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ABSTRACT 

Coronavirus disease (COVID-19) is an infectious illness caused by a novel coronavirus that emerged in Wuhan, 

China, in late 2019. While most infected individuals experience mild to moderate respiratory symptoms and 

recover without intensive medical intervention, the rapid spread of the virus has presented significant global 

health challenges. This study develops and analyzes a deterministic compartmental model for the transmission 

dynamics of COVID-19, incorporating vaccination, public awareness campaigns, and natural death. The model 

consists of seven compartments and examines the effects of both pharmaceutical and non-pharmaceutical 

interventions. Key mathematical analyses include the positivity and invariance of solutions, determination of 

disease-free and endemic equilibria, computation of the basic reproduction number, and stability analysis of 

the disease-free equilibrium. Sensitivity analysis and numerical simulations reveal that a combined strategy 

involving vaccination and quarantine is highly effective in controlling the spread of the disease. Based on the 

findings, it is recommended that phased implementation of vaccination and sustained public health 

interventions be emphasized to mitigate and ultimately eliminate COVID-19 transmission. 
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INTRODUCTION 

Coronavirus disease 2019 (COVID-19) is a contagious illness 

caused by a newly identified coronavirus, SARS-CoV-2, 

which is believed to have originated in Wuhan, China, in late 

2019 (Eric et al., 2020). The disease was first reported in 

December 2019 after an outbreak of pneumonia of unknown 

cause in Wuhan, Hubei Province, prompting investigation by 

Chinese health authorities and the World Health Organization 

(WHO, 2020). SARS-CoV-2 is thought to be of zoonotic 

origin, similar to other coronaviruses such as Severe Acute 

Respiratory Syndrome (SARS) and Middle East Respiratory 

Syndrome (MERS). Transmission occurs primarily through 

respiratory droplets and contact with contaminated surfaces 

(fomites), facilitating rapid human-to-human spread (Patel et 

al., 2020). While most individuals infected with the virus 

experience mild to moderate respiratory symptoms and 

recover without the need for intensive medical care, severe 

cases can occur—particularly among older adults and 

individuals with pre-existing conditions such as 

cardiovascular disease, diabetes, chronic respiratory illness, 

or cancer (WHO, 2020). 

The World Health Organization (WHO) declared the outbreak 

of the novel coronavirus a Public Health Emergency of 

International Concern (PHEIC) on January 30, 2020 (Patel et 

al., 2020). As COVID-19 continued to spread globally and the 

death toll rose, WHO organized a mission to China that 

included experts from eight countries—Nigeria among 

them—to assess the severity of the outbreak, evaluate the 

effectiveness of the response, and identify best practices. 

Subsequently, on March 11, 2020, WHO officially classified 

COVID-19 as a global pandemic, urging nations to implement 

urgent and coordinated response measures. An expanding 

body of research has since emerged, highlighting innovative 

national strategies and policy frameworks developed to 

combat the pandemic at the country level (Abdool, 2020). 

Nigeria confirmed its first case of COVID-19 on February 27, 

2020. The Federal Ministry of Health announced the case in 

Ogun State, making Nigeria the third African country to 

report an imported case of COVID-19, following Egypt and 

Algeria. The index case involved an Italian national who 

arrived in Lagos from Milan, Italy, on February 24, 2020. He 

subsequently traveled to his company’s site in Ogun State by 

private vehicle. On February 26, 2020, he reported to the 

company’s clinic with symptoms consistent with COVID-19 

and was referred to the Infectious Disease Hospital (IDH) in 

Lagos, where a diagnosis was confirmed through real-time 

Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

(Chioma et al., 2000). In response, contact tracing identified 

216 individuals in Lagos and Ogun States, including 

passengers from the same flight on February 24, with 40 

classified as high-risk contacts. Eleven days later, an 

asymptomatic contact of the index case in Ogun State was 

confirmed as Nigeria’s second COVID-19 case. 

As of March 22, 2020, Nigeria’s first 30 confirmed cases of 

COVID-19 were traced to individuals with recent 

international travel history. This pattern prompted the 

government to implement an initial international travel ban 

targeting passengers arriving from countries with high 

transmission rates—beginning with China, Italy, and 

Germany—and was later expanded to include eight high-

burden countries. To curb further importation of the virus, 

authorities closed land borders, suspended all international 

flights, and instituted mandatory institutional quarantine and 

testing for returning travelers. These measures were enforced 

starting March 23, 2020, as part of the national effort to reduce 

the influx of COVID-19 from high-risk regions (Bismark, 

2021). 

On March 30, 2020, the President of Nigeria implemented a 

set of strict non-pharmaceutical interventions, including stay-

at-home orders and restrictions on non-essential 

movements—collectively termed the “lockdown strategy”—

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 9 No. 11, November, 2025, pp 256 – 267 

DOI: https://doi.org/10.33003/fjs-2025-0911-3739   

mailto:emmayusuf247@gmail.com
https://doi.org/10.33003/fjs-2025-0911-3739


MODELLING THE TRANSMISSION…            Emmanuel et al.,      FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 256 – 267 257 

in Lagos State, Ogun State, and the Federal Capital Territory 

(FCT). This lockdown was initially scheduled for 14 days and 

later extended by an additional 21 days, with Kano State 

added due to a surge in cases. The selection of these areas was 

based on the burden and risk of disease spread: Lagos State, 

being the epicenter, had the highest case count; Ogun State, 

which borders Lagos and was linked to the index case, has a 

highly urbanized and mobile population; while the FCT had 

the second-highest case load at the time. The lockdown 

measures included closure of schools and workplaces, bans 

on religious and social gatherings, suspension of public 

events, imposition of curfews, and restrictions on interstate 

and international travel. In tandem with the federal directives, 

several other states also enacted similar measures such as 

school closures, movement restrictions, and curfews to curb 

the spread of the virus. 

Osibogun et al., (2021) investigated the impact of 

comorbidities on the outcomes of COVID-19 patients in 

southwestern Nigeria. The study employed a retrospective 

analysis of medical records from 2,184 laboratory-confirmed 

COVID-19 cases in Lagos. Key data collected included age, 

sex, disease severity at presentation, and self-reported 

comorbidities. The primary outcomes assessed were death or 

discharge from the healthcare facility. The analysis revealed 

that the majority of the patients were male (65.8%), with a 

median age of 43 years (interquartile range: 33–55). 

Approximately 22.5% (492 patients) reported at least one 

comorbidity, with hypertension (74.2%) and diabetes (30.5%) 

being the most prevalent. The overall mortality rate was 3.3%, 

with a significantly higher proportion of deaths observed 

among patients with comorbid conditions compared to those 

without. Further analysis identified several comorbidities that 

significantly increased the risk of death: Hypertension (Odds 

Ratio [OR]: 2.21; 95% Confidence Interval [CI]: 1.22–4.01), 

Diabetes (OR: 3.69; 95% CI: 1.99–6.85), Renal disease (OR: 

12.53; 95% CI: 1.97–79.56), Cancer (OR: 14.12; 95% CI: 

2.03–98.19), HIV (OR: 1.77–84.15). These findings highlight 

the importance of identifying and managing comorbid 

conditions among COVID-19 patients to reduce mortality 

risk. 

Eric et al., (2020) formulated a mathematical model to 

explore the transmission dynamics of the COVID-19 

pandemic. The model incorporated key control strategies 

including quarantine, testing of incoming travelers, contact 

tracing, and isolation. Their findings demonstrated that 

implementing quarantine early and maintaining a high 

quarantine rate play a vital role in curbing the spread of the 

virus. The study concluded that non-pharmaceutical 

interventions—such as isolation, contact tracing, and timely 

treatment—are essential measures in managing the outbreak, 

especially in the absence of effective treatment or a widely 

available vaccine. 

Melika et al., (2020) proposed a mathematical model to 

analyze the dynamics of COVID-19, focusing on aspects of 

transmission, prevention, and potential therapeutic strategies. 

Their findings underscored that the COVID-19 pandemic, 

driven by the SARS-CoV-2 virus, continues to pose a 

significant global health threat despite extensive research 

efforts. The study concluded that prompt virus detection and 

the identification of effective treatment protocols are key to 

controlling the disease. 

Similarly, Grace (2020) developed a mathematical model 

incorporating awareness and medical assistance as factors to 

mitigate the spread of COVID-19. Utilizing an SEIHR 

epidemic framework, she estimated the basic reproduction 

number and predicted that the infection would reach its peak 

in Nigeria approximately 215 days after the initial NCDC 

situation report. The study emphasized the need for 

intensified public awareness campaigns, enhanced access to 

medical services, and strict enforcement of preventive 

measures to effectively curb or eliminate the pandemic. 

Sezen et al., (2022) investigated the prevalence of SARS-

CoV-2 in conjunctival swab samples from patients presenting 

with acute conjunctivitis during the COVID-19 pandemic. 

The study included patients aged 18 and above who reported 

symptoms between May 2020 and May 2021. After assessing 

demographic details and ocular/systemic symptoms, slit-lamp 

examinations were performed, and five samples (conjunctival 

swabs from both eyes, nasal swabs from both nostrils, and a 

nasopharyngeal swab) were collected for RT-PCR testing. 

The study enrolled 36 participants, with redness being the 

most common symptom (97%). Fourteen patients (39%) had 

symptoms in both eyes. Notably, SARS-CoV-2 RNA was not 

detected in any of the samples collected (95% CI: 0 to 0.08), 

and none of the participants developed COVID-19 within a 2-

week follow-up. Additionally, 25 patients were tested for 

adenovirus at the time of the visit, and 9 tested positive. 

In a related study, Alberto et al., (2020) developed a 

mathematical model to assess the impact of testing, contact 

tracing, and household quarantine on mitigating second waves 

of COVID-19. Their findings indicated that a period of strict 

social distancing followed by an intensive regime of testing 

and tracing could effectively control the spread of the virus 

while permitting the safe reopening of the economy. The 

model highlighted that, in the absence of herd immunity, 

enhanced testing and contact tracing strategies are critical in 

easing social distancing measures without overwhelming 

healthcare systems. 

Walid et al., (2021) developed a mathematical model to 

analyze the dynamics of COVID-19 with a particular focus on 

vaccine acceptance and its influencing factors within a Middle 

Eastern population. The study collected demographic and 

behavioral data, categorizing participants according to 

COVID-19 risk levels based on CDC guidelines. Among the 

1,144 participants enrolled—of whom 66.5% were female—

30.4% were identified as high-risk and 27.5% as medium-risk 

for COVID-19 complications. The findings showed that 

participants demonstrated a high level of awareness regarding 

COVID-19 symptoms, transmission routes, preventive 

practices, and treatment availability, with a median 

knowledge score of 17 out of 21. Furthermore, adherence to 

protective measures was also high, reflected by a median 

practice score of 7 out of 10. Approximately 3.7% had 

confirmed infections and 6.4% suspected prior infection. 

However, vaccine hesitancy was notable: 36.8% of 

respondents stated they would not take the vaccine once 

available, and 26.4% were unsure. The most cited reasons for 

hesitancy included concerns over vaccine safety and a general 

lack of trust in vaccines. 

 

MATERIALS AND METHODS 

Model Formulation 

The total population at time, denoted by 𝑁(𝑡) is sub divided 

into seven compartments of susceptible individuals 𝑆(𝑡), 

Exposed individuals 𝐸(𝑡), Infective individuals 𝐼(𝑡), 

Quarantined individuals 𝑄(𝑡), Treated individuals 𝑇(𝑡), 

Recovered individuals 𝑅(𝑡) and Vaccinated individuals 𝑉(𝑡) 

(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) + 𝑉(𝑡) 

The susceptible population, denoted by 𝑆, is recruited through 

birth at a constant rate 𝛬. A proportion of quarantined 

individuals who have not contracted the disease can return to 

the susceptible class at a rate 𝜔, while vaccinated individuals 

may lose immunity and revert to susceptibility at a rate 𝜃𝑉, 

where 𝜃 represents the rate of waning vaccine-induced 
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immunity. Additionally, recovered individuals re-enter the 

susceptible class with a reduced risk of infection at a rate 𝜉. 

The treatment rate for infected individuals is denoted by 𝜑, 

and 𝑢1 represents the proportion of susceptible individuals 

who are vaccinated per unit time. Susceptible individuals 

become infected through effective contact with infectious 

individuals at a rate 𝜆, known as the force of infection. The 

expression for 𝜆is given by 𝜆 = (1 − 𝑢1)(1 − 𝜂)(𝐼 + 𝑘𝑇) 

The transmission rate capable of leading to infection is denoted 

by 𝛽. Public campaign efforts contribute significantly to 

reducing the rate of infection through increased awareness and 

behavioral changes, modeled by a reduction factor 𝜂. The term 

𝑢1 represents the proportion of the susceptible population that 

is vaccinated per unit time. Additionally, the susceptible 

population is reduced through natural death at a constant rate 

𝜇. Thus, the rate of change of the susceptible population is 

given by 
𝑑𝑆

𝑑𝑡
 = Λ + 𝜔𝑄 + 𝜃𝑉 − (𝜆 + 𝑢1𝜑 + 𝜇)𝑆 + 𝜉𝑅 

The exposed population, denoted by 𝐸(𝑡), is generated 

through infection at the force of infection rate 𝜆, as described 

in equation (3.8). Susceptible individuals who come into 

effective contact with infectious individuals become exposed 

to the virus. Exposed individuals transition to the infectious 

class at a rate 𝜀, representing the progression rate from latent 

to active infection. Additionally, exposed individuals may 

also be quarantined at a quarantine rate 𝛾, or vaccinated at a 

rate 𝑢2, which reduces their likelihood of progressing to the 

infectious class. The exposed population is also decreased due 

to natural death at a constant rate 𝜇. The rate of change of 

exposed individuals is given by 
𝑑𝐸

𝑑𝑡
 = 𝜆𝑆 − ((1 − 𝑢2)𝜀 +

𝑢2𝛾 + 𝜇)𝐸 

The population of infected individuals is generated by 

susceptible individuals who have been in contact with an 

infectious person with strong infectivity. 𝑢3 is the proportion 

of exposed quarantined population per unit time and infected 

population enter the treatment class at a rate  𝜙  after obvious 

symptoms of COVID-19 appeared. 𝛿 is a natural recovery rate 

and infected individuals will die due to the COVID-19 and 

naturally at the rate (𝑑1 + 𝜇)𝐼  respectively.  The rate of change 

of the infected individual is given by 
𝑑𝐼

𝑑𝑡
 = (1 − 𝑢3)𝜀𝐸 −

(𝑢3𝜙 + (1 − 𝑢3)𝛿 + 𝑑1 + 𝜇)I 

The quarantined population, denoted by 𝑄(𝑡), increases due 

to several inflows. First, it is generated by the proportion 𝜋 

of incoming immigrants who are infectious. Additionally, 

exposed individuals may be quarantined at a rate 𝛾, and a 

proportion 𝑢2 of exposed individuals may be directly placed 

into quarantine as a preventive measure. Once in quarantine, 

individuals may transition to different states, at a rate 𝜔, 

individuals who are tested and found not infected return to 

the susceptible population, at a progression rate 𝜎, 

individuals found to be infected are moved to the treatment 

compartment. Moreover, the quarantined individuals may 

die naturally at a rate 𝜇. The rate of change of the 

quarantined individual is given by 
𝑑𝑄

𝑑𝑡
 = (𝑢2𝛾𝐸 + (1 − 𝜋)𝛾 −

(𝜔 + 𝜇)𝑄 

The population of treated individuals is generated by the 

quarantined and infective individuals at the of  𝜎 and 𝜙 

respectively. 𝑢3  is the proportion rate of infected isolated and 

Treated individuals per unit time and 𝜋 is the proportion rate of 

immigrants that are infectious. Treated population can progress 

to recovery class at a rate 𝜌 and decreased  due COVID-19 and 

natural death at the rate (𝑑2 + 𝜇)𝑇. The rate of change of the 

treated individual is given by 
𝑑𝑇

𝑑𝑡
  = 𝜎𝜔𝑄 + 𝑢3𝜙𝐼 + 𝜋𝛾 −

(𝜌 + 𝑑2 + 𝜇) 

The population of recovered individuals is generated by 

individuals who have been treated and recovered from COVID-

19  at a rate 𝜌, and 𝛿 is the natural recovery rate.  Recovered 

population can progress to the susceptible population  with low 

immunity against the COVID-19 at a rate 𝜉.  and also recovered 

individual is further decreased by natural death at a rate 𝜇. The 

rate of change of the recovered individual is given by  
𝑑𝑅

𝑑𝑡
 = 

𝜌𝑇 + 𝛿(1 − 𝑢3) − (𝜉 + 𝜇)𝐼 

The population of vaccinated individuals is generated by 

susceptible individuals who have been vaccinated at a rate 𝜑 

and 𝑢1 is the proportion rate of susceptible vaccinated 

population per unit time. 𝜃 is the loss of vaccine immunity rate 

and the susceptible individuals is also decreased further by 

natural death at a rate 𝜇. The rate of change of the vaccinated 

individual is by 
𝑑𝑉

𝑑𝑡
 = 𝑢1𝜑𝑆 − (𝜃 + 𝜇)𝑉 

The biological assumptions of the model are as follows: 

i. Vaccinated individuals goes back to susceptible due to 

waning the efficacy of the vaccine.  

ii. 𝑑1 is greater than 𝑑2 (𝑑1> 𝑑2) 

iii. The recovered population again enters the susceptible 

group but with low rate of infection.  

iv. Death can occur due to COVID-19 and other natural 

causes 

v. Individuals who immigrate should be quarantine after 

testing positive. 

vi. An individual can contract the disease through inhaling 

the virus due to sneezing and coughing from an infected 

individual.   

vii. The epidemic process operates on a faster time scale 

Therefore, based on the above description and assumptions, 

the basic Lassa Fever Model leads to the following system of 

non-linear differential equations (1), the schematic diagram 

Figure 1 below. 
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
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 (1) 

𝑆(0) > 0, 𝑉(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0,𝑄(0) ≥ 0, 𝑇(0) ≥
0, 𝑅(0) ≥ 0 

 
Where:   

𝜆 = (1 − 𝑢1)(1 − 𝜂)𝛽(𝐼 + 𝜅𝑇)
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Figure 1: Schematic Diagram of the Model 

 

Basic Properties of the Model 

In this section, we present the qualitative analysis of the 

proposed model. We begin by establishing two fundamental 

properties: the existence of an invariant region and the non-

negativity of solutions, ensuring the model remains 

biologically meaningful over time. Subsequently, we derive 

the disease-free equilibrium (DFE) of the Lassa fever model 

and compute the basic reproduction number, 𝑅0, which serves 

as a threshold parameter for disease transmission. Finally, we 

carry out a global stability analysis of the disease-free 

equilibrium to determine the long-term behavior of the system 

in the absence of infection. 

 

Boundedness  

The basic dynamical features of the model equations (1) will 

now be explored. For the model to be epidemiologically 

meaningful, it is important to prove that all variables are non-

negative for all time, and a bounded solution exists. The 

model equations (1) is bounded in the region:  

𝛺 = [𝑆, 𝑉, 𝐸, 𝐼, 𝑄, 𝑇, 𝑅 ∈ ℝ+
7 : 𝑁 ≤

𝛬+(1−𝜋)𝛾+𝜋𝜙

𝜇
], thus, 𝛺 ∈

ℝ+
7 . 

 

Theorem 2.1 

The feasible region is hereby expressed as: 

𝛺 = {𝑆, 𝑉, 𝐸, 𝐼, 𝑄, 𝑇, 𝑅 ∈ ℝ+
7 : 𝑁 ≤

𝛬+(1−𝜋)𝛾+𝜋𝜙

𝜇
}

 (2)

 

is positively invariant with respect to the model (1). 

 

Proof 

The total human population is denoted by 𝑁 and given by 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑄

𝑑𝑡
+

𝑑𝑇

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

But by standard comparison and rearranging equation (3), 

we obtain a first-order differential inequality: 
𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑁 − 𝑑1𝐼 − 𝑑2𝑇 + (1 − 𝜋)𝛾 + 𝜙𝜋 

≤ 𝛬 − 𝜇𝑁 + (1 − 𝜋)𝛾 + 𝜙𝜋 

Which is solved by integrating factor method to obtain 

𝑁(𝑡) ≥ 𝑁0𝑒
−𝜇𝐻𝑡 +

𝜋𝐻

𝜇𝐻
(1 − 𝑒−𝜇𝐻𝑡)

  (3)

 

So as 𝑡 → ∞, 𝑁𝐻(𝑡) ≤
𝜋𝐻

𝜇𝐻
. A similar approach yields a similar 

result for the rat population: 𝑁𝑅(𝑡) ≤
𝜋𝑅

𝜇𝑅
.  Thus, we have 

shown that 𝛺 is positively invariant and attracts all solutions 

of equation (1) in finite time. This guarantees that our 

investigations and analyses will be carried out in a feasible 

region and that every solution of our model having initial 

conditions in 𝛺 will always remain in 𝛺 for all 𝑡 > 0. 

 

Positivity of Solutions  

Theorem 2.2 

If  𝑆(0), 𝑉(0), 𝐸(0), 𝐼(0), 𝑄(0), 𝑇(0),and 𝑅(0) are all non-

negative, then the solution 

𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑇(𝑡),and 𝑅(𝑡) are all positive for 

𝑡 ≥ 0. 

 

Proof 

From the first equation of system (1), we have  
𝑑𝑆

𝑑𝑡
= 𝛬 + 𝜃𝑉 + 𝜔𝑄 − (𝜆 + 𝑢1𝜑 + 𝜇)𝑆 + 𝜉𝑅 (4) 

Without loss of generality, equation (4.4) can be expressed 

after eliminating positive terms as an inequality  
𝑑𝑆

𝑑𝑡
≥ −(𝜆 + 𝑢1𝜑 + 𝜇)𝑆   

Using integral factor method, we have  

𝑆(𝑡) ≥ 𝐶 𝑒𝑥𝑝(∫(𝜆 + 𝑢1𝜑 + 𝜇)𝑑𝑡)    

At time 𝑡 = 0, 𝐶 = 𝑆(0), substituting for 𝐶 in equation (4.4b), 

we have  

𝑆(𝑡) ≥ 𝑆(0) 𝑒𝑥𝑝(∫(𝜆 + 𝑢1𝜑 + 𝜇)𝑑𝑡)  (5) 

Hence, 𝑆(𝑡) > 0 (Positive). 

Similarly, from the second equation of (1), we have  
𝑑𝑉

𝑑𝑡
= 𝑢1𝜑𝑆 − (𝜃 + 𝜇)𝑉   (6) 

That is, 
𝑑𝑉

𝑑𝑡
≥ −(𝜃 + 𝜇)𝑉    

Using integral factor method, equation (4.5a) becomes  

𝑉(𝑡) ≥ 𝐶 𝑒𝑥𝑝(∫(𝜃 + 𝜇)𝑑𝑡)     

At time 𝑡 = 0, 𝐶 = 𝑉(0), substituting for 𝐶 in equation 

(4.5b), we have  

𝑉(𝑡) ≥ 𝑉(0) 𝑒𝑥𝑝(∫(𝜃 + 𝜇)𝑑𝑡)  (7) 

Hence, 𝑉(𝑡) > 0 (Positive). 

Similar approach is adapted to show that: 
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( )( )
( )( )

( )

( )

( )

2 2

3 3 1

2

( ) (0)exp (1 )

( ) (0)exp (1 )

( ) (0)exp ( )

( ) (0)exp ( )

( ) (0)exp ( )

E t E u u dt

I t E u u d dt

Q t Q dt

T t T d dt

R t R dt

  

  

  

 

 

 − + +



 + − + +



 + + 

 + +

 +












 (8) 

 

RESULTS AND DISCUSSION 

Model Analysis 

Existence of Equilibrium States of the Model 

 At equilibrium, we equate the RHS of equations (1) to zero 

and solve the resultant system, that is; 

( )

( )

( )

( )

1

1

2 2

2 3 3 1

2

3 2

3

0

0

0 (1 )

0 (1 ) (1 )

0 (1 ) ( )

0 ( )

0 (1 ) ( )

V Q u S R

u S V

S u u E

u E u u d I

u E Q

u I Q d T

T u I R

     

  

   

   

     

    

   

=  + + − + + + 


= − + 


= − − + +



= − − + − + + 


= + − − + +

= + + − + +


= + − − + 

 (9) 

 

Disease (Covid-19) Free Equilibrium Point 

 In absence of Covid-19, 𝐸 = 𝐼 = 𝑄 = 𝑇 = 𝑅 = 0, we have 

the disease free equilibrium expressed as  

𝐸0 = [𝑆0, 𝑉0, 0,0,0,0,0]
   (10) 

Where: 

𝑆0 =
𝛬(𝜃 + 𝜇)

𝜇(𝑢1𝜑 + 𝜇 + 𝜃)
, 𝑉0 =

𝛬𝑢1𝜑

𝜇(𝑢1𝜑 + 𝜇 + 𝜃)

 
 

Disease (Covid-19) Endemic Equilibrium Point 

When Covid-19 persists, 𝐼 ≠ 0. Thus, from the equation (1), 

we have the endemic equilibrium expressed as  

𝐸∗∗ = [𝑆∗∗, 𝑉∗∗, 𝐸∗∗, 𝐼∗∗, 𝑄∗∗, 𝑇∗∗, 𝑅∗∗]
  (11) 

Where: 

𝑆∗∗ =
𝛬 + 𝜔𝑄∗∗ + 𝜉𝑅∗∗ + 𝜃𝑉∗∗

𝛽(𝜂 − 1)(𝑢1 − 1)(𝑘𝑇∗∗ + 𝐼∗∗) + 𝑢1𝜑 + 𝜇
 

𝑉∗∗ =
𝑢1𝜑𝑆∗∗

𝜃 + 𝜇
 

𝐸∗∗ =
𝛽(𝜂 − 1)(𝑢1 − 1)(𝑘𝑇∗∗ + 𝐼∗∗)

𝑢2(𝛾 − 𝜀) + 𝜀 + 𝜇
 

𝐼∗∗ =
(1 − 𝑢2)𝜀𝐸

∗∗

𝑢3𝜙 + 𝛿(1 − 𝑢3) + 𝑑1 + 𝜇
 

𝑄∗∗ =
𝛾(1 − 𝜋) + 𝑢2𝛾𝐸∗∗

𝜔 + 𝜎 + 𝜇
 

𝑇∗∗ =
𝑢3𝜙𝐼∗∗ + 𝜎𝑄∗∗ + 𝜙𝜋

𝜌 + 𝑑2 + 𝜇
 

𝑅∗∗ =
𝜌𝑇∗∗ + (1 − 𝑢3)𝐼

∗∗

𝜉 + 𝜇

 

 

Basic Reproduction Number  

The basic reproduction number denoted by𝑅0 is defined as the 

expected number of secondary cases produced by introducing 

one infected in a completely susceptible population. The basic 

reproduction depends mainly on the definition of the infected 

and uninfected compartments. We determine 𝑅0 using the 

next-generation matrix approach (Diekmann and 

Heesterbeek, 2000). The is𝑅0 = 𝜌(𝐹𝑉−1) , where 𝜌 is the 

spectral radius. Consider the equations for the infected 

populations given by: 

( )

( )

2 2

2 3 3 1

2

3 2

(1 )

(1 ) (1 )

(1 ) ( )

( )

dE
S u u E

dt

dI
u E u u d I

dt

dQ
u E Q

dt

dT
u I Q d T

dt

   

   

     

    


= − − + + 


= − − + − + +


= + − − + +


= + + − + +


 (12) 

Let 𝑋 = (𝐸, 𝐼, 𝑄, 𝑇) which can be written in the form
𝑑𝑋

𝑑𝑡
=

𝐹𝑖(𝑥) − 𝑉𝑖(𝑥), where; 

( )( )( )1 1

2

3

4

1 1

0

0

0

i

f u I kT S

f
F

f

f

  − − + 
  
  = =
  
  
    

 (13) 

From equation (13) we consider those terms that have 

infection, we then have  

 

( )

( )

2 21

2 2 3 3 1

3 2

4 3 2

(1 )

(1 ) (1 )

(1 ) ( )

( )

i

u u Ev

v u E u u d I
V

v u E Q

v u I Q d T

  

   

     

    

 − + + 
  
− − + + − + +  = =
   − + − + + +
  
 − − − + + +   

 (13) 

Now, taking the partial derivatives of (4.33) we have 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0 1 0 1 0 1 0

2 0 2 0 2 0 2 0

0

3 0 3 0 3 0 3 0

4 0 4 0 4 0 4 0

i

i

F E F E F E F E

E I Q T

F E F E F E F E

F E E I Q T
F

x F E F E F E F E

E I Q T

F E F E F E F E

E I Q T

    
 

    
    
 

     
= =      

 
    
 
    
     

 (14) 

Which gives  

( )( ) ( )( )1 10 1 1 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

u S u kS

F

    − − − −
 
 =
 
 
 

 (15) 

We let, 𝐵1 = 𝛽(1 − 𝑢1)(1 − 𝜂) and 𝐵2 = 𝛽(1 − 𝑢1)(1 −
𝜂)𝑘 so that equation (16) becomes  

1 20 0

0 0 0 0

0 0 0 0

0 0 0 0

B S B S

F

 
 
 =
 
 
 

  (16) 

Similarly, taking the partial derivatives of equation (14) 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0 1 0 1 0 1 0

2 0 2 0 2 0 2 0

0

3 0 3 0 3 0 3 0

4 0 4 0 4 0 4 0

i

i

V E V E V E V E

E I Q T

V E V E V E V E

V E E I Q T
V

x V E V E V E V E

E I Q T

V E V E V E V E

E I Q T

    
 

    
    
 

     
= =      

 
    
 
    
     

 (17) 
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Equation (17) gives  

( )
( ) ( )

2 2

2 3 3 1

2

3 2

1 0 0 0

1 1 0 0

0 0

0

u u

u u u d
V

u

u d

  

   

   

   

 − + +
 

− − + − + + =
 − + +
 

− − + + 

 

      (18) 

Let: 

𝐴1 = (1 − 𝑢2)𝜀 + 𝑢2𝛾 + 𝜇, 𝐴2 = −(1 − 𝑢2), 𝐶1 = −𝑢2𝛾 
𝐴3 = 𝑢3𝜙 + 𝛿(1 − 𝑢3) + 𝑑1 + 𝜇, 𝐶2 = 𝜔 + 𝜎 + 𝜇, 𝐶3

= 𝜌 + 𝑑2 + 𝜇 

Equation (17) becomes  

1

2 3

1 2

3 3

0 0 0

0 0

0 0

0

A

A A
V

C C

u C 

 
 
 =
 
 

− − 

  (19) 

Computing the inverse of (18), we obtain; 

1

2

1 3 31

1

1 2 2

2 2 3 3 1 3

1 3 2 3 3 3 2 3 3

1
0 0 0

1
0 0

1
0 0

1

A

A

A A A
V

C

AC C

A C u A C u

A A C C A C C C C

   

−

 
 
 
 

− 
 =
 

− 
 
 +
− 
 

 (20) 

Now, taking the product of 𝐹 and 𝑉−1, we have; 

1

1 2 2

1 3 31

1

1 2 2

2 2 3 3 1 3

1 3 2 3 3 3 2 3 3

1
0 0 0

0 0 1
0 0

0 0 0 0

10 0 0 0
0 0

0 0 0 0

1

A

B S B S A

A A A
FV

C

AC C

A C u A C u

A A C C A C C C C

   

−

 
 
 
  

−  
  =
  

−  
   

 +
− 
 

  

Which gives, 

1 2 3 4

1
0 0 0 0

0 0 0 0

0 0 0 0

H H H H

FV −

 
 
 =
 
 
 

 (21) 

Where: 

𝐻1 =
𝐵1𝛬𝐴2(𝜃+𝜇)

𝜇𝐴1𝐴3(𝜑𝑢1+𝜇+𝜃)
+

𝐵2𝛬(𝜃+𝜇)(𝜙𝐴2𝐶2𝑢3+𝜎𝐴3𝐶1)

𝜇𝐴1𝐴3𝐶2𝐶3(𝜑𝑢1+𝜇+𝜃)
  

𝐻2 =
𝐵1𝛬(𝜃 + 𝜇)

𝜇𝐴3(𝜑𝑢1 + 𝜇 + 𝜃)
+

𝐵2𝛬𝑢3𝜙(𝜃 + 𝜇)

𝜇𝐴3𝐶3(𝜑𝑢1 + 𝜇 + 𝜃)
 

𝐻3 =
𝐵2𝛬𝜎(𝜃 + 𝜇)

𝜇𝐶2𝐶3(𝜑𝑢1 + 𝜇 + 𝜃)
, 𝐻4 =

𝐵2𝛬(𝜃 + 𝜇)

𝜇𝐶3(𝜑𝑢1 + 𝜇 + 𝜃)
 

Computing the eigenvalues of (21), we obtain |𝐹𝑉−1 −
𝑚𝐼| = 0 

1 2 3 4

1
0 0 0

0
0 0 0

0 0 0

H m H H H

m
FV mI

m

m

−

−

−
− = =

−

−

 (22) 

Equation (21) yields the following characteristic equation 

 −𝑚3(𝐻1 − 𝑚) = 0    (23) 

From equation (22), the largest eigenvalue (i.e. the spectral 

radius) is given by 

𝑅0 = 𝜌(𝐹𝑉−1) =
𝐵1𝛬𝐴2(𝜃+𝜇)

𝜇𝐴1𝐴3(𝜑𝑢1+𝜇+𝜃)
+

𝐵2𝛬(𝜃+𝜇)(𝜙𝐴2𝐶2𝑢3+𝜎𝐴3𝐶1)

𝜇𝐴1𝐴3𝐶2𝐶3(𝜑𝑢1+𝜇+𝜃)

     (24) 

Equation (24) gives the desired reproduction number𝑅0. 

 

Local Stability of Covid-19 Free Equilibrium Point 

The following result is a proof of local stability of the disease 

free equilibrium. 

 

Theorem 3.1 

The Covid-19 free equilibrium point 𝐸0 of the modified 

model system (1) is Locally Asymptotically Stable (LAS) if 

𝑅0 < 1 and is unstable if 𝑅0 > 1  

 

Proof 

Let the model system of equations (1) be given as; 

( )

( )

( )

( )

1 1

2 1

3 2 2

4 2 3 3 1

5 2

6 3 2

7 3

(1 )

(1 ) (1 )

(1 ) ( )

( )

(1 ) ( )

F V Q u S R

F u S V

F S u u E

F u E u u d I

F u E Q

F u I Q d T

F T u I R

     

  

   

   

     

    

   

=  + + − + + +


= − + 


= − − + + 


= − − + − + + 


= + − − + +

= + + − + +


= + − − + 


 (25) 

The Jacobian matrix of the system (25) evaluated at disease 

free equilibrium is obtained as: 

𝐽(𝐸0) =

[
 
 
 
 
 
 
 
 −𝑇1 𝜃 0 −

𝛽𝛬(1−𝑢1)(1−𝜂)(𝜃+𝜇)

𝜇(𝑢1𝜑+𝜇+𝜃)
𝜔 −

𝛽𝛬𝑘(1−𝑢1)(1−𝜂)(𝜃+𝜇)

𝜇(𝑢1𝜑+𝜇+𝜃)
𝜉

𝑢1𝜑 −𝑇2 0 0 0 0 0

0 0 −𝑇3
𝛽𝛬(1−𝑢1)(1−𝜂)(𝜃+𝜇)

𝜇(𝑢1𝜑+𝜇+𝜃)
0

𝛽𝛬𝑘(1−𝑢1)(1−𝜂)(𝜃+𝜇)

𝜇(𝑢1𝜑+𝜇+𝜃)
0

0 0 (1 − 𝑢2)𝜀 −𝑇4 0 0 0
0 0 𝑢2𝛾 0 −𝑇5 0 0
0 0 0 𝑢3𝜙 𝜎 −𝑇6 0
0 0 0 𝛿(1 − 𝑢3) 0 𝜌 −𝑇7]

 
 
 
 
 
 
 
 

  (26) 

Where: 

𝑇1 = (𝑢1𝜑 + 𝜇), 𝑇2 = (𝜃 + 𝜇), 𝑇3 = (1 − 𝑢2)𝜀 + 𝑢2𝛾 + 𝜇, 𝑇4 = 𝑢3𝜙 + 𝛿(1 − 𝑢3) + 𝑑1 + 𝜇 
𝑇5 = (𝜔 + 𝜎 + 𝜇), 𝑇6 = (𝜌 + 𝑑2 + 𝜇), 𝑇7 = (𝜉 + 𝜇) 

Reducing equation (26) into an upper triangular matrix, the transformed matrix is then given by 
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𝐽(𝐸0) =

[
 
 
 
 
 
 
 
 
 
−𝑇1 𝜃 0 −𝐺1 𝜔 −𝐺2 0

0
𝜃𝜑𝑢1−𝑇1𝑇2

𝑇1
0 −

𝑢1𝜑𝐺1

𝑇1

𝑢1𝜑𝜔

𝑇1
−

𝑢1𝜑𝐺2

𝑀1
0

0 0 −𝑇3 𝐺1 0 −
(−1+𝑢2)𝜀𝐺2

𝑇3
0

0 0 0 −
𝐺1(−1+𝑢2)𝜀−𝑇3𝑇4

𝑇3
0

𝑢2𝛾𝐺2𝑇4

𝐺1(−1+𝑢2)𝜀+𝑇3𝑇4
0

0 0 0 0 −𝑇5 0 0

0 0 0 0 0
−𝑇5(−1+𝑢2)(𝜙𝐺2𝑢3+𝐺1𝑇6)𝜀−𝑇4(−𝛾𝜎𝐺2𝑢2+𝑇3𝑇5𝑇6)

𝑇5(𝐺1(−1+𝑢2)𝜀+𝑇3𝑇4)
0

0 0 0 0 0 0 −𝑇7]
 
 
 
 
 
 
 
 
 

  (27) 

With: 

𝐺1 =
𝛽𝛬(1 − 𝑢1)(1 − 𝜂)(𝜃 + 𝜇)

𝜇(𝑢1𝜑 + 𝜇 + 𝜃)
   and   𝐺2 =

𝛽𝛬𝑘(1 − 𝑢1)(1 − 𝜂)(𝜃 + 𝜇)

𝜇(𝑢1𝜑 + 𝜇 + 𝜃)
 

We need to show that all eigenvalues of (27) are negative. Now, taking the product of the main diagonal elements of (26) we 

obtained the required eigenvalues as; 

(−𝑇1 − 𝑚1) (
𝜃𝜑𝑢1 − 𝑇1𝑇2

𝑇1
− 𝑚2) (−𝑇3 − 𝑚3) (−

𝐺1(−1 + 𝑢2)𝜀 − 𝑇3𝑇4

𝑇3
− 𝑚4) (−𝑇5 − 𝑚5) 

(
−𝑇5(−1+𝑢2)(𝜙𝐺2𝑢3+𝐺1𝑇6)𝜀−𝑇4(−𝛾𝜎𝐺2𝑢2+𝑇3𝑇5𝑇6)

𝑇5(𝐺1(−1+𝑢2)𝜀+𝑇3𝑇4)
− 𝑚6) (−𝑇7 − 𝑚7)     (28) 

From equation (28), we have that; 

𝑚1 = −(𝑢1𝜑 + 𝜇),𝑚3 = −((1 − 𝑢2)𝜀 + 𝑢2𝛾 + 𝜇),𝑚4 = −((1 − 𝑢2)𝜀 + 𝑢2𝛾 + 𝜇) 

𝑚5 = −(𝜔 + 𝜎 + 𝜇),𝑚6 = −(𝜔 + 𝜎 + 𝜇),𝑚7 = −(𝜉 + 𝜇)and 

𝑚2 =
𝜃𝜑𝑢1−𝑇1𝑇2

𝑇1
< 0 if and only if  𝑇1𝑇2 > 𝜃𝜑𝑢1. 

This satisfies the negativity requirement for stability. 

 

Global Stability of Covid-19 Free Equilibrium Point 

We used the Castillo-Chavez theorem (Castillo-Chavez et al., 2002) to investigate the global asymptotic stability of the disease 

free state as used in Alkali et al., (2025). For the theorem to work, we rewrite system (1) in the form 
𝑑𝑋

𝑑𝑡
= 𝐻(𝑋, 𝑍) 

𝑑𝑍

𝑑𝑡
= 𝐺(𝑋, 𝑍), 𝐺(𝑋, 0) = 0         (29) 

Where 𝑋 = (𝑆, 𝑉, 𝑅) and 𝑍 = (𝐸, 𝐼, 𝑄, 𝑇). Here, the components of 𝑋 ∈ ℝ3 denote the uninfected individuals and the 

components of 𝑍 ∈ ℝ4 denote the infected individuals. The disease free equilibrium of the system now becomes 𝐸0 = (𝑋∗, 0). 

To guarantee global asymptotic stability, the following two conditions must be met. 

i. 
𝑑𝑋

𝑑𝑡
= 𝐻(𝑋, 0), 𝑋∗ is globally asymptotically stable (GAS) 

ii. 𝐺(𝑋, 𝑍) = 𝑃𝑍 − 𝐺̂(𝑋, 𝑍), 𝐺̂(𝑋, 𝑍) ≥ 0 for (𝑋, 𝑍) ∈ 𝛺 

Where 𝑃 = 𝐷𝑍𝐺(𝑋∗, 0) is an 𝑀 matrix (the off diagonal elements of 𝑃 are non-negative) and 𝛺 is the region where the model 

is biologically meaningful. If the system (29) satisfies conditions (i) and (ii) then the following theorem holds. 

Theorem 3.2 

The fixed point 𝐸0 = (𝑋∗, 0) is a globally asymptotic stable equilibrium of (29) provided that 𝑅0 < 1 and the assumptions (i) 

and (ii) are satisfied. 

Proof: 

Since 𝑋 = (𝑆, 𝑉, 𝑅) and 𝑍 = (𝐸, 𝐼, 𝑄, 𝑇) then  

𝐻(𝑋, 𝑍) = [

𝛬 + 𝜃𝑉 + 𝜔𝑄 − (𝜆 + 𝑢1𝜑 + 𝜇)𝑆 + 𝜉𝑅

𝑢1𝜑𝑆 − (𝜃 + 𝜇)𝑉
𝜌𝑇 + 𝛿(1 − 𝑢3)𝐼 − (𝜉 + 𝜇)𝑅

]       (29) 

then  

𝐻(𝑋, 0) = [
𝛬 + 𝜃𝑉 − (𝑢1𝜑 + 𝜇)𝑆

𝑢1𝜑𝑆 − (𝜃 + 𝜇)𝑉
0

]        (30) 

and 𝐺(𝑋, 𝑍) = 𝑃𝑍 − 𝐺̂(𝑋, 𝑍)where 

( )

( )

( )
2 2

2 3 3 1

2

3 2

(1 )

(1 ) (1 )
,

(1 ) ( )

( )

S u u E

u E u u d I
G X Z

u E Q

u I Q d T

   

   

     

    

 − − + + 
 

− − + − + + =
 + − − + +
 

+ + − + + 

       (31) 

and 𝑃 = 𝐷𝑍𝐺(𝑋∗, 0) is the Jacobian of 𝐺(𝑋, 𝑍) with respect to 𝑍, such that 

( )
( )( )( )

( )

( )( )( )

( )

( ) ( )

( )

( )

1 1

2 2

1 1

2 3 3 1

2

3 2

1 1 1 1
(1 )

1 (1 )

u k u
u u E I T

u u

PZ u E u u d I

u E Q

u I Q d T

       
  

       

   

   

   

 − − +  − − + 
− − + + + + 

+ + + + 
 = − − + − − −
 

− + + 
 + − + + 

 (32) 

Therefore,  
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( )

( )

( )

( )

( )

1

2

3

4

ˆ , 0

ˆ , 0ˆ ,
ˆ 0,

0ˆ ,

G X Z

G X Z
G X Z

G X Z

G X Z

 
 

 
 

 
 = = 
 

 
 

   
 

        (33) 

Therefore, since 𝐺̂(𝑋, 𝑍) = 0. Conditions (i) and (ii) have been met and therefore 𝐸0 is globally asymptotically stable. 

 

Sensitivity Analysis  

Sensitivity Analysis The basic reproduction number is very important in the effort required to eradicate a disease. We carry 

out sensitivity analysis of the Basic reproduction number with respect to the model parameters to access the relative impact of 

each of the parameters in the transmission and prevalence of the disease. This will enable us to determine which intervention 

strategy is most effective in the control of COVID-19 transmission. The normalized forward sensitivity index is used to 

calculate sensitivity. We define the normalized forward sensitivity index of the basic reproduction number with respect to a 

parameter 𝒑 (Sirajo et al., 2013) as: 𝑮𝒑
𝑹𝟎 =

𝝏𝑹𝟎

𝝏𝒑
×

𝒑

𝑹𝟎
 

 

Table 1: Signs of Sensitivity Indices 

Parameters Elasticity Index Sensitivity Index 

 

1 Positive 

 

1 Positive 

 𝜑 0.3136 Positive 

 

0.02341 Negative 

𝜌  0.2321 Negative 

 𝜉 0.00034 Negative 

 
0.0893 Negative 

 

23.877 Negative 

 
1.0427 Positive 

 0.8521 Positive 

𝜂  0.251 Negative 

 
0.1674 Positive 

𝜋  0.2448 Positive 

 
0.00290 Positive 

𝒖𝟏  0.0518  Positive 

𝒅𝟏  0.5672  Positive 

𝒖𝟑  0.3432 Negative 

 

From the results of Sirajo et al., (2013), it follows that, a 

positive index sign indicates that an increase in the 

parameter’s value will result in an increase in the value of the 

reproduction number and a reduction in the parameter’s value 

will reduce the value of the reproduction number. A negative 

index sign indicates that an increase in the parameter’s value 

will result in a reduction in the value of the reproduction 

number and a reduction in the parameter’s value will result in 

an increase in the value of the reproduction number. 

Numerical Simulations 

To illustrate the theoretical results, numerical simulations are 

carried out. Model variables and parameters values for the 

numerical simulations source are listed in table 4.1 and table 

4.2 below, where some of the parameter values were not 

available in the literature, we assumed realistic values used 

for numerical simulations. 

 

Table 2: Variable Values used for Numerical Simulations 

Variables  Values  Reference 

S(0) 3500 Assumed 

V(0) 170 Assumed 

E(0) 60   Assumed 

I(0) 40 Assumed 

Q(0) 30 Assumed 

T(0) 90 Assumed 

R(0) 150 Assumed 

 

 

 









k





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Table 3: Parameter Values used for Numerical Simulations 

Parameters Values Reference 

Λ 100/day Eric et al., (2020) 

θ 0.3 Assumed     

π 0.6/day Eric et al., (2020) 

β 6.64 x 〖10〗^(-5) Eric et al., (2020) 

κ 0.323/day Eric et al., (2020) 

ε 0.003/day Eric et al., (2020) 

δ 0.004 Assumed 

ϕ 0.3/day Eric et al., (2020) 

φ 0.05 Assumed 

ω 0.2 Assumed  

ρ 0.3/day Eric et al., (2020) 

ξ 0.0002/day Eric et al., (2020) 

σ 0.05-0.1 Eric et al., (2020) 

γ 0.5/day Haileyesus el al. (20210 

μ 0.016/day Eric et al., (2020) 

η 0.2/day Assumed 

u_1 0.2/day Assumed  

u_2 0.04/day Assumed 

u_3 0.01 Assumed 

d_1 0.003 Assumed 

d_1 3.423 x 〖10〗^(-7) Assumed 

 

Numerical Experiments 

The following figures 4.1 to 4.7 are graphical representation 

showing Dynamics of human population with respect to the 

following compartments: susceptible population 𝑺(𝒕), 
Vaccinated population 𝑉(𝑡), Exposed population 𝐸(𝑡), 

Infected population 𝐼(𝑡), Quarantined population 𝑄(𝑡), 

Treated population 𝑇(𝑡) and Recovered Population 𝑅(𝑡) in 

the various stages of COVID-19 over a period of time. 

 

 
Figure 2: Dynamics of Susceptible Population Over Time 
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Figure 3: Dynamics of Vaccinated Population Over a Period of Time 

 

 
Figure 4: Dynamics of Exposed Human Population Over a Period of Time 

 

 
Figure 5: Impact of Vaccination and Quarantine as Control Strategy on the 

Dynamics of Infectious Population Over a Period of Time. 
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Figure 6: Dynamics of Quarantine Human Population Over a Period of Time 

 

 
Figure 7: Dynamics of Treated Human Population Over a Period of Time 

 

 
Figure 8: Dynamics of Recovered Human Population Over a Period of Time 

 

Discussion of Findings 

We established the positivity and boundedness of the model 

solutions, ensuring that all state variables remain non-

negative and biologically feasible over time. The disease-free 

equilibrium (DFE) and the endemic equilibrium of the model 

were determined. The basic reproduction number 𝑅0was 

derived using the next generation matrix method. The result 

indicated that 𝑅0 < 1, suggesting that the disease (COVID-

19) can be eradicated from the population under the given 

conditions. It was observed that the disease-free equilibrium 

is both locally and globally asymptotically stable whenever 

𝑅0 < 1, indicating that the infection will die out over time. 

Furthermore, a sensitivity analysis was conducted to identify 

the most influential parameters on the spread of the disease.  

Numerical simulations of the proposed COVID-19 

transmission model were conducted using the assumed and 
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estimated parameter values provided in Table 4.2. The 

simulations were performed over a period of 50 days, and the 

results are presented through a series of graphical 

illustrations. These simulations aim to demonstrate the 

temporal evolution of the disease across various 

compartments. Specifically, the results highlight the impact 

of COVID-19 dynamics on the following population groups: 

susceptible, vaccinated, exposed, infected, quarantined, 

treated, and recovered individuals. Each of the seven subplots 

corresponds to one of these compartments, enabling a clear 

visualization of how each population evolves over time under 

the influence of the model dynamics. 

Figure 4.1 illustrates the dynamics of the susceptible 

population. It is observed that the population declines rapidly 

within the first two days, starting from an initial value of 

3,500. This sharp decline corresponds to individuals 

transitioning into the exposed class after coming into contact 

with the virus. Figure 4.2 presents the dynamics of the 

vaccinated population. It shows a rapid decrease over a period 

of 13 days, beginning from an initial value of 170. This 

decline represents individuals who, after losing immunity or 

being re-exposed, re-enter the susceptible class and 

potentially move into the exposed class. Figure 4.3 displays 

the trend of the exposed population. The graph indicates that 

the exposed population increases sharply from an initial value 

of 60 to approximately 2,350 within the first two days, and 

then gradually decreases to around 200 by day 50. This 

behavior suggests that vaccination and quarantine measures 

are effective in curbing the spread of COVID-19 over time. 

Figure 4.4 illustrates the impact of vaccination and quarantine 

as control strategies on the dynamics of the infectious 

population. It is observed that the number of infected 

individuals declines rapidly and approaches zero within 15 

days, indicating that the combined effect of vaccination and 

quarantine can significantly reduce or even eliminate the 

spread of COVID-19. Figure 4.5 presents the dynamics of the 

quarantined population. The graph shows that the quarantined 

population initially rises to approximately 2,200 before 

decreasing to around 400 over time. Figure 4.6 displays the 

dynamics of the treated population, where the number of 

treated individuals increases to about 650 before gradually 

decreasing to 220. Lastly, Figure 4.7 illustrates the dynamics 

of the recovered population, which shows a continuous and 

gradual increase over time, reflecting the cumulative effect of 

treatment and recovery. 

 

CONCLUSION  

In this study, a compartmental mathematical model was 

developed to describe the transmission dynamics of COVID-

19, incorporating key intervention strategies such as 

vaccination, quarantine, treatment, and public awareness 

campaigns. The model was carefully analyzed to establish its 

fundamental properties, including the existence of an 

invariant region and the positivity of solutions, ensuring that 

the model is both biologically and mathematically sound. The 

basic reproduction number 𝑅0 was computed using the next 

generation matrix method, and the disease-free equilibrium 

was shown to be locally and globally asymptotically stable 

whenever 𝑅0 < 1, indicating the possibility of disease 

eradication under appropriate control measures. Sensitivity 

analysis revealed the most influential parameters on 𝑅0, 

providing insight into effective intervention strategies. The 

sensitivity analysis and numerical simulation were carried 

out, shown that the more COVID-19 vaccine is been 

administered in the sub population and adherence to the 

public campaign interventions, can reduce and curtail the 

spread of the virus. 
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