻0 = 𝑣6,       (47) 

𝑆1(𝑡)= 𝑡𝑧(𝛬 − 𝑣1(𝜆𝑣5 + 𝜇) + 𝑣4𝑤)
1

𝛤(1+𝑧)
       (48) 

𝐼1(𝑡)= 𝑡𝑧(𝜆𝑣1𝑣5 − (𝛿 + 𝛼1 + 𝜇)𝑣2
1

𝛤(1+𝑧)
)       (49) 

𝑄1(𝑡)= 𝑡𝑧(𝑣2𝛿 − 𝑣3(𝜀 + 𝛼2 + 𝜇)
1

𝛤(1+𝑧)
)       (50) 

𝑅1(𝑡)= 𝑡𝑧(𝑣3𝜀 − 𝑣4(𝑤 + 𝜇)
1

𝛤(1+𝑧)
        (51) 

𝐵1(𝑡)= 𝑡𝑧(𝑣5(𝑟 − 𝜆1𝑣6 − 𝑑) + 𝜂𝑣2)
1

𝛤(1+𝑧)
       (52) 

𝐻1(𝑡)= 𝑡𝑧(𝜌 − 𝛼𝑣6)
1

𝛤(1+𝑧)
         (53) 

𝑆2(𝑡) = {𝛬 − 𝜆(𝑣5[(𝛬 − 𝑣1(𝜆𝑣5 + 𝜇) + 𝑤𝑣4}
𝑡2𝑧

𝛤(1+2𝑧)
+ 𝑣1[𝑣5(𝑟 − 𝜆1𝑣6 − 𝑑) + 𝜂𝑣2}

𝑡2𝑧

𝛤(1+2𝑧)
+𝑤 [𝑣3𝜀 − 𝑣4(𝑤 +

μ)]
t2z

Γ(1+2z)
− μ [Λ − v1(λv5 + μ) + v4w)

t2z

Γ(1+2z)
]       (54) 

𝐼2(𝑡) = 𝜆𝑣5 [(𝛬 − 𝑣1(𝜆𝑣5 + 𝜇) + 𝑣4𝑤]
𝑡2𝑧

𝛤(1+2𝑧)
+ 𝑣1[𝑣5(𝑟 − 𝜆1𝑣6 − 𝑑) + 𝜂𝑣2]

𝑡2𝑧

𝛤(1+2𝑧)
− (𝛿 + 𝛼1 + 𝜇){𝜆𝑣1𝑣5 − (𝛿 + 𝛼1 +

𝜇)𝑣2
𝑡2𝑧

𝛤(1+2𝑧)
          (55) 

𝑄2(𝑡)=𝛿(𝜆𝑣1𝑣5 − (𝛿 + 𝛼1 + 𝜇)𝑣2]
𝑡2𝑧

𝛤(1+2𝑧)
− (𝜀 + 𝛼2 + 𝜇)[𝑣2𝛿 − 𝑣3(𝜀 + 𝛼2 + 𝜇))

𝑡2𝑧

𝛤(1+2𝑧)
  (56) 

𝑅2(𝑡) = 𝜀{𝑣2𝛿 − 𝑣3(𝜀 + 𝛼2 + 𝜇)
𝑡2𝑧

𝛤(1+2𝑧)
− (𝑤 + 𝜇)[𝑣3𝜀 − 𝑣4(𝑤 + 𝜇)

𝑡2𝑧

𝛤(1+2𝑧)
    (57) 

𝐵2(𝑡) = 𝑟{𝑡
𝑧[𝑣5(𝑟 − 𝜆1𝑣6 − 𝑑) + 𝜂𝑣2)

𝑡2𝑧

𝛤(1+2𝑧)
+ 𝜂𝑡𝑧{𝜆𝑣1𝑣5 − (𝛿 + 𝛼1 + 𝜇)𝑣2

𝑡2𝑧

𝛤(1+2𝑧)
− 𝜆1{𝑣6𝑡

𝑧[𝑣5(𝑟 − 𝜆1𝑣6 − 𝑑) +

𝜂𝑣2]
𝑡2𝑧

𝛤(1+2𝑧)
+ 𝑡𝑧𝑣5(𝜌 − 𝛼𝑣6)

𝑡2𝑧

𝛤(1+2𝑧)
] − 𝑑𝑡𝑧[𝑣5(𝑟 − 𝜆1𝑣6 − 𝑑) + 𝜂𝑣2]

𝑡2𝑧

𝛤(1+2𝑧)
    (58) 

𝐻2(𝑡) = (𝜌 − 𝛼)(𝜌 − 𝛼𝑣6)
𝑡2𝑧

𝛤(1+2𝑧)
        (59) 

𝑡𝑧(Λ − 𝑣1(𝜆𝑣5 + 𝜇) + 𝑣4𝑤)
1

Γ(1+𝑧)
  

 

Table 2: Parameter Values and Initial Conditions for the SIQRB Model 

Parameter  Description  Value  Reference  

𝛬  Recruitment rate  24.4𝑁(0)/365000 (day−1)   Trevisin et al., (2022) 

𝜇  Natural death rate  2.2493 × 10−5 (day−1) Trevisin et al., (2022) 

𝜆  Force of infection  0.8 (day−1) Trevisin et al., (2022) 

𝑟 Multiplication rate of bacteria via binary fission 4.158(day−1)  Assumed 

𝜔  Immunity waning rate  0.4/365 (day−1) Trevisin et al., (2022) 

𝛿  Quarantine rate  0.05 (day−1)  Assumed  

𝑙ò  Recovery rate  0.2 (day−1) Trevisin et al., (2022) 

𝛼1  Death rate (infected)  0.015 (day−1) Trevisin et al., (2022) 

𝛼2/’  Death rate (quarantined) 0.0001 (day−1) Trevisin et al., (2022) 

𝜂  Shedding rate (infected)  10 (cell/mlday−1person−1) Trevisin et al., (2022) 

𝜆1 Clearance rate of pathogens due to hygienic 

measure 
0.3, 0 ≤ 𝜆1 ≤ 1, Assumed 

𝜌 Investment (Effort) rate to increase hygiene 

levels. 

0.5 Assumed 

Α the natural decay of hygiene measures (e.g., 

infrastructure decay or reduced public 
0.3, 0 ≤ 𝜆1 ≤ 1, Assumed 

𝑑  Bacteria death rate  0.33 (day−1) Trevisin et al., (2022) 

𝑆(0)  Susceptible individuals at 𝑡 = 0 570 (person)  Assumed  

𝐼(0)  Infected individuals at 𝑡 = 0 170 (person)  

𝑄(0)  Quarantined individuals at 𝑡 = 0 0 (person)  Assumed  

𝑅(0)  Recovered individuals at 𝑡 = 0 0 (person)  Assumed  

𝐵(0)  Bacterial concentration at 𝑡 = 0 275 × 103 (cell/ml)  Assumed  

 

Table 2 above summarizes the parameter values and initial 

conditions used in the SIQRB model. These include key rates 

such as transmission, recovery, quarantine, and bacterial 

growth, along with the initial population values for S(0), I(0), 

Q(0), R(0), and B(0). The table provides the baseline setup 

necessary for simulating the cholera transmission dynamics. 

 

 

RESULTS AND DISCUSSION 

Simulation Result 

Utilizing the results obtained from LADM with Caputo 

derivatives on equation (9) and parameter values in Table 1, 

we perform numerical simulations to observe how the system 

acts in various situations. They study in detail how immunity 

problems following treatment and interventions to raise 

hygiene affect the way diseases are passed on. The study 
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looks at how these factors cause changes in the number of 

susceptible, infected and pathogen individuals so that its role 

in the disease spread can be better understood. The analysis 

gives understanding of the link between hygiene control and 

the number of people experiencing relapses, indicating 

possible steps to reduce infections and improve handling of 

diseases. 

 

 
Figure 2: Plot shows the behavior of S(t) at different values of fractional order z 

 

 
Figure 3: Plot shows the behavior of I(t) at different values of fractional order z 
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Figure 4: Plot shows the behavior of Q(t) at different values of fractional order z 

 

 
Figure 5: Plot shows the behavior of R(t) at different values of fractional order z 

 

 
Figure 6: Plot shows the behavior of B(t) at different values of fractional order z 
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Figure 7: Plot shows the behavior of H(t) at different values of fractional order z 

 

 
Figure 8: Effect of Relapse rate of recovered individuals post immunity gained from treatment on S(t) 

 

 
Figure 9: Effect of Relapse rate of recovered individuals post immunity gained from treatment on I(t) 
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Figure 10: Effect of Relapse rate of recovered individuals post immunity gained from 

treatment on I(t) 

 

 
Figure 11: Effect of effort rate to increase hygienic level on pathogen population 

 

 
Figure 12: Impact of decay rate of hygienic efforts on Susceptible population 



A NOVEL CAPUTO FRACTIONAL-ORDER…       Kolawole et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 66 – 77 76 

 
Figure 13: Impact of decay rate of hygienic efforts on Infected population 

 

Discussion 

The use of simulations allows a clear view of the impact of 

fractional-order behaviors and interventions on the disease’s 

transmission. As shown in Figure 1, more extensive disease 

exposure is predicted when the fractional orders are higher, 

because the susceptible population decreases more slowly. A 

lower z in Figure 2 means there is less of an increase in the 

infected population, showing that stronger memory effects 

lead to the disease slowing down in progression. Figure 3 

demonstrates that the size of the quarantined population 

depends highly on how far z is from 1 which stresses the 

importance of memory when making intervention decisions. 

Also, delayed healing is demonstrated in Figure 4 with z 

showing greater influence on protecting against another 

infection. The mental health of a person can lead to changes 

in their environment and behaviors. Evident from Figure 5, 

the environment can be kept cleaner as z increases, meaning 

that the chances of bacterial overgrowth go down, while 

Figure 6 displays that improving behavioral memory allows 

people to keep up good hygiene habits over time. Figures 7 to 

9 examine the growth in relapse rates which results in 

increases in the numbers of susceptible individuals (Figure 7) 

and infected people (Figures 8 and 9), highlighting the 

importance of lasting immunity from treatment discuss the 

effectiveness and continued use of hygiene measures. The 

hygiene improvements in Figure 10 can be seen to lower 

pathogen count and Figures 11 and 12 suggest that more rapid 

hygienic deterioration leads to a larger number of infected 

people and a shrinking group of people who can easily catch 

the disease. All of these findings prove how vital it is to be 

hygienic to make sure diseases do not spread. 

 

CONCLUSION 

This work introduces a detailed model using fractional-order 

to show cholera transmission which considers immunity 

relapse, personal hygiene, aspects of the environment and 

how people behave. Using the modified Caputo derivative 

and solving the model with LADM, it becomes possible to 

capture behaviors that can be hard to represent with classical 

models. Also, the analysis using the Laplace-Adomian 

Decomposition Method (LADM) confirms the model stays 

well-defined as the solutions are proper and within expected 

ranges. Establishing how the basic reproduction number is 

derived and assessing the stability of any disease in the system 

provide a strong theoretical background. Simulations based 

on LADM emphasize that the model can realistically 

represent cholera behavior in real life, showing its usefulness 

for public health planning. Evidence shows that cholera lasts 

longer when people’s immunity decreases and hygiene is 

neglected. Relapse can happen often, especially with poor 

hygiene, so infection can still be present despite taking action 

against it. For this reason, strategies to control disease should 

work on lowering relapse and helping people maintain healthy 

hygiene to prevent the pathways for infection. Besides 

cholera, the framework can also be used to analyze other 

infectious diseases with similar features. With memory effects 

and adjustable human practices included, this model gives key 

findings for long-lasting disease prevention strategies and 

epidemiological forecasts. 
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