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Abstract

This study presents a numerical investigation of the Burgers-Huxley equation using the Method of
Lines (MoL) with varying stencil points. The Burgers-Huxley equation models complex nonlinear
phenomena involving reaction, diffusion, and convection processes and is prominent in biological and
physical sciences. Spatial discretization was performed using central finite difference schemes with
three, five, seven, nine, and eleven-point stencils to analyze their impact on solution accuracy and
convergence. The resulting system of ordinary differential equations was solved using standard time
integration methods. Comparative analysis across different stencil sizes and simulation times shows
that higher-order stencils significantly reduce the approximation error, with the seven-point stencil
offering an optimal balance between computational efficiency and accuracy. Notably, the method
achieved an absolute error as low as 7.63×10−10 at x = 5.0 and T = 15 using the seven-point stencil.
The findings highlight the MoL’s robustness and offer guidance on stencil selection for accurate and
efficient modeling of nonlinear partial differential equations.

Keywords: Method of Lines, Burgers-Huxley, Finite Difference Method, Numerical Simulation,
Stencil Accuracy.

INTRODUCTION

In numerical analysis, given a square grid in one,
two, or three dimensions: A three-point stencil is
made up of a point together with its two neigh-
bors, a five-point stencil is made up of a point to-
gether with its four neighbors, a seven-point stencil
is made up of a point with its six neighbors, a nine-
point stencil is made up of a point with its eight
neighbors and an eleven-point so on.

A stencil is a geometric ordering of a nodal
group that relates to the point of interest by us-
ing a numerical approximation routine. It refers to
a formula that can be used to approximate deriva-
tives at a given position using function values and
its derivatives sampled at finite intervals around
the point of interest. Stencils are the basis for
many algorithms to numerically solve Partial Dif-
ferential Equations (PDEs). Finite central differ-
ence stencils are often used to estimate the deriva-
tives of a function represented on a one, two, or
three-dimensional grid. The concept of stencil is
used when the space under consideration includes a
time-dimension. This concept can also be applied
to non-regular grids, such as methods that use a

grid of volumes.

This approach simplifies the computation of
derivatives by structuring the combination of func-
tion values at specific locations, a critical aspect of
numerical analysis and differential equation solu-
tions. Stencils can be either one-sided or centered,
depending on whether values from only one side
of a grid point or from both sides are used in the
derivative calculation.

The choice of stencil plays a crucial role in
determining the numerical accuracy, as it affects
how well the numerical scheme captures the so-
lution’s behavior. Oberman (2007) observed that
wider stencils provide more accurate approxima-
tions, though at a higher computational cost. Grif-
fiths and Schiesser (2012) used five-point stencils
to solve several PDEs and validated their accu-
racy through error analysis. Bayona et al., (2019)
noted that increasing stencil size smooths the car-
dinal function and enhances the diagonal domi-
nance of the resulting differentiation matrix. Feng
et al., (2022) focused on developing a narrow sten-
cil framework, arguing that existing methods often
use wider stencils, which are less efficient and limit
high-order methods. Kolar-Pozuna (2024) high-
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lighted that when solving PDEs on scattered nodes
using the Radial-Basis Function Generated Finite
Difference Method, stencil size is a critical param-
eter, as it influences approximation accuracy, par-
ticularly in terms of error oscillation with larger
stencils.

The selection of a appropriate stencil influences
the accuracy and stability of finite difference ap-
proximations, with more complex stencils often
providing enhanced results. Common stencils in-
clude first-order and second-order approximations,
which differ based on the number of grid points in-
volved in the derivative estimation. Stencils can
also be extended to multiple dimensions, requiring
careful arrangement of values to preserve accuracy
in higher-dimensional problems. The use of stencils
play a crucial role in areas like Reaction-diffusion
process, and other areas that rely on the numerical
modeling of continuous phenomena.

Recent studies have focused extensively on the
numerical solutions of nonlinear PDEs, particularly
Reaction-Diffusion equations. Notable examples in-
clude the Burgers-Huxley equation, Burgers-Fisher
equation, Fisher-Kolmogorov equation, FitzHugh-
Nagumo equation, and Fisher-KPP equation. Re-
searchers such as( Havindra, 2023; Mohammadi,
2013; B. Singh, 2016; and Chandraker 2016) have
contributed to this area. Reaction-Diffusion equa-
tions serve as models that capture the complex
interaction between reaction processes, convection
dynamics, and diffusion-driven transport A. Singh
et al., . (2024).

Burgers-Huxley equation is a nonlinear partial
differential equation that integrates characteristics
of both the Burgers’ equation and the Huxley equa-
tion. This equation models interactions involving
reaction mechanisms, convection effects, and diffu-
sion transport, such as nerve impulse propagation
in excitable media, population dynamics and the
spread of genetic traits or diseases, shock waves and
turbulent fluid flow. It finds relevance in various
scientific domains, including fluid mechanics, non-
linear wave analysis, and biological pattern forma-
tion. The equation’s significance lies in its capac-
ity to analyze the combined influence of advection,
diffusion, and reaction on system behavior, offering
insights into complex dynamical processes.

Numerous computational techniques have been
applied to solve the Burgers-Huxley equation, in-
cluding the Adomian Decomposition Method (Is-
mail et al., 2004; Hashim et al., 2006) and
the Variational Iteration Method (Baitha et al.,
2008). Brastos (2011) implemented a fourth-
order improved numerical scheme for the general-
ized Burgers-Huxley equation, while Mohammadi
(2013) utilized a B-spline collocation algorithm.
Additionally, Dehghan et al., (2012) explored vari-
ous methods involving interpolation scaling func-

tions and mixed collocation finite difference ap-
proaches for the numerical solution of the nonlinear
Burgers-Huxley equation. Singh,K et al., (2016)
introduced the modified cubic B-spline differential
quadrature method (MCB-DQM), a refined numer-
ical approach for solving the generalized Burgers-
Huxley equation to model physical phenomena.
Singh, A. et al., (2024) proposed a Higher Or-
der collocation method for solving Burgers-Huxley
equation, demonstrating computational efficiency
and accuracy through comparisons with existing
methods.

One of the important techniques to solve a time-
dependent PDEs is the Method of Lines (MoL).
The Method of Lines has formed a broad inter-
est in science and engineering. It discretizes the
spatial dimension by using techniques such as fi-
nite difference, finite element, and finite volume,
spectral or meshless methods. It serves as a gen-
eral procedure for the solution of partial differen-
tial equations (PDEs) Samir, William and Graham
(2009). The use of MoL yields a system of first or-
der differential equations with initial value Kazem
and Deghan,(2017).This method could be described
as a semi analytical procedure and a general way of
viewing a partial differential equation as a system
of ordinary differential equations (ODEs) Zafarul-
lah (1970).

The partial derivatives with respect to the space
variables are discretized to obtain a system of ODEs
in the time variable,Gautham and Kaushal (2017).
Sadiku and Obiozor(2000) described it as a special
finite difference method and noted it to be more ef-
fective in terms of accuracy and computational time
than the standard finite difference method Sadiku
and Obiozor, (2000). For the PDEs to which MOL
is applied, the method typically proves to be quite
efficient.

Despite these advancements, a critical research
gap remains: there is a lack of systematic anal-
ysis on the impact of varying stencil sizes within
the Method of Lines framework when applied to
nonlinear reaction-diffusion equations, particularly
the Burgers-Huxley equation. Although numer-
ous studies have optimized algorithms and basis
functions, few have explored how different stencil
configurations affect the accuracy, stability, conver-
gence behavior, and computational efficiency of the
resulting numerical solutions. Existing studies ei-
ther fix the stencil size or do not compare different
stencil choices within the same method and prob-
lem context.

This study addresses this gap by presenting a
comparative investigation of stencil-based Method
of Lines schemes for solving the Burgers-Huxley
equation. Specifically, it explores the influence of
varying stencil sizes (e.g., three-point, five-point,
seven-point, etc.) on the performance of the nu-
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merical solution without altering the discretization
points. The objective is to identify the optimal
stencil size that balances computational efficiency
and solution accuracy. This approach provides a
more detailed understanding of how stencil con-
figuration affects the solution behavior in time-
dependent nonlinear PDEs and contributes new in-
sights to the design of efficient and accurate numer-
ical schemes.

MATERIALS AND METHODS

Algorithm of the Method of Lines

To evaluate the numerical solution of nonlinear
equations using the Method of Lines, the following
steps are considered;

1. Discretize the spatial derivatives in PDE

2. Formulate the approximate system of ODEs

3. Apply any integration algorithm for the ini-
tial value of ODE to compute an approximate nu-
merical solution to the PDE.

Method of Lines for Solving Partial Differential
Equations

If y(x) and its derivatives are single-valued contin-
uous function of x , then by Taylor’s expansion we
have;

y(x+ h) = y(x) + hy′(x) +
h2

2!
y′′(x) +

h3

3!
y′′′(x) + · · ·

(1)

y(x− h) = y(x)− hy′(x) +
h2

2!
y′′(x)− h3

3!
y′′′(x) + · · ·

(2)

From (1)

y′(x) =
1

h
[y(x+ h)− y(x)]− h

2
y′′(x)− h2

3!
y′′′(x) + · · ·

(3)

y′(x) =
1

h
[y(x+ h)− y(x)] +O(h) (4)

Equation (4) is the forward difference approxi-
mation of y′(x) with an error of order h.

Similarly, from (2), we have

y′(x) =
1

h
[y(x)− y(x− h)] +O(h) (5)

Equation (5 ) is the backward difference approx-
imation of y′(x).

Subtracting (2 ) from (1 ), we have

y(x+ h)− y(x− h) =

(
y(x) + hy′(x) +

h2

2!
y′′(x)

+
h3

3!
y′′′(x) + · · ·

)
−
(
y(x)− hy′(x) +

h2

2!
y′′(x)

− h3

3!
y′′′(x) + · · ·

)
y(x+ h)− y(x− h)

= 2hy′(x)

y′(x)

=
1

2h
[y(x+ h)− y(x− h)]

+O(h2) (6)

Equation (6 ) is the central difference approxi-
mation of y′(x).

Adding (1 ) and (2 ),

y(x+ h) + y(x− h) = 2y(x) + 2h2y′′(x) + · · ·

y′′(x) =
y(x+ h)− y(x− h)

2h2
(7)

Equation (7) is the central difference approxi-
mation of y′′(x).

Thus, central approximations to higher deriva-
tives can be derived.

Finite Central Difference Approximations for
Numerical Differentiation for First and Second
Derivatives

Two-point central difference:

Ux ≈ Ui+1 − Ui−1

2h
+O(h2) (8)

Five-point central difference:

Ux ≈ −Ui−2 + 8Ui−1 − 8Ui+1 + Ui+2

12h
(9)

Three-point stencil:

Uxx ≈ Ui+1 − 2Ui + Ui−1

h2
(10)

Five-point stencil:

Uxx ≈ −Ui−2 + 16Ui−1 − 30Ui + 16Ui+1 − Ui+2

12h2

(11)
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Seven-point stencil:

Uxx ≈ −Ui−3 + 9Ui−2 − 45Ui−1 + 100Ui − 45Ui+1 + 9Ui+2 − Ui+3

60h2
(12)

Nine-point stencil:

Uxx ≈ 3Ui−4 − 32Ui−3 + 168Ui−2 − 672Ui−1 + 122Ui − 672Ui+1 + 168Ui+2 − 32Ui+3 + 3Ui+4

840h2
(13)

Eleven-point stencil:

Uxx ≈−2Ui−5 + 25Ui−4 − 150Ui−3 + 600Ui−2 − 2100Ui−1

2520h2

+
3600Ui − 2100Ui+1 + 600Ui+2 − 150Ui+3 + 25Ui+4 + 2Ui+5

2520h2
. (14)

Example

Consider the three-dimensional PDE satisfying the
initial condition:

Ut = Uxx + Uyy + Uzz, x

∈ (x0, Lx], y

∈ (y0, Ly], z

∈ (z0, Lz], t

> 0 (15)

U(x, y, z, 0) = f(x, y, z), x ∈ (x0, Lx], y ∈ (y0, Ly], z ∈ (z0, Lz]

Evaluating the diffusion operators Uxx, Uyy,
and Uzz using five-point finite difference gives:

U ′
i,j,k =

1

12h2
x

(−Ui−2,j,k + 16Ui−1,j,k + 16Ui+1,j,k

− Ui+2,j,k)

+
1

12h2
y

(−Ui,j−2,k + 16Ui,j−1,k

+ 16Ui,j+1,k − Ui,j+2,k)

+
1

12h2
z

(−Ui,j,k−2 + 16Ui,j,k−1

+ 16Ui,j,k+1 − Ui,j,k+2)

− 30

(
1

12h2
x

+
1

12h2
y

+
1

12h2
z

)
Ui,j,k (16)

with the initial condition:

Ui,j,k(0) = fi,j,k = f(xi, yj , zk) (17)

Where:

hx =
Lx − x0

Mx
, hy =

Ly − y0
My

, hz =
Lz − z0
Mz

This system of ODEs has a solution of the form:

U(t) = eA3tU(0) (18)

RESULTS AND DISCUSSIONS

Results

Given the Burgers-Huxley equation (Griffiths and
Schiesser, 2012)

∂u

∂t
+u2 ∂u

∂x
−∂2u

∂x2
=

2

3
u3(1−u2), t > 0, 0 ≤ x ≤ 1

(19)
with the initial condition:

u(x, 0) =

[
1

2
+

1

2
tanh

(
1

3
x

)]1/2
(20)

and the boundary conditions at x = 0.5 and
x = 5.

The analytical solution is:

u(x, t) =

[
1

2
+

1

2
tanh

(
1

9
(3x+ t)

)]1/2
(21)

where:

∂u

∂t
represents the temporal evolution

u2 ∂u

∂x
is the nonlinear advection (convection) term

u2 is a nonlinear velocity for the transport of u

and

−∂2u

∂x2
is the diffusion term

Substituting the finite difference approxima-
tions for three point stencil, five point stencil, seven
point stencil, nine point stencil and eleven point
stencil as shown in Section (2) into Equation (19)
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Table 1: Comparison of absolute error of Burgers-Huxley at different point stencils when T = 5

Spatial Domain Analytical Solution 3PT Error 5PT Error 7PT Error 9PT Error 11PT Error
0.5 0.899529 6.45E-04 5.85E-06 6.75E-07 5.97E-07 5.86E-07
1.0 0.924889 4.41E-04 1.56E-06 9.40E-07 5.20E-07 4.04E-07
1.5 0.944440 2.42E-04 5.77E-06 8.21E-07 4.00E-07 3.29E-07
2.0 0.959240 8.18E-05 7.02E-06 5.51E-07 2.91E-07 1.93E-07
2.5 0.970284 3.16E-05 6.39E-06 2.95E-07 2.09E-07 1.89E-07
3.0 0.978437 1.02E-04 4.91E-06 1.16E-07 1.50E-07 7.39E-08
3.5 0.984408 1.37E-04 3.31E-06 1.65E-08 1.07E-07 1.19E-07
4.0 0.988754 1.49E-04 1.92E-06 2.92E-08 7.50E-08 1.15E-09
4.5 0.991904 1.46E-04 8.91E-07 4.20E-08 5.10E-08 9.97E-08
5.0 0.995819 1.33E-04 1.81E-07 4.06E-08 3.30E-08 7.83E-09

Table 2: Comparison of absolute error of Burgers-Huxley at different point stencils when T=10

Spatial Domain Analytical solution 3PT Error 5PT Error 7PT Error 9PT Error 11PT Error
0.5 0.963123 1.76E-04 1.16E-05 2.07E-07 5.63E-08 3.88E-07
1 0.973075 2.15E-04 9.37E-06 4.99E-08 2.15E-08 3.12E-07
1.5 0.980415 2.29E-04 6.89E-06 3.97E-08 8.60E-09 2.40E-07
2 0.985793 2.23E-04 4.64E-06 7.49E-08 7.79E-09 1.88E-07
2.5 0.989716 2.05E-04 2.87E-06 7.81E-08 1.18E-08 1.42E-07
3 0.992566 1.81E-04 1.57E-06 6.75E-08 1.59E-08 1.09E-07
3.5 0.994632 1.55E-04 7.02E-07 5.27E-08 1.79E-08 8.06E-08
4 0.996127 1.29E-04 1.46E-07 3.90E-08 1.73E-08 5.74E-08
4.5 0.997207 1.06E-04 1.72E-07 2.75E-08 1.48E-08 4.13E-08
5 0.997987 8.60E-05 3.40E-07 1.90E-08 1.13E-08 1.25E-08

Table 3: Comparison of absolute error of Burgers-Huxley at different point stencils when T=15

Spatial Domain Analytical solution 3PT Error 5PT Error 7PT Error 9PT Error 11PT Error
0.5 0.987459 2.94E-04 5.25E-06 2.30E-08 5.79E-08 1.81E-08
1 0.990966 2.53E-04 3.30E-06 2.15E-09 4.05E-08 9.93E-09
1.5 0.993502 2.13E-04 1.91E-06 2.82E-09 3.00E-08 1.38E-08
2 0.995331 1.76E-04 9.73E-07 3.67E-09 2.38E-08 4.52E-09
2.5 0.996648 1.43E-04 3.76E-07 4.27E-09 1.97E-08 1.16E-08
3 0.997595 1.15E-04 1.84E-08 5.01E-09 1.61E-08 5.75E-10
3.5 0.998275 9.12E-05 1.77E-07 5.07E-09 1.25E-08 7.67E-09
4 0.998763 7.18E-05 2.70E-07 4.28E-09 8.96E-09 7.19E-09
4.5 0.999113 5.61E-05 2.97E-07 2.59E-09 5.89E-09 4.44E-09
5 0.999364 4.36E-05 2.91E-07 7.63E-10 3.72E-09 1.94E-08

and solving numerically over a range of spatial do-
mains and time intervals (T=5,10,15), the following
tabulated results are obtained at different times

Figure 1: Convergence analysis showing absolute
error at x = 5.0 for different stencil sizes and time
levels T = 5, 10, 15.

Discussion

The results presented in the table analyze the ac-
curacy of various point stencils (3-point, 5-point,
7-point, 9-point, and 11-point) for solving the
Burgers-Huxley equation over a range of spatial do-

mains and time intervals (T = 5, 10, 15). The re-
sults indicate that errors generally decrease with in-
creased stencil points from 3 point to 7 point across
spatial domains (0.5 to 5). At T=5,. However, er-
ror values tend to fluctuate at stencils higher than 7
point. Errors at each stencil compared across time
T=5, 10, and 15 indicates that higher stencil points
tend to stabilize the error reduction over time, with
notable improvement in accuracy at longer time in-
tervals for higher stencils. For instance, while the
3-point stencil at T=15 still shows significant er-
rors, the 11-point stencil achieves near-zero error
values.

In terms of Convergence, the trend in decreas-
ing errors as the stencil size increases suggests con-
vergence toward the analytical solution, especially
for the 7PT and higher stencils. The error reduc-
tion as observed is not linear, this suggests that the
method’s efficiency at reducing error improves at a
decreasing rate as the stencil size increases. This
could be due to diminishing returns from higher-
point stencils as the solution approaches the ana-
lytical values, especially in smoother regions of the
domain.

In terms of efficiency, increasing stencil points
enhances accuracy but also likely raises compu-
tational costs. The 7-point stencil represents a
balanced trade-off between accuracy and compu-
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tational efficiency, as it achieves significant error
reduction without the added complexity of the 7-
point and other higher stencils. Beyond this point,
the method experiences an error plateau, indicat-
ing that larger stencils do not yield significant ac-
curacy improvements. This insight is valuable for
designing efficient numerical schemes for solving
nonlinear PDEs like the Burgers-Huxley equation.
The convergent rate analysis presented in Figure
1 demonstrates a consistent improvement in accu-
racy as stencil size increases, with slight variations
in convergence behavior over time. This high con-
vergence rate suggests that increasing stencil size
significantly improves accuracy up to a point.The
error initially drops rapidly (from 3-point to 7-point
stencil), but then exhibits diminishing returns be-
yond that.

CONCLUSION

This paper successfully applied the numerical
Method of Lines (MOL) to solve the Burgers-
Huxley equation across various point stencils at dif-
ferent spatial domains and time intervals. It high-
lights the critical role of stencil size in the accu-
racy and convergence of numerical solutions. The
study contributes to a deeper understanding of how
the MoL can be optimized for Burger’s Huxley
equation by selecting appropriate stencil sizes. It
also validates MoL’s capability in handling stabil-
ity and convergence challenges, making it a ver-
satile tool for solving complex partial differential
equations in science and engineering. It establishes
that modeling systems with higher stencils can en-
sure higher precision, especially for long-term sim-
ulations. Identifying the seven point stencil as a
good balance between accuracy and efficiency can
help in designing simulations that are both fast and
reliable, important for real-time systems, embedded
simulations, or resource-constrained environments.

One of the limitations of this work is that it
employs a fixed grid and static stencil sizes, with-
out adapting to local solution behavior, which may
limit its effectiveness for problems with sharp gra-
dients or discontinuities.While the method shows
strong performance for smooth, nonlinear PDEs
like Burgers-Huxley, its applicability to other equa-
tions—such as those with stiff terms or non-smooth
solutions may require modifications.

Future work could explore adaptive stencil
strategies that adjust stencil width based on local
error or gradient, as well as mesh refinement to en-
hance resolution where needed. Hybrid approaches
combining MoL with other numerical methods, and
performance optimization through parallel comput-
ing or Graphic Processing Unit (GPU) acceleration,
are also promising. Extending the method to multi-

dimensional PDEs and conducting runtime bench-
marking would further improve its generality and
practical utility.
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