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ABSTRACT 

The increasing demand for sustainable energy solutions in Nigeria has necessitated the exploration of 

alternative energy sources, particularly solar power. This study presents a cost-effective suitability analysis for 

siting a solar photovoltaic (PV) farm in Egor Local Government Area of Edo State, Nigeria, using an integrated 

Geospatial Information System (GIS) and Fuzzy Analytical Hierarchy Process (FAHP) framework. Eight 

critical factors were evaluated: solar radiation, elevation, slope, temperature, relative humidity, land use/land 

cover, distance to roads, and distance to residential areas. Each factor was standardized using fuzzy membership 

functions, weighted using the AHP pairwise comparison method, and overlaid using fuzzy summation to 

generate a final suitability map. Validation was performed by cross-checking spatial outputs with existing 

physical features and confirming consistency with known land use characteristics. The results reveal that solar 

radiation and elevation are the most influential criteria, with weighted sums of 5.802 and 3.204, respectively. 

The analysis identifies Evbuotubu and surrounding zones as highly suitable for solar farm development. This 

study demonstrates that the combination of GIS and FAHP provides a robust decision-support tool for 

identifying optimal locations for solar energy infrastructure in urbanizing environments. The findings offer 

practical insights for policymakers, planners, and energy developers aiming to expand renewable energy 

infrastructure in Nigeria. 
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INTRODUCTION 

The global demand for clean and renewable energy has 

intensified due to rising concerns over climate change, fossil 

fuel depletion, and the increasing need for sustainable energy 

alternatives. Among renewable energy sources, solar energy 

is considered one of the most promising and accessible, 

particularly in regions with high solar insolation, such as Sub-

Saharan Africa. Nigeria, situated within the equatorial zone, 

receives abundant solar radiation, making it a viable state for 

large-scale solar energy generation (Giwa et al., 2017). 

Despite this natural advantage, the country continues to face 

acute energy supply challenges. More than 40% of Nigeria’s 

population lacks access to electricity, while those connected 

to the national grid often experience frequent and prolonged 

power outages (Ozuegwu et al., 2017). These energy 

challenges reflect a broader global concern over energy 

sustainability. However, Nigeria’s situation is uniquely 

severe, considering its high solar potential and yet low 

renewable energy utilization. Therefore, understanding 

localized solutions like solar PV development is crucial. 

In Nigeria, electricity generation is predominantly dependent 

on thermal and hydroelectric sources, which are insufficient 

to meet the growing energy demand of the rapidly expanding 

population and urban centers. With a population exceeding 

200 million by projection, Nigeria's economic productivity 

and quality of life are significantly hampered by unreliable 

power supply (Aliyu et al., 2015). The Egor Local 

Government Area (LGA) in Edo State, home to key 

institutions such as the University of Benin, exemplifies the 

nationwide crisis of energy inadequacy. Recurrent blackouts, 

escalating electricity tariffs from distribution companies like 

the Benin Electricity Distribution Company (BEDC), and 

infrastructural vulnerabilities such as vandalism of electrical 

installations underscore the urgent need for energy 

diversification and localized, renewable alternatives. 

In this context, solar photovoltaic (PV) systems provide an 

environmentally sustainable, economically viable, and 

technically feasible solution. The application of Geospatial 

Information System (GIS) technology in combination with 

Multi-Criteria Decision Analysis (MCDA) methods offers a 

powerful tool for identifying optimal locations for solar 

energy development. GIS facilitates the spatial analysis of 

multiple factors including solar radiation, terrain, land use, 

and infrastructure proximity, while MCDA methods, such as 

the Fuzzy Analytical Hierarchy Process (Fuzzy-AHP), enable 

the integration of expert judgment and uncertainty into the 

decision-making framework (Asakereh et al., 2017; 

Noorollahi, 2016). 

The Fuzzy-AHP approach enhances the conventional AHP by 

incorporating the fuzziness inherent in human judgment, 

thereby yielding more robust and realistic weight assignments 

for criteria (Zadeh, 1965). This makes it especially suitable 

for renewable energy planning, where input data and 

stakeholder preferences often contain degrees of uncertainty. 

In the present study, this methodology was employed to assess 

the suitability of sites for solar farm installation in Egor LGA, 

with key criteria including solar radiation, slope, elevation, 

relative humidity, temperature, land use/land cover, proximity 

to roads, and residential areas. 

Previous studies on solar farm siting across the globe have 

demonstrated the effectiveness of GIS-based MCDA in 

decision support for renewable energy projects. For instance, 

Sanjeevi (2014) developed a geospatial model incorporating 

slope and land cover for solar park location analysis in India, 

while Chaves and Bahil (2019) employed an algorithm 

integrating elevation, slope, and irradiance in site selection. 

Similarly, in Nigeria, Ulu and Aigbayboa (2019) and 

Oyedepo (2018) highlighted regional variations in solar 

potential, the study reveal the necessity of localized 

assessments in energy planning as supported by (Kalogirou et 

al., 2016; Ohunakin et al., 2004). 
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Despite Nigeria’s favorable solar radiation profile, ranging 

from 3.5 to 7.0 kWh/m²/day across various regions, solar 

energy remains grossly underutilized. This underperformance 

is largely attributed to poor planning, weak policy 

frameworks, and the absence of spatially explicit, data-driven 

feasibility studies (Mas’ud et al., 2017). Egor, with its urban 

infrastructure, relatively high solar irradiance, and critical 

energy needs, presents a good case for such an assessment. 

This study, therefore, aims to apply a GIS-based Fuzzy-AHP 

model to identify the most suitable locations for solar farm 

development in Egor LGA. By integrating geospatial and 

multi-criteria decision-making techniques, the study provides 

a replicable methodology for sustainable energy planning in 

urban and peri-urban Nigerian communities. 

This research contributes to the body of knowledge in 

geospatial energy planning and supports the broader 

Sustainable Development Goals (SDGs), particularly Goal 7: 

“Affordable and Clean Energy.” It also offers practical 

guidance for policymakers, energy developers, and urban 

planners seeking to expand solar infrastructure in southern 

Nigeria and similar regions. 

 

MATERIALS AND METHODS 

Study Area Description 

The study was conducted in Egor Local Government Area 

(LGA) of Edo State, Nigeria, located between latitudes 

6°16'N and 6°24'N and longitudes 5°32'E and 5°39'E. Egor 

lies in the humid tropical zone characterized by a wet and dry 

season, making it well-suited for solar energy capture. The 

LGA covers an area of approximately 93 km² and has a 

population of over 330,000 (NPC, 2006). Egor hosts 

significant public infrastructure, including the University of 

Benin, and faces challenges related to unreliable grid 

electricity, hence making it an ideal location for evaluating 

solar PV deployment. The map of the study area is shown in 

Figure 1. 

 

 
Figure 1: Map of the study area 

 

Overview of Approach 

This study employed an integrated methodology combining 

Geospatial Information System (GIS) and Fuzzy Analytical 

Hierarchy Process (Fuzzy-AHP) within a Multi-Criteria 

Decision Analysis (MCDA) framework. The process 

involved five key steps: selecting relevant spatial and climatic 

criteria; acquiring and pre-processing data; standardizing 

inputs using fuzzy membership functions; deriving weights 

through AHP pairwise comparison; and performing a 

weighted fuzzy overlay to generate the final site suitability 

map. The general flow diagram for the process is summarized 

as shown in Figure 2. 
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Figure 2: Flow diagram of the procedures for location of solar PV plants 

 

Criteria Selection 

Feasibility and site-specific peculiarity informed the 

identification of eight (8) criteria which were selected based 

on literature and expert consultation. Table 1 shows the list 

of these nine criteria and the justification for selecting them 

for the research. 

 

Table 1: Criterial for Solar Farm Suitability Analysis 

No Criteria Justification 

1 Solar Radiation Primary energy source 

2 Elevation Affects irradiance and flood risk 

3 Slope Influences installation feasibility 

4 Temperature Affects PV efficiency 

5 Relative Humidity Influences panel performance 

6 Land Use / Land Cover Indicates available land types 

7 Distance to Roads Reflects infrastructure cost 

8 Distance to Buildings Prevents shading and safety issues 

 

Data Sources and Preprocessing 

The data used for this research was derived from different 

sources as itemized below. 

i. Solar Radiation, Temperature, Humidity was 

downloaded from the NASA POWER Data Portal at 

(https://power.larc.nasa.gov). 

ii. The Digital Elevation Model was downloaded from the 

Shuttle Radar Topographic Mission (SRTM 30m 

resolution) from the United State Geological Survey 

(USGS) (https://earthexplorer.usgs.gov/) for elevation 

variable processing. 

iii. For land use land cover, Sentinel-2 satellite imagery 

was used to classify the study area into five classes, the 

data was also obtained from 

(https://earthexplorer.usgs.gov/) USGS website 

iv. Roads and Buildings were extracted from the 

topographic maps and OpenStreetMap at 

https://www.openstreetmap.org/#map=6/9.12/8.67 

v. The coordinate system adopted for all the maps to aid 

smooth analysis was the WGS 1984, UTM Zone 31N. 

All spatial layers were resampled to a 30m resolution and 

projected into a uniform spatial reference for overlay 

operations in ArcGIS 10.2. 

Fuzzy Membership Standardization 

Each criterion was normalized using fuzzy membership 

functions (MF) to transform raw data into a common scale [0, 

1]. The trapezoidal membership function was used due to its 

flexibility and simplicity. This function was chosen because 

it effectively models gradual transitions in suitability and can 

accommodate both increasing and decreasing criteria trends. 

Compared to sigmoid or linear functions, it provides a balance 

between simplicity and accuracy (Oladosu et al., 2025). The 

general form of the trapezoidal fuzzy membership function is 

presented in equation 1 adapted from (Zadeh, 1965). 

𝜇(𝑧) =

{
 
 

 
 
0 𝑧 ≤ 𝑎
𝑧−𝑎

𝑏−𝑎
𝛼 < 𝑧 ≤ 𝑑

1 𝑏 < 𝑧 ≤ 𝑐
𝑑−𝑧

𝑑−𝑐
𝑐 < 𝑧 ≤ 𝑑

0 𝑧 > 𝑑

   (1) 

Where: z represents the input value (such as, elevation, slope), 

[a,b,c,d] are the control points defining the shape of the fuzzy 

function, μ(z)∈[0,1] is the degree of suitability. 

The trapezoidal MF accommodates both "increasing" and 

"decreasing" suitability trends, depending on the criterion. 

For instance, solar radiation and elevation were modeled as 

increasing functions because more is better while slope and 

distance to buildings were modeled as decreasing functions 

because less is better. Model builder was used in ArcGIS 10.2 

to carry out analysis as shown in Figure 3. Table 1 is the fuzzy 

membership function and rankings. 

Input data

Climatology

Solar 
radiation 

Temperature

Location

Distance to 
roads

Distance to 
buildings

Environment

Elevation

Slope

Land use

Meterology

Relative 
humidity
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Figure 3: A model of fuzzy membership and fuzzy overlay 

 

Table 2: Fuzzy membership for solar farm site selection for the case study 

Criteria   Fuzzy Membership Ranking 

Land use Water  

Trees 

Rangeland 

Built-up Area 

Bare ground 

1 

2 

3 

4 

5 

Elevation 0 - 0.31372549 

0.31372549 - 0.48627451 

0.48627451 - 0.615686275 

0.615686275 - 0.760784314 

0.760784314 - 1 

1 

2 

3 

4 

5 

Slope 0 - 0.090196078 

0.090196078 - 0.160784314 

0.160784314 - 0.239215686 

0.239215686 - 0.360784314 

0.360784314 - 1 

1 

2 

3 

4 

5 

Solar radiation 0 - 0.149019608 

0.149019608 - 0.294117647 

0.294117647 - 0.403921569 

0.403921569 - 0.709803922 

0.709803922 - 1 

1 

2 

3 

4 

5 

Temperature 0 - 0.184313704  5 
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0.184313704 - 0.345097998 

0.345097998 - 0.517646997 

0.517646997 - 0.717646973 

0.717646973 - 0.999999881 

4 

3 

2 

1 

Distance to roads 0 

0 - 0.149019608 

0.149019608 - 0.6 

0.6 - 1 

4 

3 

2 

1 

Distance to buildings 0.030303031 - 0.231847891 

0.231847891 - 0.456209151 

0.456209151 - 0.688175877 

0.688175877 - 0.897326203 

0.897326203 - 1 

1 

2 

3 

4 

5 

Relative humidity 0.000003362 - 0.094120693 

0.094120693 - 0.313727798 

0.313727798 - 0.517648681 

0.517648681 - 0.674510898 

0.674510898 - 1 

5 

4 

3 

2 

1 

 

The relative importance of each criterion was evaluated using 

the AHP developed by Saaty (1980). The pairwise 

comparisons were conducted by a panel of three experts: a 

renewable energy specialist, a GIS analyst, and a regional 

planner with solar farm siting experience. Their consensus 

ensured a multidisciplinary and context-specific weighting of 

criteria. The process includes the construction of a pairwise 

comparison matrix 𝐴 = [𝑎𝑖𝑗], where: aij indicates how much 

more important criterion i is compared to criterion j, using a 

scale of 1 to 9. Table 3 shows the criteria and the pair-wise 

matrix of the situation. 

 

Table 3: Pair-Wise Comparison Matrix 

Criteria SR Elev. Slope Temp. Dist. Roads Dist. Build RH LULC 

SR 1 3 5 7 7 7 5 5 

Elev. 0.333 1 3 5 5 5 3 3 

Slope 0.2 0.333 1 3 3 3 1 1 

Temp. 0.143 0.2 0.333 1 3 3 1 1 

Dist. Roads 0.143 0.2 0.333 0.333 1 3 1 1 

Dist. Build 0.143 0.2 0.333 0.333 0.333 1 0.333 0.333 

RH 0.2 0.333 1 1 1 3 1 1 

LULC 0.2 0.333 1 1 1 3 1 1 

Total 2.362 5.599 11.999 18.666 21.333 28 13.333 13.333 

 

Normalization of the matrix was done using equation 2: 

�̄�𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

    (2) 

The computation of priority weights (W) as the average of 

each row in the normalized matrix was carried out while the 

consistency Index (CI) is computed by adopting equation 3 

(Saaty, 1980). Table 4 shows the preliminary results from the 

normalized data while Table 5 shows the randomized index 

values. 

 

Table 4: Normalized Pair-Wise Comparison Matrix 

Criteria SR Ele Slope Temp Dist. Roads Dist. Build RH LULC 

SR 0.412 0.5 0.357 0.41 0.388 0.259 0.263 0.263 

Elev. 0.137 0.167 0.214 0.293 0.278 0.185 0.158 0.158 

Slope 0.082 0.056 0.071 0.176 0.167 0.111 0.053 0.053 

Temp 0.059 0.033 0.024 0.059 0.167 0.111 0.053 0.053 

Dist. Roads 0.059 0.033 0.024 0.02 0.056 0.111 0.053 0.053 

Dist. Build 0.059 0.033 0.024 0.02 0.019 0.037 0.018 0.018 

RH 0.082 0.056 0.071 0.176 0.167 0.111 0.053 0.053 

LULC 0.082 0.056 0.071 0.176 0.167 0.111 0.053 0.053 

 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
     (3) 

Where: λmax refers to the maximum eigenvalue of matrix 

A, n is the number of criteria. 

 

Table 5: Randomized Index for n- Criteria 

N 1 2 3 4 5 6 7 8 9 10 

Random Index (RI) 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

The consistency ratio (CR) was determined using equation 5. Table 6 presented the preliminary results used to determine the 

maximum eigen value of the designed matrix A. 
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Table 6: Consistency of the Criteria Results to Obtain the λmax. 

Criteria SR Ele SL Temp 
Dist. 

Roads 

Dist.  

Builds 

RH LU 

LC 

Weighted 

sum 

Criteria 

weight 

 

SR 0357 0.594 0.430 0.357 0.273 0.196 0.430 0.430 3.067 0.357 8.59 

Elev. 0.119 0.198 0.258 0.255 0.195 0.140 0.258 0.258 1.681 0.198 8.49 

Slope 0.071 0.066 0.086 0.153 0.117 0.084 0.086 0.086 0.749 0.086 8.71 

Temp 0.051 0.040 0.029 0.051 0.117 0.084 0.086 0.086 0.544 0.051 10.67 

Dist. Roads 0.051 0.040 0.029 0.017 0.039 0.084 0.086 0.086 0.432 0.039 11.08 

Dist.  Build 0.051 0.040 0.029 0.017 0.013 0.028 0.027 0.27 0.232 0.028 8.29 

RH 0.071 0.066 0.086 0.051 0.039 0.084 0.086 0.086 0.569 0.086 6.62 

LULC 0.071 0.066 0.086 0.051 0.039 0.084 0.086 0.086 0.569 0.086 6.62 

 

Note: Where applicable in Tables 3-4, and 6: LULC is Land 

use and land cover, Elev. is the Elevation, SL is the Slope, SR 

is the Solar radiation, Temp. is the Temperature, Dist.Roads 

is the Distance to roads, Dist.Build is the Distance to 

buildings, RH is the Relative humidity. 

To get the value for CR, equation 4 was used. According to 

Saaty (1980), If CR<0.10, the judgment matrix is considered 

consistent. The preliminary results of the CR is as presented 

in Table 7.  

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
     (4) 

Where: RI is the Random Index depending on n (see Table 

5). 

 

Table 7: Calculation of Criteria Index  

S/No  Calculation  Solution  

𝜆max (8.59+8.49+8.71+10.67+11.08+8.29+6.62+6.62)/8  8.641 

CI (𝜆max-m)/(m-1) = (8.641- 8)/ (8-1) 0.092 

RI  1.41   

CR  CI/RI = (0.092/1.41)   0.065 

CR%    6.5%  

Note: 𝜆max is the consistency vector's average consistency vector's average, CI is the consistency ratio RI is the random index  

 

Fuzzy Overlay Analysis 

After standardizing and weighting the layers, a Fuzzy 

Overlay (SUM operator) was applied to integrate the criteria 

using equation 5. 

𝑆(𝑥, 𝑦) = ∑ 𝑤𝑖 × 𝜇𝑖(𝑥, 𝑦)
𝑛
𝑖=1    (5) 

Where: S(x,y) refers to the suitability score at pixel location 

(x,y), wi is the weight of criterion i, μi (x,y) = fuzzy 

membership value of criterion i at location (x,y), and n is the 

total number of criteria. 

The output is a suitability map where pixel values range 

between 0 (unsuitable) and 1 (highly suitable). 

 

Classification and Site Selection 

The final suitability map was classified into five categories: 

Very High Suitability (0.8–1.0), High Suitability (0.6–0.79), 

Moderate Suitability (0.4–0.59), Low Suitability (0.2–0.39), 

and Unsuitable (0.0–0.19) The "Very High" and "High" zones 

were extracted using spatial queries in ArcGIS to identify 

potential locations for solar farm installation. 

 

Validation and Interpretation 

The preliminary results were validated through, cross-

checking the spatial outputs with physical features (e.g., 

avoiding dense built-up areas and forests). Comparing 

identified sites with known solar project locations in similar 

geographic settings, and through logical consistency check 

based on expected patterns (e.g., high solar radiation 

correlating with high suitability). 

 

RESULTS AND DISCUSSION 

Overview of Suitability Analysis 

The integrated GIS and Fuzzy-AHP approach yielded a 

spatially explicit suitability map for solar farm development 

across Egor Local Government Area. Each criterion was 

individually analyzed and reclassified using fuzzy 

membership functions. These layers were then aggregated 

using the fuzzy overlay SUM operator, resulting in a 

composite suitability surface with values ranging from 0 (least 

suitable) to 1 (most suitable). 

 

Individual Criteria Maps and Interpretations 

The following are the individual map produced and the 

interpretation of the results pertaining to them. 

 

Elevation 

Figure 4a and b show the elevation maps and the reclassified 

map respectively. Elevation influences solar farm siting 

primarily through its impact on flood risk, temperature, and 

atmospheric clarity. Higher elevations tend to offer better air 

quality and are typically less vulnerable to seasonal flooding, 

making them more reliable for long-term solar infrastructure 

investment.  

In this study, elevation data from the SRTM DEM were 

reclassified using a fuzzy increasing membership function, 

where higher elevations were rated as more suitable.  

The analysis revealed that northeastern and north-central parts 

of Egor, particularly around Evbuotubu and Oghedaivbiobaa, 

had elevations above 150 meters, making them ideal 

candidates for solar PV installation. Lower-lying areas in the 

southern and central zones, such as Ugbowo and Useh, were 

considered less suitable due to greater susceptibility to 

flooding and slight thermal elevation effects.  

These areas were assigned lower fuzzy membership values. 

Elevation was the second most influential criterion in the 

pairwise AHP comparison, with a normalized weight of 

3.204, underscoring its importance in ensuring site stability, 

safety, and resilience in solar farm development. 
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(a) 

 
(b) 

Figure 4: (a) Elevation and (b) Reclassified elevation map of Egor L.G.A. 

 

Solar Radiation 

Solar radiation is the most critical factor in solar photovoltaic 

(PV) farm siting, as it directly determines the amount of 

energy a location can generate. Higher solar irradiance 

ensures greater power output and improved return on 

investment for PV installations. 

In this study, average annual solar radiation data were sourced 

from the NASA POWER database and reclassified using a 

fuzzy increasing membership function, where higher 

radiation levels received greater suitability scores. The 

analysis revealed that most of Egor LGA consistently receives 

radiation above 1900 kWh/m²/year, which falls within the 

optimal range for PV deployment. 

The north-central and northeastern regions, including 

Evbuotubu, Uwelu, and parts of Oghedaivbiobaa, showed 

slightly higher irradiance levels, earning fuzzy membership 

scores close to 1.0. This uniformity in radiation across the 

LGA underscores Egor’s strong potential for solar energy 

development. Solar radiation had the highest weight (5.802) 

in the AHP analysis, reinforcing its role as the primary driver 

of solar site suitability. Its dominant influence helped anchor 

the suitability model by identifying zones with the greatest 

energy generation potential. Figure 5 a and b show the solar 

radiation map of the study area. 

 

 
(a) 

 
(b) 

Figure 5: (a) Solar radiation and (b) Reclassified solar radiation map of Egor L.G.A. 
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Slope 

Slope is a vital topographic parameter in solar farm siting, as 

it affects both the constructability and operational efficiency 

of solar PV systems. Flat or gently sloped terrain reduces site 

preparation costs, minimizes shading between panel rows, 

and improves panel alignment flexibility (Wheatbelt 

Development Commission, 2010). Slopes above 10% are 

generally considered less favorable due to increased 

engineering complexity and installation cost (Uyan, 2013). In 

this study, slope was derived from the SRTM DEM and 

reclassified using a fuzzy decreasing membership function, 

where lower slopes (0–5%) were assigned higher suitability 

scores. The analysis showed that over 80% of Egor's terrain 

falls within the 0–4% slope range, particularly in the central 

and northeastern areas such as Uwelu and Evbuotubu, making 

these zones highly suitable for solar installations. 

Areas with steeper slopes, mostly localized in northwestern 

fringes, were assigned lower fuzzy membership values due to 

the increased difficulty and cost of solar farm construction on 

inclined surfaces. By incorporating slope into the model, the 

analysis ensured that selected locations are technically 

feasible, cost-effective, and less susceptible to construction-

related constraints. The slope map of the study is represented 

by Figure 6 a and b. 

     

 
(a) 

 
(b) 

Figure 6: (a) Slope and (b) Reclassified slope map of Egor L.G.A.          

 

Temperature 

Temperature plays a moderating role in the performance of 

solar photovoltaic (PV) systems. While sunlight is essential 

for electricity generation, excessively high ambient 

temperatures can reduce the efficiency of PV modules by 

increasing internal resistance and causing energy losses. 

Research shows that PV efficiency typically declines by 0.4–

0.5% for each degree Celsius above 25°C (Huld et al., 2015). 

In this study, monthly average temperature data were obtained 

from the NASA POWER database and standardized using a 

fuzzy decreasing membership function, giving higher scores 

to cooler areas. The analysis revealed that the northern and 

northeastern parts of Egor, particularly Evbuotubu and 

Oghedaivbiobaa, recorded lower average temperatures (26–

28°C) and were thus rated more suitable. In contrast, southern 

areas, including Ugbowo, experienced higher average 

temperatures (above 30°C), which could reduce PV output 

and were therefore assigned lower fuzzy suitability values. 

Though not as dominant as solar radiation, temperature was 

an important refinement factor in the model, helping 

distinguish between areas of similar irradiance but differing 

PV efficiency potential. The map of temperature around the 

study area is as presented in Figure 7 a and b. 
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(a) 

 
(b) 

Figure 7: (a) Temperature and (b) Reclassified temperature map of Egor L.G.A.     

 

Relative Humidity 

Relative humidity influences the efficiency and durability of 

solar photovoltaic (PV) systems by affecting the level of 

moisture in the atmosphere, which can reduce solar irradiance 

and cause condensation on panels. Areas with consistently 

high humidity often experience more cloud cover, which 

reduces the direct solar radiation reaching the panels and may 

lead to corrosion or soiling issues over time (Mas’ud et al., 

2017). 

In this study, monthly average relative humidity data obtained 

from the NASA POWER dataset were reclassified using a 

fuzzy decreasing membership function, assigning higher 

suitability scores to drier areas. The analysis showed that 

northern and northeastern parts of Egor, such as Evbuotu and 

Useh, recorded lower relative humidity levels (below 70%), 

making them more suitable for solar PV deployment. These 

areas were assigned fuzzy membership values close to 1.0. 

Conversely, central and southern parts of the LGA, especially 

around Ugbowo and densely vegetated zones, exhibited 

higher humidity levels (above 80%) and were therefore 

assigned lower fuzzy suitability scores (0.2–0.4). 

Although not the most dominant factor, relative humidity 

served as a moderating criterion, helping to fine-tune the 

suitability ranking by identifying areas less prone to solar 

energy loss due to atmospheric moisture. Figure 8 a and b 

show the maps of humidity derived for the study area. 

 

 
(a) 

 
(b) 

Figure 8: (a) Relative humidity and (b) Reclassified relative humidity map of Egor L.G.A.  
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Land Use/Land Cover (LULC) 

Land use and land cover (LULC) play a pivotal role in 

determining the physical feasibility and sustainability of solar 

farm installations. LULC affects the availability of open 

space, the potential for land-use conflict, and the cost of land 

acquisition and preparation. For this study, Sentinel-2 

imagery was classified into five major land cover categories: 

Built-Up Areas, Forest, Agricultural Land, Bare Land, and 

Rangeland. 

Using a supervised classification technique with a maximum 

likelihood algorithm in ArcGIS, the resulting LULC map 

indicated that Built-Up Areas and Forests dominate the 

central and southern regions of Egor, particularly around 

Ugbowo, Oghedaivbiobaa, and parts of Uwelu, making them 

unsuitable due to limited space, shading, and high land 

conversion costs. These areas were assigned low fuzzy 

membership values (0–0.3). 

In contrast, Bare Land and Rangeland areas, primarily located 

in the northern and northeastern zones, including Evbuotu, 

Oghedaivbiobaa outskirts, and Useh, were identified as the 

most favorable. These land classes offer minimal obstruction, 

relatively low land-use conflict, and typically require less site 

clearing and preparation. Accordingly, they were assigned 

high fuzzy membership values (0.7–1.0). 

Agricultural land, covering a moderate portion of the LGA, 

received medium suitability scores (0.4–0.6). While 

technically feasible, solar development in these areas could 

result in the displacement of food production activities, 

posing socioeconomic concerns. Hence, agricultural zones 

were considered only under limited trade-off scenarios. 

The incorporation of LULC ensures that the model identifies 

sites that are not only technically suitable but also compatible 

with existing land uses, reducing the risk of future 

encroachments, legal disputes, or ecological degradation. By 

prioritizing underutilized or non-competitive land classes 

such as bare lands and degraded rangelands, the analysis 

supports a sustainable and conflict-sensitive solar farm siting 

strategy. The land use land cover map is presented in Figure 

9 a and b. 

 

 
(a) 

 
(b) 

Figure 9: (a) LULC and (b) Reclassified LULC map of Egor L.G.A.      

 

Distance to Roads 

The distance to roads criterion plays a critical role in 

determining the economic feasibility and accessibility of solar 

farm development. Proximity to existing transportation 

infrastructure reduces the cost of equipment transportation, 

construction logistics, and long-term maintenance (Uyan, 

2013). In this study, a buffer threshold of 5 kilometers from 

major and secondary roads was established, with areas closer 

to roads assigned higher fuzzy suitability scores. 

The reclassified distance-to-roads map revealed that areas 

within central and eastern Egor, especially around Uwelu, 

Evbareke, and Use, were well-connected to a network of 

major and minor roads. These zones received higher fuzzy 

membership values due to their accessibility and cost 

advantages. On the other hand, isolated areas in the 

northwestern and southwestern parts of the LGA, which are 

relatively far from primary road networks, scored lower due 

to anticipated infrastructure investment required to enable 

access. 

This layer helped refine the final suitability output by 

ensuring that proposed solar farm sites are logistically 

accessible, which is vital for construction mobilization, 

routine inspection, and emergency response. Areas identified 

as highly suitable for solar PV development generally 

coincided with zones that are within close proximity to 

motorable roads, thus meeting both technical and practical 

criteria for site selection. Figure 10 a and b show the maps of 

distance to road as produced from the work 
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(a) 

 
(b) 

Figure 10: (a) Distance to road and (b) Reclassified distance to road map of Egor L.G.A.    

 

Distance to Buildings 

The distance to buildings criterion was assessed to prevent 

land-use conflicts and minimize shading effects, which can 

significantly reduce solar panel efficiency and system safety. 

A minimum buffer distance of 500 meters from residential 

areas was established, consistent with solar farm zoning 

standards in peri-urban environments (Gerbo et al., 2022). 

The reclassified raster layer showed that the central and 

southern parts of Egor LGA, particularly around Ugbowo and 

Oghedaivbiobaa, had high building densities and were thus 

marked as low suitability zones. Conversely, northwestern 

and northeastern areas, such as Evbuotubu and parts of 

Uwelu, contained open lands located farther from dense 

settlement clusters. These zones were assigned higher fuzzy 

membership values due to their compliance with setback 

distance requirements. This layer contributed to refining the 

final suitability map by filtering out areas that might face 

community opposition, legal encumbrances, or technical 

difficulties related to shading and safety. Integrating this 

factor helped ensure that identified solar farm sites were not 

only environmentally suitable but also socially and 

operationally viable. Figure 11 is the produced distance to 

building map.  

 

 
(a) 

 
(b) 

Figure 11: (a) Distance to buildings and (b) Reclassified distance to buildings map of Egor L.G.A.  
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Final Suitability Map 

The integration of all eight standardized and weighted criteria, 

solar radiation, elevation, slope, temperature, relative 

humidity, land use/land cover, distance to roads, and distance 

to buildings, through the Fuzzy Overlay (SUM) operation 

produced the final solar farm suitability map for Egor Local 

Government Area. This final output map of the suitability 

study is presented in Figure 12. 

The resulting map displays a continuous surface of suitability 

values ranging from 0 (completely unsuitable) to 1 (highly 

suitable). To aid interpretation and planning, these values 

were classified into five categories. Conversely, southern and 

central Egor, particularly around Ugbowo, were classified as 

Low to Unsuitable due to dense built-up areas, high 

temperature and humidity levels, and limited open land. 

The final suitability map serves as a decision-support tool for 

energy planners and developers by spatially identifying the 

most technically, environmentally, and infrastructurally 

favorable locations for solar farm deployment. It also 

provides a replicable model for solar siting in other local 

government areas with similar urban-periurban 

characteristics. It is important to acknowledge potential 

sources of uncertainty in this analysis. For example, the use 

of 30-meter resolution DEM and satellite imagery may not 

capture micro-scale topographic variations or highly localized 

land use features. Similarly, atmospheric distortions or 

seasonal effects may affect climate data accuracy. These 

limitations, while not critical at the LGA scale, may influence 

fine-grained site decisions. 

The results validate the usefulness of combining GIS and 

Fuzzy-AHP for solar farm site selection. The significant 

influence of solar radiation, elevation, and land cover 

underscores the necessity of incorporating both climatic and 

spatial parameters in energy planning. While solar radiation 

had a uniform distribution, the actual feasibility of installation 

was limited by factors like land use and accessibility. 

The use of fuzzy logic allowed the incorporation of gradual 

transitions between suitability levels rather than rigid 

thresholds, which more closely reflects real-world conditions. 

For example, slightly sloped lands were not outright excluded 

but assigned lower weights, enhancing the flexibility of the 

model. 

Furthermore, the pairwise comparison in AHP provided a 

transparent and quantitative basis for integrating expert 

judgment. The resulting Consistency Ratio (CR) of 0.06 

confirmed the reliability of the weight assignment process. 

This study confirms similar findings from earlier works. For 

instance, Uyan (2013) and Noorollahi et al. (2016) 

emphasized the influence of terrain, proximity to 

infrastructure, and climate factors in their GIS-MCDM 

analyses. Similar methodologies have been applied in other 

Sub-Saharan countries. Again, Gerbo et al. (2022) conducted 

a GIS-based solar siting study in Ethiopia and found that 

elevation, proximity to roads, and solar irradiance were top 

determinants which closely aligning with our findings in 

Egor. This suggests broader regional applicability of the GIS-

Fuzzy AHP approach. However, unlike those studies, this 

work incorporated uncertainty handling via fuzzy logic and 

applied the methodology to a dense urban-periurban interface, 

making it a novel contribution in the Nigerian context. 

 

 
Figure 12: Final suitability map 
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Table 8: Summary of Suitability Characteristics 

Suitability Class Value Range Area Coverage (%) 

Very High 0.80–1.00 14.2% 

High 0.60–0.79 24.6% 

Moderate 0.40–0.59 34.8% 

Low 0.20–0.39 18.7% 

Unsuitable 0.00–0.19 7.7% 

 

The "Very High" and "High" suitability areas are 

predominantly located in Evbuotubu, community and 

surroundings. These areas are relatively elevated, have open 

land cover, have near access roads, and are exposed to strong 

solar radiation with low relative humidity. 

 

CONCLUSION 

This study employed a hybrid GIS and Fuzzy Analytical 

Hierarchy Process (Fuzzy-AHP) approach to assess the 

spatial suitability of Egor Local Government Area, Edo State, 

Nigeria, for solar photovoltaic (PV) farm development. By 

integrating eight critical environmental and infrastructural 

factors, including solar radiation, slope, elevation, land use, 

temperature, humidity, and proximity to roads and buildings, 

the study produced a comprehensive suitability map 

highlighting optimal locations for solar energy infrastructure. 

The findings indicate that approximately 39% of the total land 

area in Egor falls within the "High" to "Very High" suitability 

categories, with the most promising zones identified in 

Evbuotubu and surrounding communities. Solar radiation and 

elevation emerged as the most influential parameters, 

confirming their dominant role in PV site optimization. The 

integration of fuzzy logic enabled nuanced modeling of 

suitability, capturing uncertainties often ignored in traditional 

MCDA approaches. 

The findings of this study reveal the potential of geospatial 

decision-support systems in renewable energy planning. The 

resulting suitability map serves not only as a technical tool for 

developers and urban planners but also as a strategic asset for 

government agencies and policymakers seeking to accelerate 

the energy transition in Nigeria. 

This approach contributes to the ongoing discourse on 

sustainable energy development and aligns with global efforts 

to meet Sustainable Development Goal 7 (Affordable and 

Clean Energy) and Goal 13 (Climate Action) by promoting 

decentralized, low-carbon energy systems. The research 

strongly supports SDG 7: “Affordable and Clean Energy,” by 

enabling spatially optimized siting of solar infrastructure, 

which is critical to ensuring equitable access to energy in 

developing urban centers. 

Based on the results and findings, the following 

recommendations are proposed: 

i. Policy integration involving local and state 

governments in Edo to adopt geospatial tools such as 

GIS and Fuzzy-AHP in energy infrastructure planning. 

These tools will enhance transparency, precision, and 

stakeholder engagement in renewable energy decision-

making. 

ii. Pilot implementation should consider the identified 

high-suitability zones, especially around Evbuotubu, as 

priority for pilot solar farm projects. Doing so would 

validate the findings of this model in practice and 

provide scalable templates for other LGAs. 

iii. We recommend data improvement for future research 

which should incorporate real-time solar monitoring 

stations and economic cost layers (such as, land value, 

transmission costs) to enhance the resolution and 

practicality of the model. 

iv. Inclusion of socioeconomic criteria is recommended 

since this study focused primarily on physical and 

climatic factors. Future assessments could integrate 

social acceptance, land tenure, and grid connection 

capacity to provide a more holistic evaluation. 

v. Replication in other regions should be made by adapting 

the methodology developed in this research for other 

LGAs in Nigeria and Sub-Saharan Africa with similar 

challenges. This would facilitate nationwide planning 

for solar energy infrastructure using spatially intelligent 

models. 
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