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ABSTRACT 

Couples understanding their respective fecundity gives the opportunity for keeping track of their fertility status 

and thus helps to know if and when medical intervention is needed or not. To help understand couples fecundity, 

fecundity prediction models were developed using statistical/machine/deep learning models. Fecundity 

prediction models are developed with the possible need for improvements or advancements, and to identify the 

improvements and advancements with respect to analyzing fecundity heterogeneities among fertile and sub 

fertile couples, the models from 2000 to 2025 are reviewed. In reviewing existing models for fecundity studies, 

the models were further categorized from the existing categories, and each fecundity models category were 

reviewed against the fertility and subfertility definitions (which are applicable to fertile and subfertile couples 

respectively). Based on the review outcome, it was observed that assumptions used for developing most models 

for analyzing subfertility heterogeneities in each models category may deny the models from achieving 

satisfactory conclusive analysis on fecundity heterogeneities among couples. Also, existing models does not 

explicitly distinguish fertility and subfertility during fecundity analysis. 
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INTRODUCTION 

Capabilities of achieving pregnancy is referred to as fecundity 

and the process of determining pregnancy capabilities is 

known as fecundity prediction (Wang et al. 2022). Fecundity 

could be attributed to any living being that can reproduce, like 

humans, animals or plant. However, the focus of this study is 

human, specifically women. Forecasting fecundity needs 

examining the biological and reproductive variability 

associated with women achieving pregnancy. The 

understanding can assist in assessing a woman's fertility status 

early, facilitating prompt awareness and potential treatment of 

infertility if identified (Muhammad et al., 2025; Muhammad 

et al., 2023). 

Traditionally, predicting fecundity has relied on interactions 

between couples and specialists, such as gynecologists and 

obstetricians. However, irrespective of the fact that specialists 

for every health care services (including fecundity analysis) 

are available and effective services are rendered to the 

respective seekers, time taken for rendering services to 

seekers is high especially when population of seekers is high, 

the services are expensive (Mbungeet al., 2022), possible bias 

services rendered (Ricks et al., 2022). However, data of well 

managed seekers for health care could be collected and 

analyzed using data mining techniques so as to support the 

rendering of heath care services to seekers. 

Although, pregnancy care involves rendering health care 

services to women before, during and after pregnancy but, the 

pregnancy care period considered in this research is before 

pregnancy and the health care service is women fecundity 

prediction. To carry out the task of fecundity prediction, 

women are observed based on factors like intercourse, fertility 

(men and women), women menstrual cycles and 

environmental factors like contraceptive usage. Therefore, 

any supporting techniques that must be developed for 

fecundity prediction must also consider these factors.  

The traditional approach used for fecundity prediction 

involves interactions with specialists. Based on the 

specialist’s memory-based self-report, the prediction results 

cannot be assessed and thus allowing the specialist to 

sometime be bias during diagnosis (Rickset al., 2022). Based 

on the setback encountered by the traditional approach, 

fecundity prediction models were developed using data 

mining techniques to improve (in terms of results assessment 

and efficiency) the process of carrying out fecundity 

prediction task. Depending on the context under 

consideration, Pregnancy prediction, Fecundity, Conception 

probability, Fertility awareness are all terms used to describe 

the measurement of capability of couples reproduction, 

therefore, this study used any of the mentioned concepts to 

describe the task under review depending on the context under 

consideration. 

 

Fecundity Prediction Using Machine Learning 

Machine learning (ML) involves the use and development of 

computer systems that are able to learn and adapt without 

following explicit instructions, by using algorithms and 

statistical models to analyze and draw inferences from 

patterns in data (Malik et al., 2020; Shehu et al., 2018). ML 

can be applied to various health care domains like pregnancy 

complications care (Dewanet al., 2023), Pregnancy prediction 

(Muhammad et al., 2025; Muhammad et al., 2023). The 

general ML approaches for solving data mining problems are 

Association, Classification and Clustering (Aguiar-Pérezet 

al., 2023). Association approach deals with the discovery of 

frequently occurred attribute value in datasets, Classification 

approach deals with the generation of rules in identifying 

class of data in a dataset base on the dataset attributes. 

Clustering deals with categorizing a dataset into clusters, 

where data within the clusters are very similar while data 

between the clusters are less or not similar. 

Bayesian, Regression, Long Short Term Memory and 

Descriptive statistical methods are the major data mining 

methods used in the development of fecundity prediction 

models. Several research contributions developed fecundity 

prediction models to answer problems like timing intercourse 

for optimal fecundity (Scarpa and Dunson, 2007), Menstrual 

Cycle Length (MCL) roles during fecundity (Yuet al., 2022), 

the effect of environmental chemicals to MCL roles during 

fecundity (Kim et al. 2019), ovulation timing (Fantonet al., 
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2022), predicting pregnancy of larger population 

(Muhammad et al., 2023; Liu et al., 2019). 

Machine/Deep/Statistical models developed by previous 

researches to analyze fecundity data were grouped into three 

(3) categories; Time to pregnancy models (TTP), Barrett-

Marshall and Schwartz models (BMS) and Extended time to 

pregnancy (ETTP) (Echocard, 2006).  Although, this study 

also groups the models into three; TTPs, BMS and Deep 

learning for pregnancy prediction (DLPP), where the TTP and 

ETTP are categorized as TTPs. The grouping are based on 

how previous researches models characterized the biological 

and sexual behavior heterogeneity with respect to fecundity 

studies. 

However, results achieve during fecundity analysis also 

depends on four (4) categories of fertility: Fertility; 

Capabilities to conceive without medical intervention within 

a cycle, Subfertility; capability to conceiving without medical 

intervention but with longer time (more than one cycle) to 

conceive after trying, Infertility; Incapability to conceive 

without medical intervention and Sterility; Incapability to 

conceive with or without medical intervention. Hence, 

fecundity prediction models developed by existing researches 

are applicable to any of the fertility category. However, 

reviews on existing fecundity prediction models based on how 

the models analyzes the fertility categories are yet to be 

carried out. Therefore, this study focuses on reviewing 

existing fecundity prediction models analysis with respect to 

the fertility and subfertility categories. This will help future 

studies to focus on the fertility category (between fertility and 

subfertility) with weaker analytical resolutions on the 

heterogeneities in fecundity studies. 

In this study’s literature review, existing works related to 

fecundity analytics are categorized based on Muhammad et 

al. (2023) and Liu et al. (2019) categorization of fecundity 

analytics, and then each category is reviewed. Based on 

Muhammad et al. (2023) and Liu et al. (2019) categorization 

of fecundity analytics, they are categorized as TTPs, BMS, 

and DLPP. 

 

Review of Statistical/Machine/Deep Learning Models for 

Fecundity Analysis 

Table 1 describes the placement of every research 

contribution in a taxonomy of statistical/machine/deep 

learning model for fecundity analysis based on how this 

study’s focused fertility categories wereanalyzed. For more 

specifics, fertility category is the capability to carry out the 

process of achieving pregnancy and achieve it within a cycle 

without any medical intervention, while Subfertility category 

is the capability to achieve pregnancy after trying within a 

period of two (2) to twelve (12) cycles without medical 

intervention or intend pregnancy delay. This study strictly 

used this fertility categories descriptions to review every 

identified existing fecundity analytic model for fecundity 

analysis. 

 

Table 1: Taxonomy for Fecundity Analysis Models Based on Fertile and sub Fertile Couples 

Models and Fertility 

Categories 

Major Contributions Authors 

TTPs Models 

Fertility 

 

 

 

 

 

 
 

 

i. Generalized distributive effect of fecundity covariates on 

probability of conception within a cycle. 

ii. Menstrual cycle fertile window detection model using cervical 

mucus marker. 

iii. Menstrual cycle fertile window detection considering unexplained 

heterogeneity of covariate effect on probability of pregnancy. 

iv. Modelling age heterogeneity effect on conception. 

 

i. Ecochard and Clayton 

(2000) 

ii. Dunson and Colombo 

(2003) 

iii. Pennoniet al. (2017) 

 

iv. McDonald et al. (2011) 

Subfertility Assumes proposed TTPs models are also applicable to subfertile 

couples since the model are distributions extracted from both fertile 

and subfertile couples details 
 

 

BMS Models 

Fertility 

 

 

 

 

 

 

 

 

 

 

 

 

i. Modelling daily effects of dependent or independent intercourse 

heterogeneity as covariate on probability of pregnancy within a 

cycle. 

ii. Improved modelling of day specific probability of pregnancy 

within a cycle with respect to the selective power of categorical 

predictors’ levels. 

iii. Flexible Characterization of day specific probability of pregnancy 

within a cycle. 

iv. Modelling mucus covariate effect on day specific probability of 

conception within a cycle. 

v. Distributive effects of covariates on pregnancy probability within a 

cycle. 
 

 

i. Dunson (2001), Kim et al. 

(2010) 

 

ii. Dunson and Stanford (2005) 

 

iii. Kim et al. (2012) 

 

iv. Colombo et al. (2006) 

 

v. Lumet al. (2016), Lumet al. 

(2017); Kim et al. (2019) 

Subfertility Assumes probability of pregnancy within current cycle is constant over 

all cycle with similar fecundity details. Therefore, all proposed BMS 

models are applicable to subfertile couples. 

 

DLPP 

Fertility 

 

 

 

 

Subfertility: 

 

i. Scalable modelling of intercourse heterogeneity effect on 

pregnancy probability within a cycle. 

ii. Scalable modelling of the influence of various fecundity 

determinant factors of fecundity 

 

Scalable modelling of intercourse heterogeneity effect on pregnancy 

probability within 7 cycles. 

 

i. Liu et al. (2019) 

 

ii. Naseem et al. (2023), Yland 

et al. (2022) and Zhan et al. 

(2022). 

Liu et al. (2019), Muhammad et 

al. (2023) 
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Category 1 (TTPs) 

In this review the TTPs models category was a combination 

of TTP and ETTP categories. The combination was due to the 

usage of similar statistical assumptions to develop fecundity 

models by both TTP and ETTP categories. The ETTP 

extension of TTP was due to an inclusion of assumption of 

fertilization process in fecundity to the existing TTP models 

(Ecochard 2006). However, during review of research 

contributions, TTP models was differentiated from the ETTP 

models. 

The TTPs models focuses on analyzing fecundity based on the 

assumption that conception probability µ of any couple is 

determined within a menstrual cycle, and µ varies from couple 

to couple. Menstrual cycles M are assumed to be set of 

Bernoulli trials that results to either 1 (success in conception; 

if conception occurs in Mi where i = {1, 2, 3, …., n}) or 0 

(failure in conception; if conception does not occur in Mi). 

This implies that µ is determined as described in equation 1. 

µ = Bernoulli(Mi)    (1) 

 

TTPs Analysis on Fertility Category 

Based on the fact that fecundity of fertility categorized 

couples (also known as, fertile couples) are within a menstrual 

cycle, it can be assumed that the discoveries on the fecundity 

of fertile couples should be from within a menstrual cycle. 

TTPs models used this assumption and proposed different 

statistical distributions for determining µ and its influencers. 

Earlier TTP models proposed geometric distributions for 

analyzing fecundity of fertile couples based on an assumption 

that fecundity behavior over different menstrual cycles are 

homogenous (see equation 2) (Ecochard 2006), but recent 

TTP models used more practical assumption that fecundity 

behavior is heterogynous to proposed a more flexible 

distributions.  

µ = µi, Ɐi, i = 1, 2, 3, ….,N   (2) 

Ecochard and Clayton (2000) proposed a TTP multivariate 

parametric model based on the foundation of Hougaard 

(1986) model. A generalization of the three-parameter family 

distributions was proposed to model fecundity at couple levels 

considering fixed and random effect of fecundity covariate. 

Equation 3 describes Ecochard and Clayton (2000) model.  

exp(µi) ~ P(α, δ, θ)    (3) 

The three-parameter family distributions are the non-negative 

stable distribution (when θ = 0), the gamma distribution 

(when α = 0), inverse Gaussian distribution (when α = 1/2). 

The significant features of the three-parametric family 

distributions are; 1) The outcome is closed under the selection 

induced by pregnancy and 2) The distribution leads to close-

form expression for likelihood terms.  

Dunson and Colombo (2003) focused on modelling fertility 

period (with respect to cervical mucus) as influencing factor 

for estimating conception probability. The work established a 

Bayesian model for detecting most fertile day for conception 

based on the cervical mucus marker. They observed 

conception probability µ based on cervical mucus baseline 

trajectory α as equation 4, this corresponds to Harville and 

Mee, (1984) generalized probit mixed model for the original 

polytomous mucus score. 

µij (s) = α(s) + g{s; α(s)} (Γxij + Λ1ηi1 + Λ2ηij2) for s ∈ [s1, 

sM]     (4) 

where α(s) is the expectation of µij (s) across the women i and 

cycle j, s denotes day related to mucus hydration peak,xij 

represent a covariate vector of i and j. Γ is an unknown 

regression constant,  ηi1 and ηij2 represents latent variables 

measuring deviations from women and cycles respectively 

(ηi1 from trajectory in the mucus hydration score, while ηij2 

from trajectory for woman i). Λ1 and Λ2 are square matrices 

of loading factors for identifiability purpose. g{s; α(s)} is a 1 

x l vector containing known smooth functions of s and α(s). 

The advantage of equation 4, is that the curve it generates 

accommodates deviations with respect to the overall level of 

fertility, when compared to some models like Barry (1995) 

model that generates curve that accommodates subject and 

time-specific deviations. The proposed Bayesian model for 

the baseline trajectory mucus hydration score α determination 

is given as equation 5 (for prior distribution) and Monte Carlo 

Macov Chain (MCMC) algorithm (for posterior evaluation). 

See Dunson and Colombo (2003). 

α(sM) ∼ N(µαM , σ2αM )   (5) 

Motivated with the fact that pregnancy probability cannot be 

explicitly explained only with respect to observed covariates 

but also with unexplained heterogeneity, Pennoniet al., (2017) 

proposed an ETTP model to determine fertile window. 

Probability of conception Uwas assumed to exhibits a first-

order Markov Chain with two state process (1; successful in 

conception, 0; unsuccessful in conception), of which the 

unexplained heterogeneity was accounted for in the proposed 

model as any response variable Y(t) (where t = 1,….., T; 

fertile window) which depends on U(t). Assuming Y(t) are 

conditional independent in U, then the conditional response 

probabilities are parameterized as in equation 6, where a 

Bernoulli distribution was assumed for the response variable 

with a certain success probability.  

P(t)y|ux = µy + αu + x1itβ   (6) 

whereP(t)y|ux represents the fertility window measurements, 

µy is the cut-point coefficient related to the response variable 

when equal to 1. αu represents latent process support point 

when it is equal to the first latent state. The αu parameter helps 

determines how the probability varies according to the two 

states of the chain. β is the vector of the regression coefficients 

for the observed covariates in x. β also helps in measurement 

of the influence of each covariate on the conception 

probability. 

McDonald et al. (2011) generated an ETTP logistic-normal-

geometric model (as described in equation 7) for modelling 

the effect of age, net of the coital pattern to fecundity. The 

model was differentiated from the existing models (Dunson et 

al., 2002; Dunson et al., 2004) for estimating age effect to 

fecundity, using the fact that total dependence of conception 

probability on coital pattern while estimating the age effects 

on conception probability is a limitation to their proposed 

model. McDonald et al. (2011) modelled the effect of age to 

the probability of conception for childless women while 

controlling coital pattern within a menstrual cycle. 

logit(fecundity) = s(age) + XIY + Zσ  (7) 

wheres(age) is modelled using restricted cubic splined with 

knots at ages 24, 28 and 32. This due to the scope of the 

proposed model. X, Y and Zσ represents other covariates, 

regression effects and random effects of unobserved 

heterogeneity in the risk of conception. 

 

TTPs Limitations in Analyzing Fertility Category 

Although, TTP models category analyzes heterogeneity of 

fecundity within menstrual cycles across couples, be it 

fecundity with respect to fertilization pattern or fecundity with 

respect to fertilization and fecundity covariates, but the TTPs 

pays less interests on modelling couples daily details pattern 

within a menstrual cycle like heterogeneity of effect of 

intercourse within fertile window to pregnancy probability. 

By this, it is presumed that the analysis results of the TTP 

models are probabilistic estimations of fertile couple 

fecundity with respect to how it can be influenced by its 

covariates. TTP less consideration of coital pattern 

information during developing its models serve as limitation 
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to its model and thus enabling recent research contributions to 

use the ETTP models development assumption. 

While the ETTP models category improves their analysis of 

fecundity heterogeneity by incorporating an assumption of 

fertilization; only coital occurrence on fertile window could 

result to pregnancy. The assumption was coiled out as a 

pragmatic approximation of the BMS assumption.  

 

TTPs Analysis on Subfertility Category 

TTPs are designed to analyze fecundity heterogeneity across 

couples (that is at couples level) (Ecochard 2006). This 

implies that any pregnancy probability estimation given by a 

TTPs model was based on the couple’s fecundity level. TTPs 

analysis is assumed to be applicable to fertile or subfertile 

couples in as far as the couple’s entries (based on the 

respective TTPs model parameters) are inputted. 

 

TTPs Limitations in Analyzing Subfertilitycategory (Sub 

fertile Couples’ Data) 

Based on the fecundity description of subfertility, number of 

menstrual cycles needed to achieve pregnancy differentiates 

subfertile couples from fertile couples (Liu et al. 2019). An 

assumption of number of menstrual cycles was observed not 

to be included in the TTPs models. 

 

Category 2 (BMS) 

Modelling pregnancy capability using this approach gives 

opportunity for detail characterization of daily activities 

within a menstrual cycle. This approach assumes that every 

act of intercourse within a menstrual cycle independently 

affect the probability of conception p. This in turn means, a 

cycle outcome of pregnancy (success or not) is independent 

on another cycle pregnancy outcome. 

 

BMS Analysis of Fertility Category 

Using the assumption of intercourse occurrence contribution 

to achieving pregnancy within a cycle, Barratt and Marshall 

(1969) (Barrett-Marshall) introduced the method for 

modelling pregnancy prediction process as given below 

P = 1 − ∏ (1 − 𝑝𝑑)𝑠𝑑
𝑑    (8) 

Equation 8 can also be seen as a derivation from a Bernoulli 

random variable with parameter of probability of success 

pregnancy depending on days and number of intercourse 

occurrence.  d represents a day in a menstrual cycle, pd 

estimates the probability of conception caused by intercourse 

occurring on d and sd is an indicator that describes whether 

intercourse occurred on d (if so, sd = 1) or not (or sd = 0). 

Barett-Marshall model as described in equation 2.8 was 

generated from equation 9, which assumes that, the capability 

for a woman to conceive depends on three (3) process; Ovule 

production o, Ovule fertilization f and Conceptus staying 

alive for at least six (6) weeks a (Colombo and Masaratto, 

2000). And by statistics, the probability of successful 

conception can be determined by taking the product of the 

probabilities of the processes (as given in equation 9). 

fecundity = Po. Pf . Pa   (9) 

The product of Po and Pa is taken as the cycle viability (that 

is, the ability of the cycle to achieve pregnancy), which 

depends on influential factors (biological or chemical) 

deduced from the body chemistry (like BBT, cervical mucus, 

age) and activities (like chemical intake, exercise) of the 

couples. Barett-Marshall model assumed the cycle viability to 

be in a successful state (that is Po .Pa = 1), therefore focusing 

on only the probability of the ovule to be fertilized Pf. Ovule 

fertilization depends on the occurrence of intercourse, 

therefore, Pf generation depends on intercourse occurrence i 

and the day within the fertile period of a menstrual cycle d. 

Including the assumption that every episode of intercourse has 

independent effect on the probability of pregnancy, Barrett-

Marshall model also assumed that the probability of 

pregnancy following intercourse on day d, say Pfd is constant 

between cycles and couples. 

However, Schwartz et al. (1980) observed the need of 

including the cycle viability estimation to the Barrett-Marshal 

model, so as to improve the limitation of Barrett-Marshal 

model. By this Schwartz et al. (1980) model is given as in 

equation 10. Where K is the probability of cycle viability. 

Equation 10 is known as the foundation BMS for improved 

proposed pregnancy probability models. 

P = 𝐾{1 − ∏ (1 − 𝑝𝑑)𝑠𝑑
𝑑 }   (10) 

Motivated by the BMS setback of K not a clearly defined 

biological parameter of cycle viability and indistinguishable 

covariate effect values on K and Pd, Dunson (2001) proposed 

a Bayesian pregnancy probability model as an improvement 

of BMS. Dunson (2001) extension of the BMS is given in 

equation below. 

P = 𝐾{𝑆𝑚 + (1 − 𝑆𝑚){1 −  ∏ (1 − 𝑃𝑙)𝑆𝑙+𝑚𝑑
𝑙=−𝐶 }} (11) 

K was defined as a cycle viability parameter for determining 

conception probability given intercourse occurrence S in the 

most fertile day m and Pl the ratio of conception probability 

given intercourse on day l to conception probability given 

intercourse on m. The improvement gives the opportunity for 

a flexible characterization of covariate effects among couples 

in daily fecundity. 

Improvements of BMS by further research contributions 

focused on improving the cycle viability parameter K which 

perhaps gives opportunity to improve the daily conception 

probability Pd parameter, just like Dunson and Stanford 

(2005) contribution, where Dunson (2001) conception 

probability model was improved due to its lack of selective 

power of categorical predictors levels in determining Pd, 

therefore a pregnancy probability model was proposed 

focusing on improving Pd  as shown in equation 12. 

Pd = 1 − 𝑒𝑥𝑝{−𝜉𝑖𝑒𝑥𝑝(𝑢𝑖𝑗𝑑
𝐼 𝛽)}  (12) 

Although, the cycle viability parameter was excluded in their 

proposed model due to the weak and unidentified nature 

exhibited by the parameter (Dunson and Stanford, 2005), but 

a random effect ξ in term of daily conception probability was 

included.ξ represents a fecundity multiplier for couple i, β is 

a vector of regression coefficient and uIijd is the covariate 

parameter value in cycle j from couple i. Kim et al. (2012) 

further generated a more flexible conception probability 

model using a reparametizedr =  −𝜉𝑖𝑒𝑥𝑝(𝑢𝑖𝑗𝑑
𝐼 𝛽) as log(r), this 

is due the probable biased estimates of P caused by the 

restriction of using the exponential link. 

Furthermore, extending the BMS model, models were 

proposed to estimate the effects of covariates on daily 

conception probability. Colombo et al. (2006) proposed a 

model (as in equation 13) for analyzing mucus covariate 

factor effects on conception probability. Their model proposal 

was presented to ease the difficulty arising from estimating 

the large number of cervical mucus score parameters within a 

twelve (12) days fertile window of a cycle. Such difficulty are 

experienced by works that analyzes the relationship between 

discharge mucus types and daily conception probability. 

P = 𝐴𝐶𝑗 . 𝐾{1 − ∏ (1 − 𝑝𝑑)𝑠𝑑
𝑑 }  (13) 

A represents the mucus covariate parameter, where Cj = 1 so 

as to estimate the mucus score for each cycle j. However, the 

mucus score model was derived based on the assumption the 

effects are fixed within a specific fertile window day and thus 

the effect of the mucus covariate on the daily probability of 

conception Pd was proposed as in equation 14. 

Pd = 
exp (𝛿𝑖+𝐴𝑀𝑖𝑗)

1+exp (𝛿𝑖+𝐴𝑀𝑖𝑗)
    (14) 
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Where δi is the effect of conception probability depending on 

the specific day i while Mij is the dummy variable indicating 

mucus code in cycle j by couple i. 

 

Further Development 

In the last two decades, modelling pregnancy probability have 

been extended to joint modelling, where fecundity covariates 

are modelled separately from pregnancy probability using 

statistical distributions and then a joint model for analyzing 

the covariate heterogeneity in fecundity is generated.  

Kim et al. (2010) proposed a joint model of intercourse 

covariate heterogeneity and fecundity putting into 

consideration the restrictive setback of BMS models 

applications due to the used assumption that each intercourse 

occurrence in consecutive days in a menstrual cycle 

contributes independently to achieving conception in that 

cycle. Thus the proposed joint model focus on understanding 

intercourse heterogeneity within a menstrual cycle fertile 

window by accounting for the dependency of intercourse 

occurrences on consecutive days. Motivated by the 

intercourse assumption that pregnancy achievement within a 

menstrual cycle does not only depend on intercourse 

occurrence within the menstrual cycle fertile window but also 

intercourse occurrence outside the menstrual cycle fertile 

window, Lumet al. (2016) used a cubic spline distribution to 

model details within a menstrual cycle and then proposed a 

Bayesian Joint Model for menstrual cycle length and 

pregnancy probability. Lumet al. (2017) extended Lumet al. 

(2016) work with the inclusion of a modelled distribution of 

perfluoroalkyl chemical concentration effect. Kim et al. 

(2019) also developed a joint model of environmental 

exposures detection limits effect model and pregnancy 

probability model of Kim et al. (2010). 

 

BMS Resolution on Analyzing Fertility Category 

Unlike the TTPs models that analyzes heterogeneity of 

fecundity and its covariates effects within menstrual cycles at 

the couples level, BMS models analyzes fecundity 

heterogeneity and covariates effects at menstrual cycle level 

across couples putting into account the daily biological and 

fertilization details of the couples. This best assist fertile 

couples to understand their chance of getting pregnant with 

respect to their daily fertilization activities and biological 

system across a cycle. 

 

BMS Analysis on Subfertility Category 

Similar to the TTPs models, BMS was assumed to be 

applicable to the subfertile couples due to its designed source 

(data) of both fertile and subfertile couples. Furthermore, 

irrespective of the fact that subfertile couples needs more than 

a menstrual cycle to achieve pregnancy, BMS could still be 

used to estimate the pregnancy probability of a subfertile 

couple within each of the menstrual cycles needed to achieve 

pregnancy. 

 

BMS Limitation on Analyzing Subfertility Category 

BMS assumed the pregnancy probability estimate within a 

menstrual cycle is constant across successive menstrual 

cycles with similar fecundity heterogeneity and covariates 

details (Barrett and Marshall, 1969). By this assumption, 

pregnancy probability of a subfertile couple in one cycle is 

same with other cycles needed to achieve pregnancy, if the 

daily fecundity pattern in one cycle is maintained in other 

cycles. The consequence to this assumption is that the 

pregnancy probability for a fertile couple in a cycle is same 

with a subfertile couple with similar daily fecundity pattern in 

a cycle. For instance, if the probability of pregnancy of fertile 

couple A in cycle A1 with fecundity pattern P(a,b,c) is 0.6 

then, the probability of pregnancy of subfertile couple B in 

cycle B1 with fecundity pattern P(a,b,c) will also be 0.6. The 

result is not true however, if the definition of subfertility in 

terms of the number of cycles needed to achieve pregnancy is 

accounted for in the proposed BMS model. Therefore, there 

is need for accounting for the number of menstrual cycles 

needed to achieve pregnancy for subfertile couple when 

proposing a pregnancy probability model.  

 

Category 3 (DLPP) 

The purpose of the introduction of this approach for 

developing fecunidty prediction is to minimize the scalability 

problem encountered by earlier TTPs and BMS models (Liu 

et al. 2019). The deep learning methods used for proposing 

the DLPP models is the Long-Short Term Memory. This is 

due the time series nature of fecundity data, and the best deep 

learning method for time series data as of when the DLPP 

approach was introduced is the LSTM network. Although, 

other deep and machine learning methods have been used for 

fecundity prediction like the DLNN and ANN based fecundity 

prediction models proposed by Naseem et al. (2023) and 

Yland et al. (2022) respectively.  

 

DLPP Analysis on Fertility Category 

The LSTM based DLPP approach uses same assumptions as 

the BMS approach for proposing pregnancy probability 

prediction models, which is accounting for daily fecundity 

details when predicting fecundity within a menstrual cycle. 

Liu et al. (2019) investigated the feasibility of predicting 

pregnancy using mobile health tracking data from the Clue 

app, addressing a long-standing challenge in women's health 

research. They developed four models—logistic regression 

and three LSTM variants—to estimate pregnancy probability, 

leveraging a dataset of 79 million logs from 65,276 women 

with confirmed pregnancy test results. Their models 

effectively stratified pregnancy risk, with the top 10% of 

predicted probabilities correlating to an 89% pregnancy 

likelihood over six cycles, compared to 27% in the lowest 

10%. Additionally, they introduced a method to extract 

interpretable trends from deep learning models, aligning with 

established fertility research. 

Naseem et al. (2023) explores the use of deep learning, 

specifically convolutional neural networks (CNNs), to 

improve the accuracy of predicting men's fertility. Traditional 

semen analysis, based on threshold values for sperm quality, 

may miss key factors influenced by diet and other conditions. 

The proposed method segments sperm heads and tracks their 

movement to assess fertility more accurately. The approach 

achieves 80.95% accuracy in predicting semen quality and 

85.71% accuracy in detecting sperm heads, suggesting that 

deep learning can enhance fertility assessments and aid in 

automating artificial insemination processes. 

Yland et al. (2022) study developed an ANN and other 

Machine Learning based models to predict the probability of 

conception among women actively trying to conceive, using 

data from a North American preconception cohort. With an 

AUC of around 70%, the models outperformed previous 

predictive efforts. Key predictors positively associated with 

pregnancy were previous breastfeeding and supplement use, 

while factors like female age, BMI, and infertility history had 

negative associations. The study highlights the potential of 

machine learning in improving conception prediction, though 

it acknowledges limitations like reliance on self-reported data 

and the absence of external validation. 

Wang et al. (2022) investigated the application of machine 

learning algorithms to predict clinical pregnancy outcomes in 
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IVF cycles using a large dataset of 24,730 patients from 

Taipei Medical University Hospital. Their study compared the 

performance of random forest and logistic regression models, 

finding that the random forest algorithm achieved superior 

predictive accuracy, with the ovarian stimulation protocol 

identified as the most influential factor, particularly long and 

ultra-long protocols, which positively impacted pregnancy 

success. Additionally, the number of frozen and transferred 

embryos was positively associated with clinical pregnancy, 

while female age and infertility duration had negative effects. 

Zhan et al. (2022) study focused on developing a predictive 

model to assess fecundity (the ability to conceive) based on 

several infertility-related factors in expectant couples. 

Researchers included 410 couples from a hospital in Xinjiang, 

China, conducting a one-year follow-up to track female 

pregnancy outcomes. The sample was divided into a model 

group and a test group to validate results. Factors identified as 

significant in predicting fecundity included female age, 

occupational stress, gynecological diseases, anti-Müllerian 

hormone (AMH), follicle-stimulating hormone (FSH), fasting 

plasma glucose (FPG), depression, and male smoking 

habits.Using logistic regression and LASSO regression 

analyses, the model achieved high accuracy, with the area 

under the curve (AUC) values ranging between 0.917 and 

0.955 across different groups. These AUC scores indicate 

strong predictive power, suggesting the model can effectively 

discriminate between higher and lower fecundity risks.  

Tarin et al. (2020) study aimed to create a predictive model to 

assess the chances of successful live birth (LB) for women 

before starting their first IVF or ICSI cycle. By examining two 

extreme prognostic groups—women who had an LB in their 

first cycle and those who failed after three cycles—the 

researchers sought to identify significant predictors of 

assisted fecundity.The study included 708 women, divided 

into a development group (531 women) and a validation 

group (177 women). Using logistic regression with forward-

stepwise selection, the model incorporated seven predictors: 

age, multiple infertility factors, antral follicle count, smoking 

status, irregular menstrual cycles, and baseline prolactin and 

LH levels. The model's performance, measured by the c-

statistic, was 0.718 in the development group and 0.649 in the 

validation group, indicating moderate predictive accuracy. 

Muhammad et al. (2023) conducted research to address 

limitations in fecundity prediction by proposing a hybrid data 

collection approach to overcome the challenges of small 

dataset size and low dimensionality in existing fecundity 

datasets, as well as refining the subfertility definition used in 

developing User-embedding LSTM-based prediction models. 

Their study generated a larger and more robust fecundity 

dataset, which was then used to implement and evaluate both 

existing and improved LSTM-based models. The proposed 

model demonstrated superior performance, as evidenced by 

better AUC-ROC evaluation results. 

Kassaw et al. (2025) investigated the application of machine 

learning (ML) models to classify fertility rates and identify 

key predictors among reproductive-age women in Ethiopia 

using data from the 2019 Ethiopian Demographic Health 

Survey (EDHS). The study employed eight ML models, 

developed in Python, with performance evaluated through 

metrics such as accuracy, AUC, precision, recall, and F1-

score. The random forest classifier emerged as the top-

performing model, followed by a one-dimensional 

convolutional neural network, logistic regression, and 

gradient boost classifier. Key predictors of fertility included 

family size, age, occupation, and education. The findings 

highlighted the potential of ML in fertility prediction and 

underscored socioeconomic factors as critical targets for 

public health interventions. 

Zhu et al. (2022) investigated the fertility behaviors of China's 

floating population using data from the 2016 China Migrants 

Dynamic Survey, employing logistic regression, multiple 

linear regression, artificial neural networks (ANN), and naive 

Bayes models to analyze influencing factors and predict 

reproductive decisions. Their findings revealed that 

demographic, socioeconomic, and migration-related 

factors—such as age, education, occupation, duration of 

residence, and economic conditions—significantly influenced 

fertility behaviors, with longer post-migration residence and 

better economic status positively correlating with higher 

fertility likelihood, while highly educated non-agricultural 

workers in first-tier cities exhibited lower fertility intentions. 

The ANN and logistic regression models demonstrated strong 

predictive accuracy, suggesting their utility in urban 

population management. 

Kelsey et al. (2022) developed a predictive model to estimate 

the age at which Premature Ovarian Insufficiency (POI) 

would occur in young female cancer patients undergoing 

pelvic radiotherapy, integrating an updated, externally 

validated model of ovarian reserve decline with the median 

lethal dose (LD50) for the human ovary. By utilizing the 

patient's age at diagnosis and the radiotherapy treatment plan 

to estimate ovarian dose, their algorithm generated 

personalized predictions of POI onset, which were made 

accessible via an online calculator to facilitate fertility risk 

counseling. The study illustrated the model's application 

through four case examples, comparing photon and proton 

therapy plans in terms of their impact on remaining fertile 

lifespan, emphasizing the importance of fertility 

considerations in pediatric oncology guidelines. 

Kim (2023) investigated factors influencing pregnancy 

intention among reproductive-aged women in Korea using 

data from the Korean National Health and Nutrition 

Examination Survey (KNHANES), which included 22,731 

women aged 15–49. To address confounding by age and birth 

year, the study employed propensity score matching and 

utilized the XGBoost model to identify key predictors, 

revealing weekly working hours as the most significant factor. 

Cluster analysis categorized women into three groups, with 

those working an average of 34.4±12.9 hours per week 

showing the highest pregnancy likelihood. Logistic regression 

further demonstrated that women working 35–45 hours 

weekly had significantly higher odds of pregnancy compared 

to those working other hours, underscoring the impact of 

excessive work hours on fertility intentions. The study 

highlighted Korea's long workweek relative to OECD 

standards and proposed stricter regulation of working hours 

and telecommuting options as potential policy measures to 

improve fertility rates. 

 

DLPP Analysis on Subfertile Couples 

Unlike TTPs, BMS and some DLPP models, LSTM based 

DLPP assumes pregnancy probability of subfertile couple 

within a menstrual cycle does not account for the complete 

historic fecundity heterogeneity of the subfertile couple, 

therefore fecundity details of prior menstrual cycles to the 

current menstrual cycle needs to be analyzed to determine the 

accurate pregnancy probability of a subfertile couple (Liu et 

al., 2019). 

Using this assumption Liu et al. (2019) proposed a pregnancy 

probability prediction model using a user-embedding LSTM 

(containing an analysis of fecundity details within 6 menstrual 

cycles, that is, 180 cycles’ days) concatenated with another 

LSTM (containing the analysis of fecundity details of the 
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current cycle). As described in figure 1, the proposed model 

User Embedding Long Short Term Memory (LSTMUE) 

architecture enables the estimation of the pregnancy 

probability by accounting for not only the fecundity 

heterogeneity of the current cycle but also the last six (cycles).  

 

 
Figure 1: LSTMUE architecture (Liu et al., 2019) 

 

DLPP incorporated the definition of subfertility in term of 

number of menstrual cycles needed to achieve pregnancy with 

its proposed model for predicting fecundity. However, the 

proposed model focused on analyzing only seven (7) cycles 

whereas a couple is said to be subfertile for a period of 12 

menstrual cycles before considered as clinical infertile (Van 

der steeg et al., 2006), so therefore, a more accommodating 

DLPP model architecture is needed to accommodate the 

benchmark menstrual cycles number needed to achieve 

pregnancy for subfertile couples. 

 

CONCLUSION  

Fecundity prediction models were developed to support the 

process of predicting fecundity, however, the proposed 

fecundity models are bound to exhibit certain limitations. To 

help identify such limitations, the proposed models and data 

used for validating the proposed models or used for analyzing 

fecundity amongst couples are reviewed. In this study review, 

proposed fecundity models were reviewed in three categories 

Although, it was observed that the TTPs and BMS fecundity 

analysis models focuses more on analyzing the fecundity 

heterogeneity among fertility categorized couples but the 

proposed fecundity models unsatisfactorily analyzes the 

fecundity heterogeneities among subfertility categorized 

couples (Muhammad et al., 2023; Liu et al., 2019). On the 

other hand, DLPP models focuses on analyzing the fecundity 

heterogeneity among fertile and subfertile couples, but 

explicitly distinguishing fertility and subfertility from 

analyzing same dataset is still a problem to be resolved 

(Muhammad et al., 2023). Furthermore, some fertility 

influencing factors are yet to be explicitly studied to 

understand how they influence fertility; like woman's history 

of pregnancies, women menstrual cycle lengths’ dynamicity. 
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