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ABSTRACT 

Rabies remains a fatal zoonotic disease that poses a significant public health challenge, particularly in low- and 

middle-income countries. In this study, we develop and analyze a deterministic compartmental model based on 

ordinary differential equations to investigate the transmission dynamics of rabies between humans and dogs.  

Basic properties of the model such as positivity, boundedness, and the existence of equilibria are established, 

and the model is well-posed mathematically and biologically. The basic reproduction number, 𝑅𝐷, is derived 

using the next-generation matrix method, and stability analysis reveals that the rabies-free equilibrium is locally 

and globally asymptotically stable when 𝑅𝐷 < 1. The model exhibits a unique endemic equilibrium, when 

𝑅𝐷 > 1, which is also globally stable whenever 𝑅𝐷 < 1. Sensitivity analysis using both normalized forward 

sensitivity indices and partial rank correlation coefficients (PRCC) identifies the most influential parameters 

on 𝑅𝐷. Numerical simulations demonstrate that vaccination, particularly in the dog population is the most 

effective control strategy in reducing the spread of rabies. The results emphasize the importance of prioritizing 

control interventions in the dog population to effectively manage and reduce the burden of rabies. 
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INTRODUCTION 

Rabies is a viral infection that impacts mammals, including 

humans, and is caused by the Rabies lyssa virus. The virus 

spreads from the point of entry to the brain, leading to 

inflammation and damage to the nervous system (Paola et al., 

2022, Kumar et al., 2023).  Although dogs are the main 

carriers of the rabies virus responsible for over 99% of human 

cases globally other animals like bats, raccoons, skunks, and 

foxes can also transmit the virus through bites or scratches 

(Pallvi et al., 2023).  

Rabies symptoms typically appear between 20 days and 3 

months after exposure and may include fever, headache, 

fatigue, agitation, anxiety, hallucinations, fear of water 

(hydrophobia), difficulty swallowing, and paralysis. The 

onset period can range from 1 week to 1 year post-exposure, 

depending on factors such as the site of viral entry and the 

amount of virus introduced. In rare instances, the incubation 

period may extend up to 7 years. Without timely and 

appropriate medical intervention, such as vaccination, the 

infection can progress to coma and eventually result in death 

(Demsis et al., 2022).  

Rabies causes approximately 60,000 human deaths 

worldwide each year (Bilal et al., 2021). In low- and middle-

income countries (LMICs) across Asia and Africa, effective 

control efforts are often challenged by the absence of timely 

and reliable data on rabies cases in both humans and animals. 

The true number of deaths resulting from rabies virus 

(RABV) infections in low- and middle-income countries is 

likely underreported, and the behavior and dynamics of rabid 

dog populations remain insufficiently understood (Tian et al., 

2018).  

Research by Sambo et al., (2013) found that the actual human 

rabies mortality rate in the United Republic of Tanzania was 

substantially higher than the figures officially reported. Based 

on an analysis of active surveillance data on bite incidents, the 

study estimated an annual rabies mortality rate of 1,499 

deaths, with a 95% confidence interval ranging from 891 to 

2,238 deaths. This corresponds to an annual death rate of 4.9 

per 100,000 people, with a range of 2.9 to 7.2 per 100,000. 

Mathematical modeling has played a crucial role in improving 

the understanding and control of infectious diseases like 

rabies. These analytical tools have been valuable in 

forecasting disease trends and guiding healthcare 

professionals in developing effective management strategies. 

A wide range of mathematical models has been formulated 

and examined to explore the transmission dynamics of rabies 

in human and canine populations (Hassan & Abdulmajid, 

2021; Amaoko et al., 2021; Fredrick et al., 2022). These 

studies have highlighted key factors influencing the spread of 

the disease and have proposed various control strategies.  

According to Bohrer et al., (2002), in desert regions where 

host population sizes fluctuate over time, a non-uniform 

distribution of oral rabies vaccination can, under certain 

conditions, be more effective than the standard uniform 

approach. The effectiveness of such a targeted strategy 

partially depends on the movement patterns of the host 

species. Their findings also indicate that in warmer 

environments, rabies may persist in certain high-density areas 

that are surrounded by populations with densities below the 

critical threshold needed for sustained transmission. 

Levin et al., (2012) developed a model to investigate the 

immune response to rabies virus in bats. Coyne et al. (1989) 

introduced an SEIR framework, which was later applied to 

study the local transmission dynamics of rabies among 

raccoons in the United States. Similarly, Childs et al. (2000) 

examined rabies outbreaks in raccoon populations with 

seasonal birth pulses, employing an SEIRS model integrated 

with optimal control techniques to capture population 

dynamics. Hampson et al., (2007) observed that rabies 

epidemics in African dog populations exhibit cyclical patterns 

every 3 to 6 years, leading them to formulate an SEIV 

(Susceptible-Exposed-Infectious-Vaccinated) model 
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incorporating an intervention variable that demonstrated 

strong synchrony in epidemic behavior. 

Carroll et al., (2010) employed compartmental models to 

examine rabies transmission in dog populations and assessed 

the effectiveness of three control strategies: routine 

vaccination, pulse vaccination combined with fertility 

control, and culling. Additionally, studies (Wangand & Lou, 

2008; Yang & Lou, 2009) utilized ordinary differential 

equation models to describe the transmission dynamics of 

rabies between humans and dogs. Zinsstag et al., (2009) 

advanced existing rabies transmission models by 

incorporating dog-to-human transmission, concluding that 

combining dog vaccination campaigns with human post-

exposure prophylaxis (PEP) offers a more cost-effective long-

term control strategy. In a related effort, Ding et al., (2007) 

developed a spatially structured, discrete-time epidemic 

model for rabies in raccoons. Their study focused on 

identifying optimal vaccine bait distribution strategies aimed 

at minimizing both disease spread and control costs. 

Asamoah et al., (2017) proposed that vaccinating domestic 

animals and administering both pre-exposure and post-

exposure prophylaxis are effective measures for controlling 

the spread of rabies. In regions such as China and parts of 

Africa including Ghana’s Upper East and West dog meat is 

considered a delicacy. Notably, despite extensive studies on 

rabies transmission and control, the role of dog consumption 

by humans in the disease's spread remains largely unexplored. 

This study aims to investigate the combined impact of 

treatment and vaccination strategies within human and dog 

populations. 

Motivated by the projections of the Global Alliance for 

Rabies Control (“Global alliance for rabies control,” 2016) 

and the aforementioned studies, this work aims to formulate a 

deterministic vaccination rabies model in humans and dog’s 

population. The structure of this paper is as follows: Section 

2 presents the model formulation, including the underlying 

assumptions, the flow diagram, model equations, and their 

basic properties. Section 3 provides the analytical results, 

covering the equilibrium points, the basic reproduction 

number, 𝑅𝐷, and the stability analysis of the equilibria. In 

Section 4, we outline the parameter values used to compute 

the basic reproduction number, perform a sensitivity analysis 

using Latin Hypercube Sampling (LHS), and display related 

numerical simulations. Finally, Section 5 discusses the 

findings and concludes the study. 

MATERIALS AND METHODS 

Model Formulation 

In this section, a mathematical model for the transmission 

dynamics of rabies in human and dog population is developed. 

The total human population at time 𝑡, denoted by 𝑁𝐻(𝑡), is 

divided into compartments of susceptible (𝑆𝐻(𝑡)), vaccinated 

(𝑉𝐻(𝑡)), infected (𝐼𝐻(𝑡)), treated (𝑇𝐻(𝑡)) and recovered 

(𝑅𝐻(𝑡)) humans, so that: 

𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝑉𝐻(𝑡) + 𝐼𝐻(𝑡) + 𝑇𝐻(𝑡) + 𝑅𝐻(𝑡)  

Similarly, the population of dogs at time 𝑡, denoted by 

𝑁𝐷(𝑡), is subdivided into compartments of susceptible 

(𝑆𝐷(𝑡)), vaccinated (𝑉𝐷(𝑡)) and infected (𝐼𝐷(𝑡)) dogs, so 

that: 

𝑁𝐷(𝑡) = 𝑆𝐷(𝑡) + 𝑉𝐷(𝑡) + 𝐼𝐷(𝑡)  

In the rabies model system (1), Π𝐻(Π𝐷) is the recruitment of 

humans (dogs) into the population of susceptible humans 

(dogs), 𝛽𝐷𝐷(𝛽𝐷𝐻) represents rabies transmission rate from 

dogs-dogs (dogs-humans). Natural death for humans (dogs) is 

given by the parameter 𝜇𝐻(𝜇𝐷) which is assumed to occur in 

all humans (dogs) populations. Susceptible humans (dogs) 

gets vaccinated (pre-exposure prophylaxis) at a rate 𝑡𝐻(𝑚𝐷), 
the parameters 𝐾𝐻(𝐾𝐷) represents vaccine waning rate in 

humans (dogs) population. Infected humans get treated at a 

rate 𝜎𝐻 and progress to treated class. 𝜌𝐻 represents the rate at 

which treated humans recover from rabies infection. 

Recovered humans loss their immunity (and revert back to 

susceptible class) at a rate 𝑟𝐻. Disease induced mortality (dog 

culling) is assumed to occur in humans (dogs) population at a 

rate 𝑐𝐻(𝑐𝐷).  The flow diagram of the rabies model (1) is 

depicted in Figure 1, and the state variables and model 

parameters of model (1) are described in Table 1 and Table 2, 

respectively. The model is formulated based on the following 

assumptions: 

i. Human and Dog population mixed homogeneously: it is 

assumed that the population of humans and dogs mixed 

homogeneously, and that every member of the 

community (human or dog) has equal likelihood of 

mixing with every other member of the community. 

ii. Human-human transmission was not considered (i.e., 

rabies virus is transmitted through contact with infected 

dogs only). 

iii. Culling of infected dogs was considered as one of the 

control strategies in curtailing rabies infection.  

 

  
Figure 1: Schematic Diagram of the Model 

 

The equations defining the dynamics of rabies virus in dogs – humans is given below: 
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𝑆𝐻
�

= Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝑡𝐻)𝑆𝐻 + 𝑘𝐻𝑉𝐻 + 𝑟𝐻𝑅𝐻

𝑉𝐻
�

= 𝑡𝐻𝑆𝐻 − (𝑘𝐻 + 𝜇𝐻)𝑉𝐻

𝐼𝐻
�

= 𝜆𝐻𝑆𝐻 − (𝜇𝐻 + 𝜎𝐻 + 𝑐𝐻)𝐼𝐻

𝑇𝐻
�

= 𝜎𝐻𝐼𝐻 − (𝜇𝐻 + 𝜌𝐻)𝑇𝐻

𝑅𝐻
�

= 𝜌𝐻𝑇𝐻 − (𝑟𝐻 + 𝜇𝐻)𝑅𝐻

𝑆𝐷
�

= Π𝐷 − (𝜆𝐷 + 𝜇𝐷 +𝑚𝐷)𝑆𝐷 + 𝑘𝐷𝑉𝐷

𝑉𝐷
�

= 𝑚𝐷𝑆𝐷 − (𝑘𝐷 + 𝜇𝐷)𝑉𝐷

𝐼𝐷
�

= 𝜆𝐷𝑆𝐷 − (𝜇𝐷 + 𝑐𝐷)𝐼𝐷 }
 
 
 
 
 
 

 
 
 
 
 
 

       (1) 

where 𝜆𝐻(𝜆𝐷) is the infection rate for humans (dogs) and are defined by: 

𝜆𝐻 =
𝛽𝐷𝐻𝐼𝐷

𝑁𝐻
 and 𝜆𝐷 =

𝛽𝐷𝐷𝐼𝐷

𝑁𝐷
 

with 𝑆𝐻(0) > 0, 𝑉𝐻(0) ≥ 0, 𝐼𝐻(0) ≥ 0, 𝑇𝐻(0) ≥ 0, 𝑅𝐻(0) ≥ 0, 𝑆𝐷(0) > 0, 𝑉𝐷(0) ≥ 0, 𝐼𝐷(0) ≥ 0. 

 

Table 1: State Variables of the Model 

State Variable Description 

𝑆𝐻 Susceptible human population 

𝑉𝐻 Vaccinated human population 

𝐼𝐻 Infected human population  

𝑇𝐻 Treated human population 

𝑅𝐻 Recovered human population 

𝑆𝐷 Susceptible dog population 

𝑉𝐷 Vaccinated dog population 

𝐼𝐷 Infected dog population 

 

Table 2: Parameter Description of the Model 

Parameter Description 

Π𝐻,Π𝐷 Human/Dog recruitment rate 

𝜇𝐻, 𝜇𝐷 Natural death rate of Humans/Dogs  

𝛽𝐷𝐻 , 𝛽𝐷𝐷 Human/Dog transmission rate  

𝑐𝐻 , 𝑐𝐷 Disease induced death in Humans/culling effects in Dogs 

𝑡𝐻, 𝑚𝐷 Vaccination rate in Humans/Dogs 

𝑘𝐻 , 𝑘𝐷 Vaccine waning rate in Humans/Dogs 

𝑟𝐻 Loss of immunity rate in Humans 

𝜎𝐻 Treatment rate in Humans  

𝜌𝐻 Humans recovery rate  

 

Basic Properties of the Model 

Since the model system (1) monitors human and dog 

populations, all its associated parameters are non-negative. 

Further, the following non-negativity result holds: 

Theorem 2.2.1: The variables of the model system (1) are non-

negative for all time 𝑡 > 0. In other words, the solution of the 

model system (1) with positive initial data will remain 

positive for all time 𝑡 > 0. 

Proof: Let 𝑡1 = 𝑠𝑢𝑝{𝑡 > 0: 𝑆𝐻 > 0,𝑉𝐻 ≥ 0, 𝐼𝐻 ≥ 0, 𝑇𝐻 ≥
0,𝑅𝐻 ≥ 0, 𝑆𝐷 > 0,𝑉𝐷 ≥ 0, 𝐼𝐷 ≥ 0}. Thus, 𝑡1 > 0. It follows 

from the first equation of model system (1) that: 

𝑆𝐻
�

= Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝑡𝐻)𝑆𝐻(𝑡) + 𝑟𝐻𝑅𝐻(𝑡) + 𝑘𝐻𝑉𝐻(𝑡) ≥
Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝑡𝐻)𝑆𝐻(𝑡)  

So that 

𝑆𝐻(𝑡1) ≥ 𝑆𝐻(0) 𝑒𝑥𝑝 [−(𝜇𝐻 + 𝑡𝐻)𝑡1 − ∫ 𝜆𝐻(𝑢)𝑑𝑢
𝑡1
0

] +

{𝑒𝑥𝑝 [−(𝜇𝐻 + 𝑡𝐻)𝑡1 − ∫ 𝜆𝐻(𝑢)𝑑𝑢
𝑡1
0

]} ∫ Π𝐻 𝑒𝑥𝑝[(𝜇𝐻 +
𝑡1
0

𝑡𝐻)𝑥 + ∫ 𝜆𝐻(𝑢)𝑑𝑢
𝑥

0
] 𝑑𝑥 > 0   

A similar approach can be used to show that 𝑉𝐻(𝑡) ≥
0,𝐼𝐻(𝑡) ≥ 0,𝑇𝐻(𝑡) ≥ 0,𝑅𝐻(𝑡) ≥ 0,𝑆𝐷(𝑡) > 0, 

𝑉𝐷(𝑡) ≥ 0,𝐼𝐷(𝑡) ≥ 0 for all time 𝑡 > 0. Hence, all non-

negative initial solutions of model system (1) remain non-

negative for all time 𝑡. We claim the following result. 

Theorem 2.2.2: Consider the closed sets  

Ε𝐻 = {(𝑆𝐻, 𝑉𝐻, 𝐼𝐻, 𝑇𝐻, 𝑅𝐻) ∈ ℝ+
5 } and Ε𝐷 = {(𝑆𝐷, 𝑉𝐷, 𝐼𝐷) ∈

ℝ+
3 } 

The region  

Ε = Ε𝐻 ∪ Ε𝐷  

is positively invariant and attracting with respect to the model 

(1). 

Proof: Adding the first five and the last three equations of 

model (1), we have  
𝑑𝑁𝐻

𝑑𝑡
= Π𝐻 − 𝜇𝐻𝑁𝐻 − 𝑐𝐻𝐼𝐻   (1) 

and  
𝑑𝑁𝐷

𝑑𝑡
= Π𝐷 − 𝜇𝐷𝑁𝐷 − 𝑐𝐷𝐼𝐷   (2) 

Since all parameters of model (1) are non-negative, it 

follows from (1.1) and (1.2) that 
𝑑𝑁𝐻(𝑡)

𝑑𝑡
≤ Π𝐻 − 𝜇𝐻𝑁𝐻(𝑡)   (3) 

and  
𝑑𝑁𝐷(𝑡)

𝑑𝑡
≤ Π𝐷 − 𝜇𝐷𝑁𝐷(𝑡)   (4) 
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Consequently, it follows from (2.3) and (2.4), using the 

comparison theorem as used by Hale (1969), that:  

𝑁𝐻(𝑡) ≤ 𝑁𝐻(0)𝑒
−𝜇𝐻(𝑡) +

Π𝐻

𝜇𝐻
[1 − 𝑒−𝜇𝐻(𝑡)]  

Similarly, from (2.4), it follows that: 

𝑁𝐷(𝑡) ≤ 𝑁𝐷(0)𝑒
−𝜇𝐷(𝑡) +

Π𝐷

𝜇𝐷
[1 − 𝑒−𝜇𝐷(𝑡)]  

In particular, 𝑁𝐻(𝑡) ≤
Π𝐻

𝜇𝐻
 if 𝑁𝐻(0) ≤

Π𝐻

𝜇𝐻
 and 𝑁𝐷(𝑡) ≤

Π𝐷

𝜇𝐷
 if 

𝑁𝐷(0) ≤
Π𝐷

𝜇𝐷
, respectively. Thus, if 𝑁𝐻(0) >

Π𝐻

𝜇𝐻
, then either 

the solution of the human component of the model enters Ε𝐻 

in finite time, or 
𝑁𝐻(𝑡)→Π𝐻

𝜇𝐻
. Hence, the feasible region Ε𝐻 is 

invariant and attracting. Similarly, it can be seen that if 

𝑁𝐷(0) >
Π𝐷

𝜇𝐷
, then either the solution of the dog component of 

the model enters Ε𝐷 in finite time, or 𝑁𝐷(𝑡) →
Π𝐷

𝜇𝐷
. Hence, Ε𝐷 

is also positively invariant and attracting. It follows that Ε is 

positively invariant and attracting with respect to the model. 

 

Model Analysis 

Existence and Stability of Rabies-Free Equilibrium 

The model (1) has a unique rabies-free equilibrium (RFE) 

given by: 

Γ0 = [𝑆𝐻
0 , 𝑉𝐻

0, 𝐼𝐻
0 , 𝑇𝐻

0, 𝑅𝐻
0 , 𝑆𝐷

0 , 𝑉𝑑
0, 𝐼𝐷

0] =

[𝑆𝐻
0 , 𝑉𝐻

0, 0,0,0, 𝑆𝐷
0 , 𝑉𝑑

0, 0]  

where: 

𝑆𝐻
0 =

Π𝐻(𝑘𝐻+𝜇𝐻)

𝜇𝐻(𝑘𝐻+𝜇𝐻+𝑡𝐻)

𝑉𝐻
0 =

𝑡𝐻Π𝐻

𝜇𝐻(𝑘𝐻+𝜇𝐻+𝑡𝐻)

𝑆𝐷
0 =

Π𝐷(𝑘𝐷+𝜇𝐷)

𝜇𝐷(𝑘𝐷+𝜇𝐷+𝑚𝐷)

𝑉𝐷
0 =

𝑚𝐷Π𝐷

𝜇𝐷(𝑘𝐷+𝜇𝐷+𝑚𝐷)}
  
 

  
 

  

Using the next-generation matrix method, the rabies-free 

equilibrium of model (1) is locally asymptotically stable if the 

spectral radius of matrix 𝐹𝑉−1 is less than one, where 

matrices 𝐹 and 𝑉 are given by: 

𝐹 = [
0 𝛽𝐷𝐻 (

𝑆𝐻
0

𝑁𝐻
0)

0 𝛽𝐷𝐷 (
𝑆𝐷
0

𝑁𝐷
0)
], and 𝑉 = [

𝜇𝐻 + 𝜎𝐻 + 𝑐𝐻 0
0 𝜇𝐷 + 𝑐𝐷

] 

we define the reproduction number of the model as: 

𝑅𝐷 = 𝜌(𝐹𝑉
−1) =

𝛽𝐷𝐷Π𝐷(𝑘𝐷+𝜇𝐷)

𝜇𝐷(𝜇𝐷+𝑐𝐷)(𝑘𝐷+𝜇𝐷+𝑚𝐷)
  

The basic reproduction number 𝑅𝐷, of model (1), represents 

the average number of new cases (in humans or dogs) 

generated by a typical infectious dog if introduced in a 

completely susceptible population of both humans and dogs.  

Theorem 3.1 The rabies-free equilibrium of model (1) is 

locally asymptotically stable whenever 𝑅𝐷 < 1 and unstable 

if 𝑅𝐷 > 1. 

The epidemiological implication of Theorem 2.1 is that small 

influx of infected dogs in well-mixed dogs-human population 

(when 𝑅𝐷 < 1) will not generate a significant rabies virus 

outbreak in the human-dog community if the initial number 

of infected humans or camels is small enough. 

 

Endemic Equilibrium Point 

The endemic equilibrium point denoted by Γ1 which describes 

contact between infected dogs and humans is given as  

Γ1 = [𝑆𝐻
* , 𝑉𝐻

* , 𝐼𝐻
* , 𝑇𝐻

* , 𝑅𝐻
* , 𝑆𝐷

* , 𝑉𝑑
*, 𝐼𝐷

* ]  

where: 

𝑆𝐻
* =

Π𝐻+𝑟𝐻𝑅𝐻
* +𝑘𝐻𝑉𝐻

*

𝛽𝐷𝐷𝐼𝐷
* +(𝜇𝐻+𝑡𝐻)

,  

𝑉𝐻
* =

𝑡𝐻𝑆𝐻
*

𝑘𝐻+𝜇𝐻
,𝐼𝐻
* =

𝛽𝐷𝐷𝐼𝐷
* 𝑆𝐻

*

𝜇𝐻+𝜎𝐻+𝑐𝐻
,  

𝑇𝐻
* =

𝜎𝐻𝐼𝐻
*

𝜇𝐻+𝜌𝐻
, 𝑅𝐻

* =
𝜌𝐻𝑇𝐻

*

𝑟𝐻+𝜇𝐻
, 

𝑆𝐷
* =

𝜇𝐷+𝑐𝐷

𝛽𝐷𝐷
  

𝑉𝐷
* =

𝑚𝐷(𝜇𝐷+𝑐𝐷)

𝛽𝐷𝐷(𝑘𝐷+𝜇𝐷)
,𝐼𝐷
* =

𝜇𝐷(𝑘𝐷+𝜇𝐷+𝑚𝐷)

𝛽𝐷𝐷(𝜇𝐷+𝑘𝐷)
[𝑅𝐷 − 1] 

which exists whenever 𝑅𝐷 > 1. 

 

Global Stability of Rabies-Free Equilibrium Point 

The global stability analysis of the rabies-free equilibrium 

point will be carried out using Lyapunov function as adapted 

in Musa et al., (2024). We claim the following; 

Theorem 3.2 The rabies-free equilibrium point, Γ0 is globally 

asymptotically stable (GAS) whenever 𝑅𝐷 < 1. 

Proof: Consider the following Lyapunov function: 

𝐾 = 𝑔1𝐼𝐷  

with Lyapunov derivative given by 

𝐾
�

= 𝑔1𝐼𝐷
�

= 𝑔1[𝛽𝐷𝐷𝐼𝐷𝑆𝐷 − (𝜇𝐷 + 𝑐𝐷)𝐼𝐷]  

= 𝑔1 [
𝛽𝐷𝐷Π𝐷(𝑘𝐷+𝜇𝐷)

𝜇𝐷(𝑘𝐷+𝑚𝐷+𝜇𝐷)
− (𝜇𝐷 + 𝑐𝐷)] 𝐼𝐷  

choose 𝑔1 = 𝜇𝐷, so that 

𝐾
�

= 𝜇𝐷 [
𝛽𝐷𝐷Π𝐷(𝑘𝐷+𝜇𝐷)

𝜇𝐷(𝑘𝐷+𝑚𝐷+𝜇𝐷)
− (𝜇𝐷 + 𝑐𝐷)] 𝐼𝐷  

= 𝜇𝐷(𝜇𝐷 + 𝑐𝐷) [
𝛽𝐷𝐷Π𝐷(𝑘𝐷+𝜇𝐷)

𝜇𝐷(𝜇𝐷+𝑐𝐷)(𝑘𝐷+𝑚𝐷+𝜇𝐷)
− 1] 𝐼𝐷  

= 𝜇𝐷(𝜇𝐷 + 𝑐𝐷)𝐼𝐷[𝑅𝐷 − 1] ≤ 0    for   𝑅𝐷 < 1  

since all the model parameters are assumed to be non-

negative, it follows that 𝐾
�

≤ 0 if 𝑅𝐷 < 1 with 𝐾
�

= 0 only if 

𝐼𝐷 = 0. Hence, 𝐾
�

 is a Lyapunov function on Ε. This result 

shows that rabies virus can be eliminated from the community 

within a certain period of time if the threshold 𝑅𝐷 < 1. 

 

Global Stability of Endemic Equilibrium Point 

The endemic equilibrium point, Γ1 is globally asymptotically 

stable (GAS) whenever 𝑅𝐷 > 1. 

Proof: Let 𝑅𝐷 > 1 and consider a non-linear Lyapunov 

function of Goh-Volterrra type given by 

𝐽 = 𝑑1 [𝑆𝐻 − 𝑆𝐻
* − 𝑆𝐻

* 𝑙𝑛 (
𝑆𝐻

𝑆𝐻
* )] + 𝑑2 [𝑉𝐻 − 𝑉𝐻

* −

𝑉𝐻
* 𝑙𝑛 (

𝑉𝐻

𝑉𝐻
*)] + 𝑑3 [𝐼𝐻 − 𝐼𝐻

* − 𝐼𝐻
* 𝑙𝑛 (

𝐼𝐻

𝐼𝐻
* )] + 𝑑4 [𝑇𝐻 − 𝑇𝐻

* −

𝑇𝐻
* 𝑙𝑛 (

𝑇𝐻

𝑇𝐻
*)] + 𝑑5 [𝑅𝐻 − 𝑅𝐻

* − 𝑅𝐻
* 𝑙𝑛 (

𝑅𝐻

𝑅𝐻
* )] + 𝑑6 [𝑆𝐷 − 𝑆𝐷

* −

𝑆𝐷
* 𝑙𝑛 (

𝑆𝐷

𝑆𝐷
* )] + 𝑑7 [𝑉𝐷 − 𝑉𝐷

* − 𝑉𝐷
* 𝑙𝑛 (

𝑉𝐷

𝑉𝐷
*)] + 𝑑8 [𝐼𝐷 − 𝐼𝐷

* −

𝐼𝐷
* 𝑙𝑛 (

𝐼𝐷

𝐼𝐷
* )]    (5) 

taking the time derivative of 𝐽 from (3.5), we have   

𝐽
�

= 𝑑1 [1 −
𝑆𝐻
*

𝑆𝐻
] 𝑆𝐻
�

+ 𝑑2 [1 −
𝑉𝐻
*

𝑉𝐻
] 𝑉𝐻
�

+ 𝑑3 [1 −
𝐼𝐻
*

𝐼𝐻
] 𝐼𝐻
�

+

𝑑4 [1 −
𝑇𝐻
*

𝑇𝐻
] 𝑇𝐻
�

+ 𝑑5 [1 −
𝑅𝐻
*

𝑅𝐻
] 𝑅𝐻
�

+ 𝑑6 [1 −
𝑆𝐷
*

𝑆𝐷
] 𝑆𝐷
�

+

𝑑7 [1 −
𝑉𝐷
*

𝑉𝐷
] 𝑉𝐷
�

+ 𝑑8 [1 −
𝐼𝐷
*

𝐼𝐷
] 𝐼𝐷
�

  (6) 

where 𝑑𝑖(𝑖 = 1,2, … ,8) are equal to 1. At steady state, the 

following relations holds:  

Π𝐻 = 𝜆𝐻
* 𝑆𝐻

* + (𝜇𝐻 + 𝑡𝐻)𝑆𝐻
* , (𝜇𝐻 + 𝑘𝐻) =

𝑡𝐻𝑆𝐻
*

𝑉𝐻
* , (𝜇𝐻 +

𝜎𝐻 + 𝑐𝐻) =
𝜆𝐻
* 𝑆𝐻

*

𝐼𝐻
*  

(𝜇𝐻 + 𝜌𝐻) =
𝜎𝐻𝐼𝐻

*

𝑇𝐻
* ,  (𝑟𝐻 + 𝜇𝐻) =

𝜌𝐻𝑇𝐻
*

𝑅𝐻
* , Π𝐷 =

𝜆𝐷
* 𝑆𝐷

* + (𝜇𝐷 +𝑚𝐷)𝑆𝐷
*    (7) 

(𝑘𝐷 + 𝜇𝐷) =
𝑚𝐷𝑆𝐷

*

𝑉𝐷
* ,  (𝜇𝐷 + 𝑐𝐷) =

𝜆𝐷
* 𝑆𝐷

*

𝐼𝐷
*  
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Following the approach in Yang et al., (2017), let the function 𝐽 = 1 − 𝑥 + 𝑙𝑛 𝑥, then if 𝑥 > 0, it leads to 𝐽(𝑥) ≤ 0. And if 

𝑥 = 1, then 𝐽(𝑥) = 0 so that 𝑥 ≥ 1 + 𝑙𝑛 𝑥 for any 𝑥 > 0. Then, substituting the RHS of model equation (1) into (3.6), we 

have; 

𝐽
�

= [1 −
𝑆𝐻
*

𝑆𝐻
] (Π𝐻 − 𝜆𝐻𝑆𝐻 − (𝜇𝐻 + 𝑡𝐻)𝑆𝐻) + [1 −

𝑉𝐻
*

𝑉𝐻
] (𝑡𝐻𝑆𝐻 − (𝑘𝐻 + 𝜇𝐻)𝑉𝐻)  

+ [1 −
𝐼𝐻
*

𝐼𝐻
] (𝜆𝐻𝑆𝐻 − (𝜇𝐻 + 𝜎𝐻 + 𝑐𝐻)𝐼𝐻) + [1 −

𝑇𝐻
*

𝑇𝐻
] (𝜎𝐻𝐼𝐻 − (𝜇𝐻 + 𝜌𝐻)𝑇𝐻)  

+ [1 −
𝑅𝐻
*

𝑅𝐻
] (𝜌𝐻𝑇𝐻 − (𝑟𝐻 + 𝜇𝐻)𝑅𝐻) + [1 −

𝑆𝐷
*

𝑆𝐷
] (Π𝐷 − 𝜆𝐷𝑆𝐷 − (𝜇𝐷 +𝑚𝐷)𝑆𝐷)  

+ [1 −
𝑉𝐷
*

𝑉𝐷
] (𝑚𝐷𝑆𝐷 − (𝑘𝐷 + 𝜇𝐷)𝑉𝐷) + [1 −

𝐼𝐷
*

𝐼𝐷
] (𝜆𝐷𝑆𝐷 − (𝜇𝐷 + 𝑐𝐷)𝐼𝐷)    (8) 

Using the relation (3.7) in (3.8) gives that 

𝐽
�

= [1 −
𝑆𝐻
*

𝑆𝐻
] (𝜆𝐻

* 𝑆𝐻
* + (𝜇𝐻 + 𝑡𝐻)𝑆ℎ

* − 𝜆𝐻𝑆𝐻 − (𝜇𝐻 + 𝑡𝐻)𝑆𝐻)  

+ [1 −
𝑉𝐻
*

𝑉𝐻
] (𝑡𝐻𝑆𝐻 −

𝑡𝐻𝑆𝐻
*

𝑉𝐻
* 𝑉𝐻) + [1 −

𝐼𝐻
*

𝐼𝐻
] (𝜆𝐻𝑆𝐻 −

𝜆𝐻
* 𝑆𝐻

*

𝐼𝐻
* 𝐼𝐻)  

+ [1 −
𝑇𝐻
*

𝑇𝐻
] (𝜎𝐻𝐼𝐻 −

𝜎𝐻𝐼𝐻
*

𝑇𝐻
* 𝑇𝐻) + [1 −

𝑅𝐻
*

𝑅𝐻
] (𝜌𝐻𝑇𝐻 −

𝜌𝐻𝑇𝐻
*

𝑅𝐻
* 𝑅𝐻)  

+ [1 −
𝑆𝐷
*

𝑆𝐷
] (𝜆𝐷

* 𝑆𝐷
* + (𝜇𝐷 +𝑚𝐷)𝑆𝐷

* − 𝜆𝐷𝑆𝐷 − (𝜇𝐷 +𝑚𝐷)𝑆𝐷)  

+ [1 −
𝑉𝐷
*

𝑉𝐷
] (𝑚𝐷𝑆𝐷 −

𝑚𝐷𝑆𝐷
*

𝑉𝐷
* 𝑉𝐷) + [1 −

𝐼𝐷
*

𝐼𝐷
] (𝜆𝐷𝑆𝐷 −

𝜆𝐷
* 𝑆𝐷

*

𝐼𝐷
* 𝐼𝐷)      (9) 

Simplifying, we obtain that; 

𝐽
�

≤ 𝜆𝐻
* 𝑆𝐻

* [− 𝑙𝑛 (
𝜆𝐻

𝜆𝐻
* ÷

𝑆𝐻
*

𝑆𝐻
) −

𝑆𝐻
*

𝑆𝐻
+
𝜆𝐻

𝜆𝐻
* ] + 𝑡𝐻𝑆𝐻

* [− 𝑙𝑛 (
𝑆𝐻

𝑆𝐻
* ÷

𝑉𝐻

𝑉𝐻
*) +

𝑆𝐻

𝑆𝐻
* −

𝑉𝐻

𝑉𝐻
*]  

+𝜆𝐻
* 𝑆𝐻

* [− 𝑙𝑛 (
𝜆𝐻𝑆𝐻

𝜆𝐻
* 𝑆𝐻

* ÷
𝐼𝐻

𝐼𝐻
* ) +

𝜆𝐻𝑆𝐻

𝜆𝐻
* 𝑆𝐻

* −
𝐼𝐻

𝐼𝐻
* ] + 𝜎𝐻𝐼𝐻

* [− 𝑙𝑛 (
𝐼𝐻

𝐼𝐻
* ÷

𝑇𝐻
*

𝑇𝐻
) +

𝐼𝐻

𝐼𝐻
* −

𝑇𝐻

𝑇𝐻
* ]  

+𝜌𝐻𝑇𝐻
* [− 𝑙𝑛 (

𝑇𝐻

𝑇𝐻
* ÷

𝑅𝐻

𝑅𝐻
* ) +

𝑇𝐻

𝑇𝐻
* −

𝑅𝐻

𝑅𝐻
* ] + 𝜆𝐷

* 𝑆𝐷
* [− 𝑙𝑛 (

𝜆𝐷

𝜆𝐷
* ÷

𝑆𝐷
*

𝑆𝐷
) −

𝑆𝐷
*

𝑆𝐷
+
𝜆𝐷

𝜆𝐷
* ]  

+𝑚𝐷𝑆𝐷
* [− 𝑙𝑛 (

𝑆𝐷

𝑆𝐷
* ÷

𝑉𝐷

𝑉𝐷
*) +

𝑆𝐷

𝑆𝐷
* −

𝑉𝐷

𝑉𝐷
*] + 𝜆𝐷

* 𝑆𝐷
* [− 𝑙𝑛 (

𝜆𝐷𝑆𝐷

𝜆𝐷
* 𝑆𝐷

* ÷
𝐼𝐷

𝐼𝐷
* ) +

𝜆𝐷𝑆𝐷

𝜆𝐷
* 𝑆𝐷

* −
𝐼𝐷

𝐼𝐷
* ]  

Hence,  

𝐽
�

≤ 𝜆𝐻
* 𝑆𝐻

* [− 𝑙𝑛
𝜆𝐻

𝜆𝐻
* +

𝜆𝐻

𝜆𝐻
* + 𝑙𝑛

𝑆𝐻
*

𝑆𝐻
−
𝑆𝐻
*

𝑆𝐻
] + 𝑡𝐻𝑆𝐻

* [− 𝑙𝑛
𝑆𝐻

𝑆𝐻
* +

𝑆𝐻

𝑆𝐻
* + 𝑙𝑛

𝑉𝐻

𝑉𝐻
* −

𝑉𝐻

𝑉𝐻
*]  

+𝜆𝐻
* 𝑆𝐻

* [− 𝑙𝑛
𝜆𝐻𝑆𝐻

𝜆𝐻
* 𝑆𝐻

* +
𝜆𝐻𝑆𝐻

𝜆𝐻
* 𝑆𝐻

* +
𝐼𝐻

𝐼𝐻
* −

𝐼𝐻

𝐼𝐻
* ] + 𝜎𝐻𝐼𝐻

* [− 𝑙𝑛
𝐼𝐻

𝐼𝐻
* +

𝐼𝐻

𝐼𝐻
* + 𝑙𝑛

𝑇𝐻
*

𝑇𝐻
−
𝑇𝐻

𝑇𝐻
* ]  

+𝜌𝐻𝑇𝐻
* [− 𝑙𝑛

𝑇𝐻

𝑇𝐻
* +

𝑇𝐻

𝑇𝐻
* + 𝑙𝑛

𝑅𝐻

𝑅𝐻
* −

𝑅𝐻

𝑅𝐻
* ] + 𝜆𝐷

* 𝑆𝐷
* [− 𝑙𝑛

𝜆𝐷

𝜆𝐷
* +

𝜆𝐷

𝜆𝐷
* + 𝑙𝑛

𝑆𝐷
*

𝑆𝐷
−
𝑆𝐷
*

𝑆𝐷
]  

+𝑚𝐷𝑆𝐷
* [− 𝑙𝑛

𝑆𝐷

𝑆𝐷
* +

𝑆𝐷

𝑆𝐷
* + 𝑙𝑛

𝑉𝐷

𝑉𝐷
* −

𝑉𝐷

𝑉𝐷
*] + 𝜆𝐷

* 𝑆𝐷
* [− 𝑙𝑛

𝜆𝐷𝑆𝐷

𝜆𝐷
* 𝑆𝐷

* +
𝜆𝐷𝑆𝐷

𝜆𝐷
* 𝑆𝐷

* + 𝑙𝑛
𝐼𝐷

𝐼𝐷
* −

𝐼𝐷

𝐼𝐷
* ]  

 

This shows that 
𝑑𝐽

𝑑𝑡
≤ 0 and 

𝑑𝐽

𝑑𝑡
= 0, if and only if 𝑆𝐻 = 𝑆𝐻

* , 

𝑉𝐻 = 𝑉𝐻
* ,𝐼𝐻 = 𝐼𝐻

* ,𝑇𝐻 = 𝑇𝐻
* , 𝑅𝐻 = 𝑅𝐻

* ,𝑆𝐷 = 𝑆𝐷
* ,𝑉𝐷 = 𝑉𝐷

* ,𝐼𝐷 =

𝐼𝐷
* . Every solution of model (1) with the initial conditions 

approaches Γ1 as 𝑡 → ∞; therefore, the largest compact 

invariant set in {(𝑆𝐻, 𝑉𝐻, 𝐼𝐻, 𝑇𝐻, 𝑅𝐻, 𝑆𝐷, 𝑉𝐷, 𝐼𝐷) ∈ Ε:
𝑑𝐽

𝑑𝑡
≤ 0} is 

the singleton set {Γ1}. Therefore, from Lassalle’s invariant 

principle, it implies that the endemic equilibrium, Γ1 is 

globally asymptotically stable in Ε whenever 𝑅𝐷 > 1. 

 

Numerical Simulation 

In this section, we performed numerical simulation of model 

(1) to illustrate some of the theoretical results. Parameter 

values used in carrying out the simulation is given in Table 3. 

 

Table 3: Parameter Values 

Parameter Value Source 

Π𝐻 0.0314𝑦−1 [3] 

Π𝐷 5 × 106𝑦−1 Assumed 

𝜇𝐻 0.0074𝑦−1 [3] 

𝜇𝐷 0.056𝑦−1 [3] 

𝛽𝐷𝐻 2.29 × 10−12𝑦−1 [3] 

𝛽𝐷𝐷 1.58 × 10−5𝑦−1 Assumed 

𝑐𝐻 1𝑦−1 [3] 

𝑐𝐷 0.042𝑦−1 Assumed 

𝑡𝐻 0.054𝑦−1 [3] 

𝑚𝐷 0.75𝑦−1 Assumed 

𝑘𝐻 0.46𝑦−1 Assumed 

𝑘𝐷 0.025𝑦−1 Assumed 

𝑟𝐻 1𝑦−1 [3] 

𝜎𝐻 0.3𝑦−1 Assumed 

𝜌𝐻 0.06𝑦−1 Assumed 
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Sensitivity Analysis 

To identify the parameters that most significantly influence 

rabies transmission, we employed two sensitivity analysis 

techniques: the normalized forward sensitivity index as 

described by Martcheva (2015), and Latin Hypercube 

Sampling (LHS) following the method of Zhang et al., (2015). 

Using a sample size of 𝑛 = 1000, we assessed the 

independence and influence of parameters in 𝑅𝐷 through 

Partial Rank Correlation Coefficients (PRCC), with the 

results for six key parameters displayed in Figure 2. In Figure 

2, longer bars indicate a stronger statistical influence of the 

corresponding parameters on changes in 𝑅𝐷. Additionally, the 

normalized forward sensitivity indices, calculated using the 

parameter values listed in Table 2, are presented in Table 3 

along with the direction of their influence. A positive sign 

indicates a direct (positive) relationship with 𝑅𝐷, while a 

negative sign reflects an inverse (negative) relationship. 

ϒ𝑅𝐷
𝛽𝐷𝐷 =

∂𝑅𝐷

∂𝛽𝐷𝐷

𝛽𝐷𝐷

𝑅𝐷
= 1, ϒ𝑅𝐷

Π𝐷 =
∂𝑅𝐷

∂Π𝐷

Π𝐷

𝑅𝐷
= 1, ϒ𝑅𝐷

𝑐𝐷 =

∂𝑅𝐷

∂𝑐𝐷

𝑐𝐷

𝑅𝐷
= −

𝑐𝐷

(𝜇𝐷+𝑐𝐷)
= −0.47727, 

ϒ𝑅𝐷
𝑘𝐷 =

∂𝑅𝐷

∂𝑘𝐷

𝑘𝐷

𝑅𝐷
=

𝑘𝐷𝑚𝐷

(𝜇𝐷+𝑘𝐷)(𝜇𝐷+𝑚𝐷+𝑘𝐷)
= 0.04842, ϒ𝑅𝐷

𝑚𝐷 =

∂𝑅𝐷

∂𝑚𝐷

𝑚𝐷

𝑅𝐷
= −

𝑚𝐷

(𝜇𝐷+𝑚𝐷+𝑘𝐷)
= −0.93926, 

 

ϒ𝑅𝐷
𝜇𝐷 =

∂𝑅𝐷
∂𝜇𝐷

𝜇𝐷
𝑅𝐷

=
−2𝜇𝐷

3 − 𝜇𝐷
2 (𝑐𝐷 + 4𝑘𝐷 +𝑚𝐷) − 2𝑘𝐷𝜇𝐷(𝑐𝐷 + 𝑘𝐷 +𝑚𝐷) − 𝑐𝐷𝑘𝐷(𝑘𝐷 +𝑚𝐷)

(𝑘𝐷 + 𝜇𝐷)(𝜇𝐷 + 𝑐𝐷)(𝜇𝐷 +𝑚𝐷 + 𝑐𝐷)
 

= −0.63188 

 

Therefore, from Table 2 it shows that an addition or a 

reduction in the values of 𝛽𝐷𝐷 , Π𝐷 and 𝑘𝐷 will have an 

increase or decrease in the spread of the rabies virus. For 

example, ϒ𝑅𝐷
𝛽𝐷𝐷 = 1 indicates that increasing or reducing the 

transmission rate by a certain percentage may increase or 

reduce the number of secondary infection by that percentage. 

 

 
Figure 2(a): PRCCs plot for the parameters in 𝑅𝐷 

 

 
Figure 2(b): 3D plot of 𝑅𝐷 to 𝛽𝐷𝐷  and Π𝐷 
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A negative sign in Table 2 indicates that an increase in the 

corresponding parameter will lead to a decrease in the basic 

reproduction number., 𝑅𝐷, An increase in the values of those 

parameters leads to a decrease in the basic reproduction 

number. Conversely, a reduction in the values of 

𝛽𝐷𝐷 , Π𝐷 and 𝑘𝐷may result in a rise in the number of 

secondary infections. The PRCC results indicate that 𝜇𝐷 and 
𝑘𝐷 exert minimal influence on the transmission rate of rabies. 

In contrast, the figure highlights 𝛽𝐷𝐷 as the most impactful 

parameter driving the spread of infection, followed by Π𝐷. 

Therefore, an increase in Π𝐷 and 𝛽𝐷𝐷 leads to a direct rise in 

the spread of the rabies virus. The figure further illustrates that 

culling infected dogs has a limited effect in curbing 

transmission compared to vaccinating susceptible dogs. This 

suggests that vaccination of susceptible dogs is the most 

effective strategy for controlling rabies within the dog 

population. Figure 2(b) illustrates that Π𝐷 and 𝛽𝐷𝐷 are 

positively correlated with the basic reproduction number, 

indicating that increases in these parameters enhance rabies 

transmission. Figure 3(a) demonstrates that increasing the 

human vaccination rate effectively boosts the vaccinated 

human population. Consequently, as shown in Figure 3(b), 

this leads to a reduction in the susceptible human population. 

Similarly, Figures 3(c) and 3(d) highlight the impact of dog 

vaccination—an increase in vaccination results in a larger 

vaccinated dog population while significantly decreasing the 

number of susceptible dogs. Additionally, Figure 3(e) 

illustrates the impact of dog vaccination on the infected dog 

population, clearly showing that increased vaccination efforts 

lead to a significant decline in the number of infected dogs 

over time. Therefore, dog vaccination 𝑚𝐷 emerges as the 

most effective strategy for controlling the rabies virus, 

surpassing both human vaccination and treatment in 

effectiveness. 

 

 
 

 
Figure 2(c): Distribution of parameters of the model (2.1) and the response 

function (𝑅𝐷) generated from the uncertainty analysis. parameter values used are 

given by the baseline values and ranges in Table 2 

 

Table 4: PRCC values of the parameters (6 of 15) of the model (2.1), with 𝑅𝐷 chosen as the response function 

Parameter Baseline value Range PRCC 

Π𝐷 5 × 106 3.5 × 106 − 6.5 × 106 0.52788 

𝜇𝐷 0.046 0.0322 − 0.0598 −0.30059 

𝛽𝐷𝐷 1.58 × 10−5 1.106 × 10−5 − 2.054 × 10−5 0.52887 

𝑐𝐷 0.042 0.0294 − 0.0546 −0.25896 

𝑘𝐷 0.0025 0.00175 − 0.00325 0.02614 

𝑚𝐷 0.75 0.525 − 0.975 −0.48241 
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Figure 3(a): Effect of Human Vaccination on Vaccinated Humans Population 

 

 
Figure 3(b): Effect of Human Vaccination on Susceptible Humans Population 

 

 
Figure 3(c): Effect of Dog Vaccination on Vaccinated Dogs Population 
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Figure 3(d): Effect of Dog Vaccination on Susceptible Dogs Population 

 

 
Figure 3(e): Effect of Dog Vaccination on Infected Dogs Population 

 

CONCLUSION 

This study proposed a novel mathematical model to describe 

the transmission dynamics of the rabies virus. The model, 

formulated as a deterministic system of nonlinear differential 

equations, was thoroughly analyzed to explore its qualitative 

behavior. In particular, the analysis addressed the 

boundedness and invariance of solutions, as well as the local 

asymptotic stability of the rabies-free equilibrium. It was 

established that the rabies-free equilibrium is locally 

asymptotically stable when the basic reproduction number, 

𝑅𝐷, is less than one. Furthermore, a global sensitivity analysis 

employing Latin Hypercube Sampling (LHS) and Partial 

Rank Correlation Coefficients (PRCC) was conducted to 

identify the parameters that most significantly influence the 

response function, 𝑅𝐷. The two most influential parameters 

identified through PRCC analysis were: (a) the transmission 

rate from infected dogs to susceptible dogs (𝛽𝐷𝐷), and (b) the 

recruitment rate of dogs (Π𝐷). The magnitude and negative 

signs of their PRCC values, as shown in Table 2, suggest that 

reducing these parameters particularly through widespread 

dog vaccination can effectively lower the basic reproduction 

number (𝑅𝐷) and consequently reduce the rabies burden. 

Model simulations further demonstrated that vaccination 

efforts, both in humans and dogs, play a critical role in curbing 

the rise in susceptible humans, susceptible dogs, and infected 

dog populations. In Figures 3(a) to 3(d), vaccination coverage 

is applied across four compartments: vaccinated humans, 

susceptible humans, vaccinated dogs, and susceptible dogs, 

respectively. Figure 3(e) illustrates the impact of dog 

vaccination on the infected dog population, showing a marked 

decline over time. These results underscore the importance of 

prioritizing rabies control measures within the dog 

population, particularly through moderate to high vaccination 

coverage, rather than focusing solely on human intervention. 

In conclusion, the study recommends that control efforts and 

resources be directed more toward managing the disease in 

dogs, where they are likely to be more effective. 
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