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ABSTRACT

Coronavirus disease (COVID-19) is an infectious illness caused by a novel coronavirus that emerged in Wuhan,
China, in late 2019. While most infected individuals experience mild to moderate respiratory symptoms and
recover without intensive medical intervention, the rapid spread of the virus has presented significant global

health challenges. This study develops and analyzes a

deterministic compartmental model for the transmission

dynamics of COVID-19, incorporating vaccination, public awareness campaigns, and natural death. The model
consists of seven compartments and examines the effects of both pharmaceutical and non-pharmaceutical

interventions. Key mathematical analyses include the

positivity and invariance of solutions, determination of

disease-free and endemic equilibria, computation of the basic reproduction number, and stability analysis of

the disease-free equilibrium. Sensitivity analysis and

numerical simulations reveal that a combined strategy

involving vaccination and quarantine is highly effective in controlling the spread of the disease. Based on the
findings, it is recommended that phased implementation of vaccination and sustained public health
interventions be emphasized to mitigate and ultimately eliminate COVID-19 transmission.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a contagious illness
caused by a newly identified coronavirus, SARS-CoV-2,
which is believed to have originated in Wuhan, China, in late
2019 (Eric et al., 2020). The disease was first reported in
December 2019 after an outbreak of pneumonia of unknown
cause in Wuhan, Hubei Province, prompting investigation by
Chinese health authorities and the World Health Organization
(WHO, 2020). SARS-CoV-2 is thought to be of zoonotic
origin, similar to other coronaviruses such as Severe Acute
Respiratory Syndrome (SARS) and Middle East Respiratory
Syndrome (MERS). Transmission occurs primarily through
respiratory droplets and contact with contaminated surfaces
(fomites), facilitating rapid human-to-human spread (Patel et
al., 2020). While most individuals infected with the virus
experience mild to moderate respiratory symptoms and
recover without the need for intensive medical care, severe
cases can occur—particularly among older adults and
individuals  with  pre-existing conditions such as
cardiovascular disease, diabetes, chronic respiratory illness,
or cancer (WHO, 2020).

The World Health Organization (WHO) declared the outbreak
of the novel coronavirus a Public Health Emergency of
International Concern (PHEIC) on January 30, 2020 (Patel et
al., 2020). As COVID-19 continued to spread globally and the
death toll rose, WHO organized a mission to China that
included experts from eight countries—Nigeria among
them—to assess the severity of the outbreak, evaluate the
effectiveness of the response, and identify best practices.
Subsequently, on March 11, 2020, WHO officially classified
COVID-19 as a global pandemic, urging nations to implement
urgent and coordinated response measures. An expanding
body of research has since emerged, highlighting innovative
national strategies and policy frameworks developed to
combat the pandemic at the country level (Abdool, 2020).
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Nigeria confirmed its first case of COVID-19 on February 27,
2020. The Federal Ministry of Health announced the case in
Ogun State, making Nigeria the third African country to
report an imported case of COVID-19, following Egypt and
Algeria. The index case involved an Italian national who
arrived in Lagos from Milan, Italy, on February 24, 2020. He
subsequently traveled to his company’s site in Ogun State by
private vehicle. On February 26, 2020, he reported to the
company’s clinic with symptoms consistent with COVID-19
and was referred to the Infectious Disease Hospital (IDH) in
Lagos, where a diagnosis was confirmed through real-time
Reverse Transcription Polymerase Chain Reaction (RT-PCR)
(Chioma et al., 2000). In response, contact tracing identified
216 individuals in Lagos and Ogun States, including
passengers from the same flight on February 24, with 40
classified as high-risk contacts. Eleven days later, an
asymptomatic contact of the index case in Ogun State was
confirmed as Nigeria’s second COVID-19 case.

As of March 22, 2020, Nigeria’s first 30 confirmed cases of
COVID-19 were traced to individuals with recent
international travel history. This pattern prompted the
government to implement an initial international travel ban
targeting passengers arriving from countries with high
transmission rates—beginning with China, Italy, and
Germany—and was later expanded to include eight high-
burden countries. To curb further importation of the virus,
authorities closed land borders, suspended all international
flights, and instituted mandatory institutional quarantine and
testing for returning travelers. These measures were enforced
starting March 23, 2020, as part of the national effort to reduce
the influx of COVID-19 from high-risk regions (Bismark,
2021).

On March 30, 2020, the President of Nigeria implemented a
set of strict non-pharmaceutical interventions, including stay-
at-home orders and restrictions on non-essential
movements—collectively termed the “lockdown strategy”—
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in Lagos State, Ogun State, and the Federal Capital Territory
(FCT). This lockdown was initially scheduled for 14 days and
later extended by an additional 21 days, with Kano State
added due to a surge in cases. The selection of these areas was
based on the burden and risk of disease spread: Lagos State,
being the epicenter, had the highest case count; Ogun State,
which borders Lagos and was linked to the index case, has a
highly urbanized and mobile population; while the FCT had
the second-highest case load at the time. The lockdown
measures included closure of schools and workplaces, bans
on religious and social gatherings, suspension of public
events, imposition of curfews, and restrictions on interstate
and international travel. In tandem with the federal directives,
several other states also enacted similar measures such as
school closures, movement restrictions, and curfews to curb
the spread of the virus.

Osibogun et al.,, (2021) investigated the impact of
comorbidities on the outcomes of COVID-19 patients in
southwestern Nigeria. The study employed a retrospective
analysis of medical records from 2,184 laboratory-confirmed
COVID-19 cases in Lagos. Key data collected included age,
sex, disease severity at presentation, and self-reported
comorbidities. The primary outcomes assessed were death or
discharge from the healthcare facility. The analysis revealed
that the majority of the patients were male (65.8%), with a
median age of 43 years (interquartile range: 33-55).
Approximately 22.5% (492 patients) reported at least one
comorbidity, with hypertension (74.2%) and diabetes (30.5%)
being the most prevalent. The overall mortality rate was 3.3%,
with a significantly higher proportion of deaths observed
among patients with comorbid conditions compared to those
without. Further analysis identified several comorbidities that
significantly increased the risk of death: Hypertension (Odds
Ratio [OR]: 2.21; 95% Confidence Interval [CI]: 1.22-4.01),
Diabetes (OR: 3.69; 95% CI: 1.99-6.85), Renal disease (OR:
12.53; 95% CI: 1.97-79.56), Cancer (OR: 14.12; 95% CI:
2.03-98.19), HIV (OR: 1.77-84.15). These findings highlight
the importance of identifying and managing comorbid
conditions among COVID-19 patients to reduce mortality
risk.

Eric et al., (2020) formulated a mathematical model to
explore the transmission dynamics of the COVID-19
pandemic. The model incorporated key control strategies
including quarantine, testing of incoming travelers, contact
tracing, and isolation. Their findings demonstrated that
implementing quarantine early and maintaining a high
quarantine rate play a vital role in curbing the spread of the
virus. The study concluded that non-pharmaceutical
interventions—such as isolation, contact tracing, and timely
treatment—are essential measures in managing the outbreak,
especially in the absence of effective treatment or a widely
available vaccine.

Melika et al., (2020) proposed a mathematical model to
analyze the dynamics of COVID-19, focusing on aspects of
transmission, prevention, and potential therapeutic strategies.
Their findings underscored that the COVID-19 pandemic,
driven by the SARS-CoV-2 virus, continues to pose a
significant global health threat despite extensive research
efforts. The study concluded that prompt virus detection and
the identification of effective treatment protocols are key to
controlling the disease.

Similarly, Grace (2020) developed a mathematical model
incorporating awareness and medical assistance as factors to
mitigate the spread of COVID-19. Utilizing an SEIHR
epidemic framework, she estimated the basic reproduction
number and predicted that the infection would reach its peak
in Nigeria approximately 215 days after the initial NCDC
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situation report. The study emphasized the need for
intensified public awareness campaigns, enhanced access to
medical services, and strict enforcement of preventive
measures to effectively curb or eliminate the pandemic.
Sezen et al., (2022) investigated the prevalence of SARS-
CoV-2 in conjunctival swab samples from patients presenting
with acute conjunctivitis during the COVID-19 pandemic.
The study included patients aged 18 and above who reported
symptoms between May 2020 and May 2021. After assessing
demographic details and ocular/systemic symptoms, slit-lamp
examinations were performed, and five samples (conjunctival
swabs from both eyes, nasal swabs from both nostrils, and a
nasopharyngeal swab) were collected for RT-PCR testing.
The study enrolled 36 participants, with redness being the
most common symptom (97%). Fourteen patients (39%) had
symptoms in both eyes. Notably, SARS-CoV-2 RNA was not
detected in any of the samples collected (95% CI: 0 to 0.08),
and none of the participants developed COVID-19 within a 2-
week follow-up. Additionally, 25 patients were tested for
adenovirus at the time of the visit, and 9 tested positive.

In a related study, Alberto et al., (2020) developed a
mathematical model to assess the impact of testing, contact
tracing, and household quarantine on mitigating second waves
of COVID-19. Their findings indicated that a period of strict
social distancing followed by an intensive regime of testing
and tracing could effectively control the spread of the virus
while permitting the safe reopening of the economy. The
model highlighted that, in the absence of herd immunity,
enhanced testing and contact tracing strategies are critical in
easing social distancing measures without overwhelming
healthcare systems.

Walid et al., (2021) developed a mathematical model to
analyze the dynamics of COVID-19 with a particular focus on
vaccine acceptance and its influencing factors within a Middle
Eastern population. The study collected demographic and
behavioral data, categorizing participants according to
COVID-19 risk levels based on CDC guidelines. Among the
1,144 participants enrolled—of whom 66.5% were female—
30.4% were identified as high-risk and 27.5% as medium-risk
for COVID-19 complications. The findings showed that
participants demonstrated a high level of awareness regarding
COVID-19 symptoms, transmission routes, preventive
practices, and treatment availability, with a median
knowledge score of 17 out of 21. Furthermore, adherence to
protective measures was also high, reflected by a median
practice score of 7 out of 10. Approximately 3.7% had
confirmed infections and 6.4% suspected prior infection.
However, vaccine hesitancy was notable: 36.8% of
respondents stated they would not take the vaccine once
available, and 26.4% were unsure. The most cited reasons for
hesitancy included concerns over vaccine safety and a general
lack of trust in vaccines.

MATERIALS AND METHODS

Model Formulation

The total population at time, denoted by N(t) is sub divided
into seven compartments of susceptible individuals S(t),
Exposed individuals E(t), Infective individuals I(t),
Quarantined individuals Q(t), Treated individuals T(t),
Recovered individuals R(t) and Vaccinated individuals V (t)
O =SO+E®O+I®)+Q)+TE)+R®)+V()

The susceptible population, denoted by S, is recruited through
birth at a constant rate A. A proportion of quarantined
individuals who have not contracted the disease can return to
the susceptible class at a rate w, while vaccinated individuals
may lose immunity and revert to susceptibility at a rate 6V,
where 6 represents the rate of waning vaccine-induced
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immunity. Additionally, recovered individuals re-enter the
susceptible class with a reduced risk of infection at a rate ¢.
The treatment rate for infected individuals is denoted by ¢,
and u, represents the proportion of susceptible individuals
who are vaccinated per unit time. Susceptible individuals
become infected through effective contact with infectious
individuals at a rate A, known as the force of infection. The
expression for Ais givenby 2 = (1 —uy)(1 —n)(I + kT)
The transmission rate capable of leading to infection is denoted
by B. Public campaign efforts contribute significantly to
reducing the rate of infection through increased awareness and
behavioral changes, modeled by a reduction factor . The term
u, represents the proportion of the susceptible population that
is vaccinated per unit time. Additionally, the susceptible
population is reduced through natural death at a constant rate
u. Thus, the rate of change of the susceptible population is
givenby == A+ wQ + 6V — (A +uy + 1)S + ¢R

The exposed population, denoted by E(t), is generated
through infection at the force of infection rate A, as described
in equation (3.8). Susceptible individuals who come into
effective contact with infectious individuals become exposed
to the virus. Exposed individuals transition to the infectious
class at a rate &, representing the progression rate from latent
to active infection. Additionally, exposed individuals may
also be quarantined at a quarantine rate y, or vaccinated at a
rate u,, which reduces their likelihood of progressing to the
infectious class. The exposed population is also decreased due
to natural death at a constant rate u. The rate of change of
exposed individuals is given by Z—f = AS—((1—uye+
uyy + WE

The population of infected individuals is generated by
susceptible individuals who have been in contact with an
infectious person with strong infectivity. us is the proportion
of exposed quarantined population per unit time and infected
population enter the treatment class at a rate ¢ after obvious
symptoms of COVID-19 appeared. & is a natural recovery rate
and infected individuals will die due to the COVID-19 and
naturally at the rate (d, + u)I respectively. The rate of change
of the infected individual is given by T = (1—uz)eE —
(U3¢ + (1 —u3)é +dy + p)l

The quarantined population, denoted by Q(t), increases due
to several inflows. First, it is generated by the proportion «

of incoming immigrants who are infectious. Additionally,
exposed individuals may be quarantined at a rate y, and a
proportion u, of exposed individuals may be directly placed
into quarantine as a preventive measure. Once in quarantine,
individuals may transition to different states, at a rate w,
individuals who are tested and found not infected return to

the susceptible population, at a progression rate a,

individuals found to be infected are moved to the treatment
compartment. Moreover, the quarantined individuals may

die naturally at a rate u. The rate of change of the

quarantined individual is given by < = (u,yE + (1 — )y —
(0 +w)Q

The population of treated individuals is generated by the
quarantined and infective individuals at the of o and ¢
respectively. us is the proportion rate of infected isolated and
Treated individuals per unit time and  is the proportion rate of
immigrants that are infectious. Treated population can progress
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to recovery class at a rate p and decreased due COVID-19 and
natural death at the rate (d, + u)T. The rate of change of the
treated individual is given by % = owQ +uzpl + my —
(p+dy+p)

The population of recovered individuals is generated by
individuals who have been treated and recovered from COVID-
19 atarate p, and § is the natural recovery rate. Recovered
population can progress to the susceptible population with low
immunity against the COVID-19 at arate ¢. and also recovered
individual is further decreased by natural death at a rate u. The
rate of change of the recovered individual is given by i—’: =
pT +8(1 —u3) — (€ + i

The population of vaccinated individuals is generated by
susceptible individuals who have been vaccinated at a rate ¢
and u, is the proportion rate of susceptible vaccinated
population per unit time. 6 is the loss of vaccine immunity rate
and the susceptible individuals is also decreased further by
natural death at a rate u. The rate of change of the vaccinated
individual is by 2 = u, S — (6 + p)V

The biological assumptions of the model are as follows:

i. Vaccinated individuals goes back to susceptible due to

waning the efficacy of the vaccine.

ii. d, isgreater than d, (d;> d,)

iii. The recovered population again enters the susceptible
group but with low rate of infection.

. Death can occur due to COVID-19 and other natural
causes

v. Individuals who immigrate should be quarantine after

testing positive.

An individual can contract the disease through inhaling

the virus due to sneezing and coughing from an infected

individual.

vii. The epidemic process operates on a faster time scale
Therefore, based on the above description and assumptions,
the basic Lassa Fever Model leads to the following system of
non-linear differential equations (1), the schematic diagram
Figure 1 below.

Vi.

Z_?:AHW +0Q—(A+up+u)S+ER

dav

E:UI¢S—(0+;1)V
Z—Itz:/lS—((l—ul)g+u2y+y)E
%:(1—u1)gE—(u3¢+5(1—u3)+d1+,u)l @
d

R e+ @-my-(0rorwQ

dT

E:U:s(él +0Q+mp—(p+d, +u)T

dr

G AT o) (€ + R

$(0) > 0,V(0) = 0,E(0) = 0,1(0) = 0,Q(0) = 0,T(0) =
0,R(0) =0

Where:

A=1Q-u)A-nBU+«T)
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#S Ly (1—u)(A-mB(T +1) #E (1 —w,)eE (dy+ )l
S(t > Ity b——
(":] 1) LE(-*) @)
A wQ u,yE Uy Pl (1-U)41
ER
U, @S av
L J L J O—Q + pT
V() 17 o) I(z) R(?)
u wo " I
(dy + )T

Figure 1: Schematic Diagram of the Model

Basic Properties of the Model

In this section, we present the qualitative analysis of the
proposed model. We begin by establishing two fundamental
properties: the existence of an invariant region and the non-
negativity of solutions, ensuring the model remains
biologically meaningful over time. Subsequently, we derive
the disease-free equilibrium (DFE) of the Lassa fever model
and compute the basic reproduction number, Ry, which serves
as a threshold parameter for disease transmission. Finally, we
carry out a global stability analysis of the disease-free
equilibrium to determine the long-term behavior of the system
in the absence of infection.

Boundedness

The basic dynamical features of the model equations (1) will
now be explored. For the model to be epidemiologically
meaningful, it is important to prove that all variables are non-
negative for all time, and a bounded solution exists. The
model equations (1) is bounded in the region:

Q=[S,V,E1,QTReR]:N <0 thys g e
R !
7

Theorem 2.1
The feasible region is hereby expressed as:
0={SV,E1QTReR]:N <D

@)

I
is positively invariant with respect to the model (1).

Proof

The total human population is denoted by N and given by
dN _ ds av dE dal aQ aTr dRr

‘at ~at ' at ' at at ' at ' at ' at

But by standard comparison and rearranging equation (3),
we obtain a first-order differential inequality:

dN
=A—uN-dI-d,T+ (1 —-my+¢n

dt
SA—uN+ A -my+o¢n
Which is solved by integrating factor method to obtain
N(t) 2 Noe ™ + 72 (1 — et
H

@)

Soast — oo, Ny(t) < Z—” A similar approach yields a similar
H

result for the rat population: N (t) < Z—R Thus, we have
R
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shown that £2 is positively invariant and attracts all solutions
of equation (1) in finite time. This guarantees that our
investigations and analyses will be carried out in a feasible
region and that every solution of our model having initial
conditions in 2 will always remain in 2 for all ¢t > 0.

Positivity of Solutions

Theorem 2.2
If S$(0),V(0),E(0),1(0),Q(0),T(0),and R(0) are all non-
negative, then the solution

S(), V), E(t), I(£), 0(t), T(t),and R(¢) are all positive for
t>0.

Proof
From the first equation of system (1), we have

S=A+OVH0Q-A+up+WS+HER (4
Without loss of generality, equation (4.4) can be expressed

after eliminating positive terms as an inequality

% >—-(A+u 0+ WS

Using integral factor method, we have

S(t) = Cexp(J(A + uy + wyde)

Attime t = 0,C = 5(0), substituting for C in equation (4.4b),
we have

5(t) = $(0) exp(J (A + uy + p)de)
Hence, S(t) > 0 (Positive).

Similarly, from the second equation of (1), we have
av

®)

o= wmeS =@+ v (6)
That is,

av

T >—-0+wv

Using integral factor method, equation (4.5a) becomes

V(t) = Cexp(f(6 + w)dt)

At time t =0,C =V(0), substituting for C in equation
(4.5b), we have

V(t) 2 V(0) exp(f(6 + wdt)

Hence, V(t) > 0 (Positive).

Similar approach is adapted to show that:

O]
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E@t)> E(O)exp(j((l—uz)g+u2y+y)dt)
1) > E(O)exp(j(u3¢+5(1—u3)+d1+ﬂ)dt)
Q)2 Q) exp([ (@+o + )t
T(t)2T(0)exp(‘|.(p+d2+y)dt)

R(t) > R(0) exp( [+m dt)

®)

RESULTS AND DISCUSSION

Model Analysis

Existence of Equilibrium States of the Model

At equilibrium, we equate the RHS of equations (1) to zero
and solve the resultant system, that is;

0=A+&N +0Q—(A+up+u)S+ER
0=u,pS —(0+u)V
0=2S—((A-u,)e+uy+u)E
0=(-u,)sE—(up+5(1-uy)+d, + )l
O=uyE+(Q-7m)y—(0w+0o+u)Q
0=upl +cQ+mp—(p+d, + )T
0=pT+5(1-u)l - (£+ )R

©

Disease (Covid-19) Free Equilibrium Point
In absence of Covid-19, E=1=Q =T =R = 0, we have
the disease free equilibrium expressed as

E° =[5°°0,0,0,0,0]
(10)

Where:
g0 _ A6 + ) ’
p(urp +p+0)

Auq

0 =
pu(urp +u+0)

Disease (Covid-19) Endemic Equilibrium Point
When Covid-19 persists, I # 0. Thus, from the equation (1),
we have the endemic equilibrium expressed as
E** — [S**, V**’E**' I**' Q**'T**,R**]

11)
Where:

- A+ wQ* + ER™ + V™

"B = Dy — VKT + 1) +u9 +

*% _ul(pS**

T 04y

B =Dy — DT +17)
u(y—e)t+etu

_ (1 —uy)eE™

Tusp+ (1 —uz)+dy +u

vyl —m) + uyE™

T wtotupu

uspl™ +0Q” + ¢

T p+dy+u

_pT"+ (1 —ux)l™

E+u

E**

*k

Q**

T**

*ok

Basic Reproduction Number

The basic reproduction number denoted byR|, is defined as the
expected number of secondary cases produced by introducing
one infected in a completely susceptible population. The basic
reproduction depends mainly on the definition of the infected
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and uninfected compartments. We determine R, using the
next-generation  matrix  approach  (Diekmann  and
Heesterbeek, 2000). The isR, = p(FV~1) , where p is the
spectral radius. Consider the equations for the infected
populations given by:

(Z—EZAS —(@-u)e+u,y+u)E

% =(1-U,)eE—(up+S@—ug)+d, + )1 | (12)
B+ -y (@40 + 10

dT

E:udbl +0Q+mp—(p+d,+ )T

Let X = (E,1,Q,T) which can be written in the form% =
F;(x) — V;(x), where;

] [B-w)1-n)(1+KT)S
F | |- 0 (13)
f, 0
f, 0

From equation (13) we consider those terms that have
infection, we then have

v, ((1—u2)5+u2;/+y)E
Vo || —-u)eE+(upp+ S(L-u,)+d, + )l | (13)
v -UyE+{1-7)y+(w+0o+4)Q

Vs —Upl —oQ-mp+(p+d, + )T

Now, taking the partial derivatives of (4.33) we have

oR(E) oR(E) OR(E) oR(E)
0E al aQ ar
R, (E) oR(E) oR(E) oF(E) (14)
F_6Fi(ED)_ dE al Q ar
axl 61':3 (EO ) 6':3 ( EO ) a’:3 ( ED) 6F3 ( EO)
0E al aQ ar
oF,(E) oF,(E) oF,(E) oF(E)
| oE al Q ar
Which gives
0 B(l-u)(1-n)s 0 B(1-u)(1-n)ks (15)
0 0 0 0
F=
0 0 0 0
0 0 0 0

We let, B =B(1—u)(1—n)andB, = (1 —uy)(1—
1)k so that equation (16) becomes
0 BS O B,S
0 0O O 0
0 0O O 0

0 0O O 0
Similarly, taking the partial derivatives of equation (14)
V(E) Vi(Ey) Vi(Ey) &Vvi(E)
oE al Q aT
N, (By) 0V, (Ey) aV,(Ey) 8V, (Ey)

v, (E,) oE al N aT
x| Vi(E) Vi(Ey) Vi(Ey) oVy(Ey)
oE al N ar

8V4 ( EO) aVA ( EO) aVA ( EO) 6V4 (EO)
oE al N aT

E_ (16)

(17
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Equation (17) gives
(10, Je+uyy+p

Ve —(1—u2)5
-y
0
Let:

A=A —ude+uy + A = —(1 —uy), € = —uyy

Emmanuel et al., FJS
H, = B1AA,(6+p) By A(8+u)(PA,Couz+0A5C,)
0 0 0 L7 pasAs(pu +u+6) HA1A3CC3(puy+p+6)
_ BiA(O+ ) By Auzp(0 + 1)
u3¢+§(]_—u3)+dl+/1 0 0 27 pAs(puy +pu+0)  pAsCs(puy +p+0)
Ha o B,Ac (6 + ) _ BA(B+w)
0 oto+y 0 T UC,Ca(pu, +u+0)t ,uC3((pu1+u+l|9) )
Computing the eigenvalues of (21), we obtain |[FV~1 —
-l -0 ptl,+u mil =0
(18) H,-m H, H, H,
o 0O -m 0 O (22)
[PV —mi|= =0

A3=u3¢+5(1—u3)+d1+#,C2=(I.)+O_+H,C3

=pt+d,+u
Equation (17) becomes
A 0 0 0
V= A, A, 0 0 (19)
C, ] C, 0
0O —ug¢g -o C;
Computing the inverse of (18), we obtain;
% 0 0 0
(20)
A 0 o
vio AA A
-5 0 1 0
A&CZ CZ
_ PACU, +oAC, Uy o i
AIASCZCS ASCS CZCS CS 2
Now, taking the produc_t of Fand V™1, we have; i
L 0 0 0
A
0 BS 0 BS A 1 0
i T B
-—1 0 — 0
00 0 0 AC, G
_ PACU; +0AC, Uy a i
AAC,C, AC, GGy G
Which gives,
H H H H
O1 02 03 O4 (@1)
FV ™=
(6] (0] (0] (6]
(6] (0] (0] (6]
Where:
r _ BAQA-u)(A-n)(6+u)
L 0 1y @ +u+6)
uQ _Tz 0 0
0 0 _T BA(Q—u)(1-n)(6+u)
J(E®) = 3 1wy @ +u+6)
0 0 (1 - uz)g _T4
0 0 u,y 0
0 0 0 us¢p
Lo o 0 51 —ug)
Where:

o o o g

|
o

=)

0 0 -m O

0 0 0 -m
Equation (21) yields the following characteristic equation
-m3(H,—m) =0 (23)
From equation (22), the largest eigenvalue (i.e. the spectral
radius) is given by

— —1y _ _ B144;(6+p) By A(0+W)(pA,Cruz+0A3C,)
Ro = p(FV™H) = 1A As(Quy+u+0) (A1 A3CyC3(@Uy ++6)
(24)

Equation (24) gives the desired reproduction numberR,.

Local Stability of Covid-19 Free Equilibrium Point
The following result is a proof of local stability of the disease
free equilibrium.

Theorem 3.1

The Covid-19 free equilibrium point E, of the modified
model system (1) is Locally Asymptotically Stable (LAS) if
Ry < 1andisunstable if Ry > 1

Proof
Let the model system of equations (1) be given as;

F=A+N +0Q—(A+ugp+u)S+ER
F, =u,pS —(6’+,u)V
F,=AS—((1-u,)e+u,y+u)E

F, = (1-u,)¢E — (U +S5(1—ug) +d, + 1)
Fo=UyyE+(1-7)y —(0+0+u)Q
F=ugl +oQ+7g—(p+d, + )T
F,=pT +6(1-uy)l = (& + )R

(25)

The Jacobian matrix of the system (25) evaluated at disease
free equilibrium is obtained as:

_ BAk(1-u)(1-n)(6+w) £ ]
u(usp+u+6)

0
BAk(1-uq)(1-1)(8+u)
u(u p+u+6)

0
0
—Te 0
p -7,

(26)

oo o o

Ti=@e+w)T,=0+u),Ts=0-ude+uy + T =uzp +5(1 —uz) +dy +
Ts=(+o+w)Te=(p+dy +p),T; =+
Reducing equation (26) into an upper triangular matrix, the transformed matrix is then given by
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r—Ty 6 0 -G, w -G, 0 7
0 Oou, -y T, 0 _ W96 ek _ 110G 0
Ty Ty Ty My
0 0 -T G, 0 s 0
](EO) =| o 0 0 _ Gi(-14up)e-T3Ty 0 Uy GaTy 0 (27)
T3 G1(—1+up)e+T3Ty
0 0 0 =Ts 0
0 0 0 0 0 —Ts (=1+up) (PGauz+G1Te) =Ty (-y T Goup +T3T5Te) 0
Ts(G1(—1+uz)e+T3Ty)
h_ 0 0 0 0 0 0 =T,
With:
o _BAA-u)A -+ K= u)(A =M@+ )
1 2=

u(urp +p+0) p(uip +p+0)
We need to show that all eigenvalues of (27) are negative. Now, taking the product of the main diagonal elements of (26) we
obtained the required eigenvalues as;

Opu; — Ty T. G,(—1 4+ uy)e —T5T,
(T3 =) (2 ) (=T = my) (— = my | (=T5 — ms)
1 3
—T5(=14+U) (PGaU3+G1 Te) =Ty (—Y0 G U +T3T5Ts)
( Ts(G1(—1+15)+T3Ty) - mﬁ) (=T7 —=my) (28)

From equation (28), we have that;
my = —(uy@ + p),my = —((1 = wp)e + upy + ), my = —((1 —up)e + uzy + 1)
mg=—(w+o+u),mg=—(w+0o+p),m;, =—(+ wand

2o=h% < 0 ifand only if T,T, > Ogu,.
1

This satisfies the negativity requirement for stability.

m, =

Global Stability of Covid-19 Free Equilibrium Point
We used the Castillo-Chavez theorem (Castillo-Chavez et al., 2002) to investigate the global asymptotic stability of the disease
free state as used in Alkali et al., (2025). For the theorem to work, we rewrite system (1) in the form

X
Z =HX.2)
2 _ G(X,2),6(X,0) =0 (29)

dt

Where X = (S,V,R) and Z = (E,I,Q,T). Here, the components of X € R® denote the uninfected individuals and the
components of Z € R* denote the infected individuals. The disease free equilibrium of the system now becomes E, = (X*, 0).
To guarantee global asymptotic stability, the following two conditions must be met.

i ‘Z—f = H(X,0),X* is globally asymptotically stable (GAS)

i.G(X,Z2) =PZ—-G(X,2),G(X,Z) = 0for (X,Z) € 0

Where P = D,G(X*,0) isan M matrix (the off diagonal elements of P are non-negative) and (2 is the region where the model
is biologically meaningful. If the system (29) satisfies conditions (i) and (ii) then the following theorem holds.

Theorem 3.2

The fixed point E, = (X*, 0) is a globally asymptotic stable equilibrium of (29) provided that R, < 1 and the assumptions (i)
and (ii) are satisfied.

Proof:

Since X = (S,V,R)and Z = (E,1,Q,T) then

A+60V+wQ—A+up+u)S+ER
H(X,Z) = u S — (0 + v (29)
pT+6(1—uz)l — (§+WR
then
A+ 0V — (u0 +1)S
HX,0)=| weS—(+wV (30)
0
and G(X,Z) = PZ — G(X, Z)where
AS—((A-uy)e+uy +u)E (31)
(1-u,)eE —(usp+S5A—u,) +d, + 1)
G(X,Z)=
UyE+Q-7)y —(0+0o+u)Q
U bl +oQ+7p—(p+d, + )T
and P = D;G(X*,0) is the Jacobian of G (X, Z) with respect to Z, such that
[ A(1-u,)(1-7)(0+ Ak (1—u, ) (1-7)(0+ 1) |
(et g PO O R) | AN () (0 0)
p(Wp+0+ ) (U, + p+6) @)
PZ = (1-u,)eE —(up+5@A—u,)—d, — z) |

U7E—(w+0o+u)Q
Upl +oQ—(p+d, + )T

Therefc;re,
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G, ( X,z ) 0
G,(X,z 0 33
6(x,2)=| &2 | @)
G, (X , Z) 0
é,(x,z)| LO
Therefore, since G(X,Z) = 0. Conditions (i) and (ii) have been met and therefore E° is globally asymptotically stable.

Sensitivity Analysis

Sensitivity Analysis The basic reproduction number is very important in the effort required to eradicate a disease. We carry
out sensitivity analysis of the Basic reproduction number with respect to the model parameters to access the relative impact of
each of the parameters in the transmission and prevalence of the disease. This will enable us to determine which intervention
strategy is most effective in the control of COVID-19 transmission. The normalized forward sensitivity index is used to
calculate sensitivity. We define the normalized forward sensitivity index of the basic reproduction number with respect to a

ap Ry

parameter p (Sirajo et al., 2013) as: GS“ =R P

Table 1: Signs of Sensitivity Indices

Parameters Elasticity Index Sensitivity Index
A 1 Positive
ﬂ 1 Positive
) 0.3136 Positive
7 0.02341 Negative
p 0.2321 Negative
I3 0.00034 Negative
(0} 0.0893 Negative
o 23.877 Negative
k 1.0427 Positive
0] 0.8521 Positive
. 0.251 Negative
¢ 0.1674 Positive
_ 0.2448 Positive
0.00290 Positive
uy 0.0518 Positive
d, 0.5672 Positive
usz 0.3432 Negative

From the results of Sirajo et al., (2013), it follows that, a
positive index sign indicates that an increase in the
parameter’s value will result in an increase in the value of the
reproduction number and a reduction in the parameter’s value
will reduce the value of the reproduction number. A negative
index sign indicates that an increase in the parameter’s value
will result in a reduction in the value of the reproduction
number and a reduction in the parameter’s value will result in
an increase in the value of the reproduction number.

Table 2: Variable VValues used for Numerical Simulations

Numerical Simulations

To illustrate the theoretical results, numerical simulations are
carried out. Model variables and parameters values for the
numerical simulations source are listed in table 4.1 and table
4.2 below, where some of the parameter values were not
available in the literature, we assumed realistic values used
for numerical simulations.

Variables Values Reference
S(0) 3500 Assumed
V(0) 170 Assumed
E(0) 60 Assumed
1(0) 40 Assumed
Q(0) 30 Assumed
T(0) 90 Assumed
R(0) 150 Assumed
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Table 3: Parameter Values used for Numerical Simulations

Parameters Values Reference

A 100/day Eric et al., (2020)

0 0.3 Assumed

T 0.6/day Eric et al., (2020)

B 6.64 x [10] ~(-5) Eric et al., (2020)

K 0.323/day Eric et al., (2020)

€ 0.003/day Eric et al., (2020)

3 0.004 Assumed

) 0.3/day Eric et al., (2020)

0] 0.05 Assumed

® 0.2 Assumed

p 0.3/day Eric et al., (2020)

& 0.0002/day Eric et al., (2020)

c 0.05-0.1 Eric et al., (2020)

Y 0.5/day Haileyesus el al. (20210

B 0.016/day Eric et al., (2020)

n 0.2/day Assumed

u_l 0.2/day Assumed

u_2 0.04/day Assumed

u3 0.01 Assumed

d1l 0.003 Assumed

d_1 3.423x [10] ~(-7) Assumed
Numerical Experiments Infected population I(t), Quarantined population Q(t),

The following figures 4.1 to 4.7 are graphical representation  Treated population T (t) and Recovered Population R(t) in
showing Dynamics of human population with respect to the the various stages of COVID-19 over a period of time.
following compartments: susceptible population S(t),

Vaccinated population V(t), Exposed population E(t),
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Discussion of Findings

We established the positivity and boundedness of the model
solutions, ensuring that all state variables remain non-
negative and biologically feasible over time. The disease-free
equilibrium (DFE) and the endemic equilibrium of the model
were determined. The basic reproduction number Rywas
derived using the next generation matrix method. The result
indicated that Ry, < 1, suggesting that the disease (COVID-

19) can be eradicated from the population under the given
conditions. It was observed that the disease-free equilibrium
is both locally and globally asymptotically stable whenever
Ry < 1, indicating that the infection will die out over time.
Furthermore, a sensitivity analysis was conducted to identify
the most influential parameters on the spread of the disease.

Numerical simulations of the proposed COVID-19
transmission model were conducted using the assumed and
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estimated parameter values provided in Table 4.2. The
simulations were performed over a period of 50 days, and the
results are presented through a series of graphical
illustrations. These simulations aim to demonstrate the
temporal evolution of the disease across various
compartments. Specifically, the results highlight the impact
of COVID-19 dynamics on the following population groups:
susceptible, vaccinated, exposed, infected, quarantined,
treated, and recovered individuals. Each of the seven subplots
corresponds to one of these compartments, enabling a clear
visualization of how each population evolves over time under
the influence of the model dynamics.

Figure 4.1 illustrates the dynamics of the susceptible
population. It is observed that the population declines rapidly
within the first two days, starting from an initial value of
3,500. This sharp decline corresponds to individuals
transitioning into the exposed class after coming into contact
with the virus. Figure 4.2 presents the dynamics of the
vaccinated population. It shows a rapid decrease over a period
of 13 days, beginning from an initial value of 170. This
decline represents individuals who, after losing immunity or
being re-exposed, re-enter the susceptible class and
potentially move into the exposed class. Figure 4.3 displays
the trend of the exposed population. The graph indicates that
the exposed population increases sharply from an initial value
of 60 to approximately 2,350 within the first two days, and
then gradually decreases to around 200 by day 50. This
behavior suggests that vaccination and quarantine measures
are effective in curbing the spread of COVID-19 over time.
Figure 4.4 illustrates the impact of vaccination and quarantine
as control strategies on the dynamics of the infectious
population. It is observed that the number of infected
individuals declines rapidly and approaches zero within 15
days, indicating that the combined effect of vaccination and
quarantine can significantly reduce or even eliminate the
spread of COVID-19. Figure 4.5 presents the dynamics of the
quarantined population. The graph shows that the quarantined
population initially rises to approximately 2,200 before
decreasing to around 400 over time. Figure 4.6 displays the
dynamics of the treated population, where the number of
treated individuals increases to about 650 before gradually
decreasing to 220. Lastly, Figure 4.7 illustrates the dynamics
of the recovered population, which shows a continuous and
gradual increase over time, reflecting the cumulative effect of
treatment and recovery.

CONCLUSION

In this study, a compartmental mathematical model was
developed to describe the transmission dynamics of COVID-
19, incorporating key intervention strategies such as
vaccination, quarantine, treatment, and public awareness
campaigns. The model was carefully analyzed to establish its
fundamental properties, including the existence of an
invariant region and the positivity of solutions, ensuring that
the model is both biologically and mathematically sound. The
basic reproduction number R, was computed using the next
generation matrix method, and the disease-free equilibrium
was shown to be locally and globally asymptotically stable
whenever R, < 1, indicating the possibility of disease
eradication under appropriate control measures. Sensitivity
analysis revealed the most influential parameters on Ry,
providing insight into effective intervention strategies. The
sensitivity analysis and numerical simulation were carried
out, shown that the more COVID-19 vaccine is been
administered in the sub population and adherence to the

OS]
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public campaign interventions, can reduce and curtail the
spread of the virus.
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