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ABSTRACT 

We have studied the positions and stability of collinear equilibrium points in the circular restricted three-body 

problem for Luyten 726-8 and Achird systems. We observed that the location of the collinear equilibrium points 

L_i (i=1,2,3) changes positions due to the oblateness and radiating factors for the binary systems under review. 

The changes in the positions of the collinear equilibrium points does not change the status of the collinear 

equilibrium points as they remain unstable and unchanged. As the oblateness increases, the region of stability 

of the collinear equilibrium points decreases. It is found that, the positions of the collinear equilibrium points 

are greatly affected by the oblateness and radiation factors of both primaries for the aforementioned binary 

systems. Our study reviewed that, at least one characteristic root has a positive real part and a complex root 

which in the sense of Lyapunov, the stability of the collinear equilibrium points is unstable for the stated binary 

systems. 
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INTRODUCTION 

There is still a lot of theoretical, practical, historical, and 

pedagogical value in the restricted three-body problem 

(R3BP). Numerous scientific disciplines, including as 

celestial mechanics, chaos theory, galaxy dynamics, 

molecular physics, and many others have benefited from the 

study of this issue. This problem is still a stimulating and 

active research field that is receiving considerable attention of 

scientists and astronomers due to its applications in dynamics 

of the stellar and solar systems, artificial satellites and lunar 

theory. 

Researchers have remained fascinated and intrigued by the 

restricted three-body problem (R3BP), which is based on the 

assumptions that the participating bodies are spherical and 

that their orbits are circular. Under the impact of their mutual 

gravitational pull, two spherically massive masses (the 

primaries) move in circular orbits, influencing but not being 

influenced by the third massless body. In such a system, five 

co-planar equilibrium points exist; three collinear with the 

line joining the primary bodies and two form equilateral 

triangles with respect to the primary bodies. The collinear 

equilibrium points have been shown to be generally unstable, 

while the triangular points are conditionally stable by 

Bhatnagar and Hallan (1979), Kunitsyn (2001), Abdulraheem 

and Singh (2008), Singh and Begha (2011), Singh and Leke 

(2014), Singh and Amuda (2016), Singh and Tyokyaa (2017), 

Hussain et al. (2018). 

The shape of the bodies, the effects of perturbing forces other 

than their mutual gravitational attractions, and other factors 

were taken into consideration in order to generalize the 

classical problem of the three bodies. In the solar system, 

planets like Saturn and Jupiter are suitably oblate. It has been 

noted that the oblateness of the planetary bodies plays a vital 

role in the investigation of the restricted three-body problem. 

Hence, the radiation pressure factors and the oblateness of 

these bodies generate great concern in the study of both the 

collinear and triangular stability in the restricted problem of 

three bodies. 

The photogravitation effects with radiation pressure factors in 

the restricted three-body problem were formulated by 

Radzievskir (1950). In his study, he considered one of the 

interacting masses as intense emitter of light in the Sun-Planet 

and a dust particle bodies. 

Simmons et al., (1985) considered all values of radiation 

pressures of both primaries and all values of mass ratios in the 

study of the existence and linear stability of equilibrium 

points. Singh and Ishwar (1999) studied the stability of 

triangular equilibrium points in the generalized 

photogravitational restricted three-body problem. They 

concluded that the position and stability of triangular 

equilibrium points are affected by the radiation pressure 

factors and oblateness of the primaries. 

Hassan et al., (2013) studied the positions and velocity 

sensitivities at the triangular libration points. They considered 

the bigger primary as an oblate spheroid. Their result show 

that the value of the critical mass parameter reduces as a result 

of the oblateness of the bigger primary and the region of 

stability decreases with oblateness increase, hence the order 

of commensurability increases. Recently, Singh and Tyokyaa 

(2021) considered both primaries as sources of radiation and 

oblate spheroid in the study of the positions and velocity 

sensitivities in the study of the positions and velocity 

sensitivities in the restricted problem of three bodies. Sharma 

(1982) in his study of linear stability of triangular equilibrium 

points of the photogravitational restricted three body problem 

when the more massive primary (Sun) is a source of radiation 

and an oblate spheroid establishes that the collinear 

equilibrium points retrograde elliptical periodic orbits around 

the triangular points in the linear sense, while that of the 

triangular points have long or short-periodic retrograde 

elliptical orbits for the mass parameter. 

Numerous researches are carried out on the position and 

stability of collinear equilibrium points in both circular and 

elliptic restricted three-body problem. Some affirmed that the 

collinear libration point remain unstable in the axisymmetric 

restricted three-body problem with both primaries as sources 

of radiation (Abouelmagd and El-Shaboury, 2012). Kunitsyn 

(2001) and Kunitsyn et al., (1985) studied the characteristics 

of collinear equilibrium points. Their results confirmed that 

the collinear points are stable under certain conditions. In the 
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case of a fourth-order resonance taking into account the 

radiation of both primaries, the collinear equilibrium points 

can be stable in the sense of Lyapunov (Tkhai 2012). 

Singh and Leke (2012) observed stable points of collinear 

equilibrium points with the Einstein’s gravitational constant k 

(kappa). However, the out-of-plane equilibrium points, it 

remains unstable even with the introduction of the constant 

(k). Singh and Tyokyaa (2017) investigated the positions and 

stability of collinear equilibrium points in the elliptic 

restricted three-body problem with oblateness of the primaries 

up to second even zonal harmonic. They stated that, the 

collinear equilibrium points remain unstable for the binary 

systems: HD188753 and Gliese 667. 

Our aim in this study is to establish the positions and velocity 

sensitivities of collinear equilibrium points in the circular 

restricted three-body problem with radiating and oblate 

primaries. 

 

MATERIALS AND METHODS  

Equations of Motion 

Using dimensionless variables and a barycentric Synodic 

coordinate system (𝑥, 𝑦), the equations of motion for the 

restricted three-body problem under the effects of oblateness 

and radiation pressure factors of the primaries as in Singh and 

Ishwar (1999), can be written as 

�̈� − 2𝑛�̇� = Ω𝑥, �̈� + 2𝑛�̇� = Ω𝑦 �̈� = Ω𝑧  (1) 

with the force function 

Ω =
𝑛2

2
(𝑥2 + 𝑦2) +

(1−𝜇)𝑞1

𝑟1
+

𝜇𝑞2

𝑟2
+

(1−𝜇)𝐴1𝑞1

2𝑟1
3

+
𝜇𝐴2𝑞2

2𝑟2
3

 . 

     (2) 

where 

𝑟1
2 = (𝑥 − 𝑥1)2 + 𝑦2 + 𝑧2 , 𝑟2

2 = (𝑥 − 𝑥2)2 + 𝑦2 + 𝑧2. 

     (3) 

The mean motion, 𝑛, is given as 

𝑛2 = 1 +
3

2
𝐴1 +

3

2
𝐴2.   (4) 

where 𝑚1 and 𝑚2 are the masses of the bigger and smaller 

primaries respectively positioned at the points (𝑥𝑖 , 0), 𝑖 = 1,2; 

where 𝑥1 = 𝜇, 𝑥2 = −(1 − 𝜇) and 0 < 𝜇 =
𝑚2

𝑚1+𝑚2
<

1

2
  is 

the mass ratio.   𝑟1 and 𝑟2 are respectively the distances of 

𝑚1 𝑎𝑛𝑑 𝑚2 from the infinitesimal body;  𝑞1 and 𝑞2  are their 

radiation factors; and 𝐴1 and 𝐴2 are their oblateness 

coefficients of the bigger and smaller primaries respectively.       

 

Locations of Collinear Equilibrium Points 

The equilibrium points are those points at which the velocity 

of the infinitesimal particle is zero. These points are the 

solutions of the equations: 

Ω𝑥 = Ω𝑦 = Ω𝑧 = 0.   

These equations yield; 

𝑥𝑛2 −
(1−𝜇)(𝑥−𝜇)𝑞1

𝑟1
3 − 

𝜇(𝑥+1−𝜇)𝑞2

𝑟2
3 −

3(1−𝜇)(𝑥−𝜇)𝐴1𝑞1

2𝑟1
5 −

3𝜇(𝑥+1−𝜇)𝐴2𝑞2

2𝑟2
5 = 0,    (5) 

𝑦[𝑛2 −
(1−𝜇)𝑞1

𝑟1
3 −  

𝜇𝑞2

𝑟2
3 −

3(1−𝜇)𝐴1𝑞1

2𝑟1
5 −

3𝜇𝐴2𝑞2

2𝑟2
5 ] = 0 (6) 

𝑧 (
−(1−𝜇)𝑞1

𝑟1
3 − 

𝜇𝑞2

𝑟2
3 −

3(1−𝜇)𝐴1𝑞1

2𝑟1
5 −

3𝜇𝐴2𝑞2

2𝑟2
5

) = 0. (7) 

To locate collinear equilibrium points on the x-axis, we put 

𝑦 = 𝑧 = 0 in equations (3) and substituting the values of 𝑟1
2 

and 𝑟2
2 into equation (5) we have; 

𝑥𝑛2 −
(1−𝜇)(𝑥−𝑥1)𝑞1

(𝑟1)3 − 
𝜇(𝑥−𝑥2)𝑞2

(𝑟2)3 −
3(1−𝜇)(𝑥−𝑥1)𝐴1𝑞1

2(𝑟1)5 −

3𝜇(𝑥−𝑥2)𝐴2𝑞2

2(𝑟2)5 = 0.    (8) 

Thus, collinear equilibrium points lie on the line joining the 

primaries. To obtain their positions on the 𝑥 − 𝑎𝑥𝑖𝑠, we 

divide the orbital plane into three parts; 𝑥 > 𝑥1, 𝑥2 < 𝑥 < 𝑥1 

and 𝑥2 > 𝑥 with respect to their primaries, given that 𝑦 = 𝑧 =

0. The three points are considered in Cases I, II and III 

respectively. 

 

Case 1: Let the collinear point 𝐿1 be on the right side of the 

bigger primary at a distance 𝜌 from it on the 𝑥 − 𝑎𝑥𝑖𝑠 (i.e 𝑥 >
𝑥1). 

 
where 𝑥1 = 𝜇,  𝑥2 = 𝜇 − 1 . 

Then  

 𝑥 = 𝑥1 + 𝜌 = 𝜇 + 𝜌 
(𝑥 − 𝑥1) = (𝜇 + 𝜌) − 𝜇 = 𝜇 + 𝜌 − 𝜇 = 𝜌   which implies 

𝑟1 = |𝜌| 
(𝑥 − 𝑥2) = (𝜇 + 𝜌) − (𝜇 − 1) = 𝜇 + 𝜌 − 𝜇 + 1 = 1 +
𝜌  which implies 𝑟2 = |1 + 𝜌|  
Substituting the values of 𝑥, 𝑟1, 𝑟2, (𝑥 − 𝑥1) 𝑎𝑛𝑑 (𝑥 −
𝑥2)  into equation (8), we get 

2𝑛2(𝜇 + 𝜌)𝜌4(1 + 𝜌)4 − 2(1 − 𝜇)𝜌2(1 + 𝜌)4𝑞1 −
2𝜇𝜌4(1 + 𝜌)2𝑞2 − 3(1 − 𝜇)(1 + 𝜌)4𝐴1𝑞1 −
−3𝜇𝜌4𝐴2𝑞2 = 0    (9) 

 

Case 2: Let the collinear point 𝐿2 be on the lefthand side of 

the bigger primary at a distance 𝜌 from it on the 𝑥 − 𝑎𝑥𝑖𝑠 (i.e 

𝑥2 < 𝑥 < 𝑥1). 

 
where 𝑥1 = 𝜇,  𝑥2 = 𝜇 − 1 . 

Then  

 𝑥 = 𝑥1 − 𝜌 = 𝜇 − 𝜌 
(𝑥 − 𝑥1) = (𝜇 − 𝜌) − 𝜇 = 𝜇 − 𝜌 − 𝜇 = −𝜌 which implies 

 𝑟1 = |𝜌|  
(𝑥 − 𝑥2) = (𝜇 − 𝜌) − (𝜇 − 1) = 𝜇 − 𝜌 − 𝜇 + 1 = 1 − 𝜌 

which implies 𝑟2 = |1 − 𝜌|  
Substituting the values of 𝑥, 𝑟1, 𝑟2, (𝑥 − 𝑥1) 𝑎𝑛𝑑 (𝑥 −
𝑥2)  into equation (8), we obtain 

2𝑛2(𝜇 − 𝜌)𝜌4(1 − 𝜌)4 + 2(1 − 𝜇)𝜌2(1 − 𝜌)4𝑞1 −
2𝜇𝜌4(1 − 𝜌)2𝑞2 + 3(1 − 𝜇)(1 − 𝜌)4𝐴1𝑞1 −
−3𝜇𝜌4𝐴2𝑞2 = 0    (10) 

 

Case 3: Let the collinear point 𝐿3 be on the left side of the 

bigger primary at a distance 𝜌from it on the 𝑥 − 𝑎𝑥𝑖𝑠 (i.e 𝑥2 >
𝑥 ).  

 
where 𝑥1 = 𝜇,  𝑥2 = 𝜇 − 1 . 

Then  

 𝑥 = −𝜌 + 𝑥2 = −𝜌 + 𝜇 − 1 = 𝜇 − 1 − 𝜌,  
(𝑥 − 𝑥1) = (𝜇 − 1 − 𝜌) − 𝜇 = 𝜇 − 1 − 𝜌 − 𝜇 = −1 − 𝜌 =
−(1 + 𝜌) which implies 𝑟1 = |1 + 𝜌|.   
(𝑥 − 𝑥2) = (𝜇 − 1 − 𝜌) − (𝜇 − 1) = 𝜇 − 1 − 𝜌 − 𝜇 + 1 =
−𝜌 which implies 𝑟2 = |𝜌|.  
Substituting the values of 𝑥, 𝑟1, 𝑟2, (𝑥 − 𝑥1) 𝑎𝑛𝑑 (𝑥 −
𝑥2)  into equation (8), we have 

2𝑛2(𝜇 − 1 − 𝜌)𝜌4(1 + 𝜌)4 + 2(1 − 𝜇)𝜌4(1 + 𝜌)2𝑞1 +
2𝜇𝜌2(1 + 𝜌)4𝑞2 + 3(1 − 𝜇)𝜌4𝐴1𝑞1 + 3𝜇(1 + 𝜌)4𝐴2𝑞2 =
0      (11) 

 

Stability of Collinear Equilibrium Points 

Szebehely (1967) stated that, the motion which remains in the 

small neighbourhood of the collinear equilibrium point after 

it has been disturbed is termed “stable”. 
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To examine the stability of the collinear equilibrium points, 

we consider the points lying in 𝑥 > 𝑥1, 𝑥2 < 𝑥 < 𝑥1 and 

𝑥2 > 𝑥 respectively. 

Considering the stability of a collinear equilibrium point for 

which 𝑥 > 𝑥1 we have that 

 𝑟1 = |𝑥 − 𝜇|,  𝑟2 = |𝑥 + 1 − 𝜇|.  (12) 

Given the second partial derivatives as; 

Ω𝑥𝑥 = 𝑛2 −
(1−𝜇)𝑞1

𝑟1
3 −

𝜇𝑞2

𝑟2
3 −

3(1−𝜇)𝐴1𝑞1

2𝑟1
5 −

3𝜇𝐴2𝑞2

2𝑟2
5 +

3(1−𝜇)(𝑥−𝜇)2𝑞1

𝑟1
5 +  

3𝜇(𝑥+1−𝜇)2𝑞2

𝑟2
5 +

15(1−𝜇)(𝑥−𝜇)2𝐴1𝑞1

2𝑟1
7 +

15𝜇(𝑥+1−𝜇)2𝐴2𝑞2

2𝑟2
7 ,    (13) 

Ω𝑦𝑦 = (𝑛2 −
(1−𝜇)𝑞1

𝑟1
3

− 
𝜇𝑞2

𝑟2
3

−
3(1−𝜇)𝐴1𝑞1

2𝑟1
5

−
3𝜇𝐴2𝑞2

2𝑟2
5

) +

𝑦2 (
3(1−𝜇)𝑞1

𝑟1
5 +  

3𝜇𝑞2

𝑟2
5 +

15(1−𝜇)𝐴1𝑞1

2𝑟1
7 +

15𝜇𝐴2𝑞2

2𝑟2
7

), (14) 

Ω𝑥𝑦 = 𝑦 [
3(1−𝜇)(𝑥−𝜇)𝑞1

𝑟1
5

+ 
3𝜇(𝑥+1−𝜇)𝑞2

𝑟2
5

+
15(1−𝜇)(𝑥−𝜇)𝐴1𝑞1

2𝑟1
7

+

15𝜇(𝑥+1−𝜇)𝐴2𝑞2

2𝑟2
7

].    (15) 

Substituting equation (12) into equation (13), we have 

Ω𝑥𝑥
0 = 𝑛2 +

2(1−𝜇)𝑞1

|𝑥−𝜇|3 +
2𝜇𝑞2

|𝑥+1−𝜇|3 +
6(1−𝜇)𝐴1𝑞1

|𝑥−𝜇|5 +
6𝜇𝐴2𝑞2

|𝑥+1−𝜇|3 >

0.     (16) 

From equation (8) with 𝑟1 = (𝑥 − 𝑥1) and 𝑟2 = (𝑥 − 𝑥2) 
(1−𝜇)𝑞1

𝑟1
2

= 𝑥𝑛2 −
𝜇𝑞2

𝑟2
2

−
3(1−𝜇)𝐴1𝑞1

2𝑟1
4

−
3𝜇𝐴2𝑞2

2𝑟2
4

. 17) 

Substituting equation (17) into equation (14) with 𝑦 = 𝑧 = 0 

we obtain 

Ω𝑦𝑦 = 𝑛2 (1 −
𝑥

𝑟1
) +  

𝜇𝑞2

𝑟1.𝑟2
2 +

3𝜇𝐴2𝑞2

2𝑟1.𝑟2
4 −

𝜇𝑞2

𝑟2
3

−
3𝜇𝐴2𝑞2

2𝑟2
5

. 

     (18) 

Given that 𝑛2 = 1 +
3

2
(𝐴1 + 𝐴2), in equation (4) and 𝑥 =

 𝑟1 + 𝜇 from equation (12), we substitute the values of 𝑛2 and 

𝑥 in equation (18) and by the virtue of 𝜇 <
1

2
, 𝐴𝑖 , 𝑞𝑖 ≪ 1, 𝑟1 >

1, 𝑟2 < 1 where 𝑖 = 1,2. we have 

Ω𝑦𝑦
0 =

𝜇

𝑟1
(1 +

3𝐴1

2
+

3𝐴2

2
) + 

𝜇𝑞2

𝑟1.𝑟2
2 (1 +

3𝐴2

𝑟2
2 ) −

𝜇𝑞2

𝑟2
3 (1 +

3𝐴2

2𝑟2
2) < 0.     (19) 

Now, from equation (15) since 𝑦 = 0 we have  

Ω𝑥𝑦
0 = 0.     (20) 

Likewise, for the collinear equilibrium points lying in the 

interval (𝑥2 < 𝑥 < 𝑥1) and (𝑥2 > 𝑥) respectively with 

respect to their primaries, given that 𝑦 = 𝑧 = 0, we have  

Ω𝑥𝑥
0 > 0, Ω𝑦𝑦

0 < 0 and Ω𝑥𝑦
0 = 0. 

We consider the characteristic equation of the system given 

below by Singh and Tyokyaa (2021); 

𝜆4 − (Ω𝑥𝑥
0 + Ω𝑦𝑦

0 − 4𝑛2)𝜆2 + Ω𝑥𝑥
0 Ω𝑦𝑦

0 − (Ω𝑥𝑦
0 )

2
= 0  

     (21) 

Since, Ω𝑥𝑥
0 Ω𝑦𝑦

0 − (Ω𝑥𝑦
0 )

2
< 0 in equation (21), its 

discriminant is positive and the roots can be expressed as 

𝜆1,2 = ±𝑎 and 𝜆3,4 = ±𝑖𝑏 where 𝑎 and 𝑏 are real. This 

confirms that, the motion in the neighbourhood of the 

collinear equilibrium points is unstable since it is not 

bounded. 

 

Numerical Applications 

The collinear equilibrium points denoted by 𝐿1, 𝐿2, 𝐿3 are 

evidenced by cases I, II and II respectively. Using Equations 

(9), (10) and (11), for various oblateness (𝐴1, 𝐴2), mass ratio 
(𝜇), radiation factors (𝑞1, 𝑞2), mean motion (𝑛), we compute 

numerically using MATHEMATICA software, the positions 

of the collinear equilibrium points as given in tables…. to 

show the effects of the aforementioned parameters for the 

systems: Luyten 726-8 and Achird. 

 

Table 1: Binary Systems Data for Luyten 726-8 and Achird 

Binary system 
Masses (𝑴⨀) Luminosity (𝑳⨀) 

Spectral Type (v) 
𝑴𝟏 𝑴𝟐 𝑳𝟏 𝑳𝟐 

Luyten 726-8 0.1 0.1 6.0 × 10−5 6.0 × 10−5 𝑀5.5/𝑀6 

Achird 0.95 0.62 1.29 0.06 𝐺0/𝐾7 

 

Table 2: Dimensionless Data For the Binary Systems Luyten 726-8 and Achird 

Binary system Mass ratio (𝝁) Radiation factors 

𝒒𝟏 𝒒𝟐 

Luyten 726-8 0.5 0.999998 0.99999 

Achird 0.3949 0.9971 0.9997 

 

Table 3: Effects OF Oblateness AND Radiation Factors on the Positions OF Collinear Equilibrium Points For the 

Binary Systems: Luyten 726-8 and Achird 

Binary 

system 

Mass 

ratio (𝝁) 

Radiation factors Oblateness Collinear equilibrium points positions 

𝒒𝟏 𝒒𝟐 𝑨𝟏 𝑨𝟐 𝑳𝟏 𝑳𝟐 𝑳𝟑 

Luyten 

726-8 
0.5 0.999998 0.99999 0.00 0.00 1.198405 −0.000001 −0.198404 

   0.015 0.001 1.202632 −0.009076 −0.192659 

   0.030 0.002 1.206388 −0.016846 −0.187138 

   0.045 0.003 1.209753 −0.023637 −0.181826 

   0.060 0.004 1.212792 −0.029663 −0.176714 

   0.075 0.005 1.215552 −0.035072 −0.17179 

   0.090 0.006 1.218072 −0.039972 −0.167045 

   0.105 0.007 1.220386 −0.044444 −0.162470 

         

Achird 0.3949 0.9971 0.9997 0.00 0.00 1.264425 −0.148571 −0.232106 

    0.015 0.001 1.267379 −0.156206 −0.226908 

    0.030 0.002 1.270040 −0.162847 −0.221922 

    0.045 0.003 1.272451 −0.168714 −0.217137 
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    0.060 0.004 1.274649 −0.173959 −0.212542 

    0.075 0.005 1.276662 −0.178690 −0.208126 

    0.090 0.006 1.278513 −0.182992 −0.203880 

    0.105 0.007 1.280222 −0.186928 −0.199794 

 

 
Figure 1: Effects of Oblateness on 𝑳𝟏 for Luyten 726-8 

System with 𝜇 = 0.5, 𝑞1 = 0.999998, 𝑞1 = 0.99999 

 
Figure 2: Effects of Oblateness on 𝑳𝟐 for Luyten 726-8 

System with 𝜇 = 0.5, 𝑞1 = 0.999998, 𝑞1 = 0.99999 

  

 
Figure 3: Effects of Oblateness on 𝑳𝟑 for Luyten 726-8 

System with 𝜇 = 0.5, 𝑞1 = 0.999998, 𝑞1 = 0.99999 

 
Figure 4: Effects of Oblateness on 𝑳𝟏 for Achird System 

with 𝜇 = 0.3949, 𝑞1 = 0.9971, 𝑞1 = 0.9997 

  

 
Figure 5: Effects of Oblateness on 𝑳𝟐 for Achird System 

with 𝜇 = 0.3949, 𝑞1 = 0.9971, 𝑞1 = 0.9997 

 
Figure 6: Effects of Oblateness on 𝑳𝟑 for Achird System 

with 𝜇 = 0.3949, 𝑞1 = 0.9971, 𝑞1 = 0.9997 

 

Table 4: The Characteristic Roots (𝝀𝟏,𝟐;  𝝀𝟑,𝟒) of Collinear Points for the Binary System Luyten 726-8. 

Oblateness Location Characteristic Roots 

𝑨𝟏 𝑨𝟐 𝑳𝟏 𝝀𝟏,𝟐 𝝀𝟑,𝟒 

𝟎. 𝟎𝟎 0.00 1.198405 −1.09313 ± 0.833138𝑖 1.09313 ± 0.833138𝑖 

𝟎. 𝟎𝟏𝟓 0.001 1.202632 −1.12439 ± 0.830387𝑖 1.12439 ± 0.830387𝑖 

𝟎. 𝟎𝟑𝟎 0.002 1.206388 −1.1538 ± 0.828066𝑖 1.1538 ± 0.828066𝑖 

𝟎. 𝟎𝟒𝟓 0.003 1.209753 −1.18168 ± 0.826099𝑖 1.18168 ± 0.826099𝑖 

𝟎. 𝟎𝟔𝟎 0.004 1.212792 −1.20829 ± 0.824429𝑖 1.20829 ± 0.824429𝑖 

𝟎. 𝟎𝟕𝟓 0.005 1.215552 −1.23381 ± 0.823008𝑖 1.23381 ± 0.823008𝑖 

𝟎. 𝟎𝟗𝟎 0.006 1.218072 −1.25841 ± 0.821799𝑖 1.25841 ± 0.821799𝑖 

𝟎. 𝟏𝟎𝟓 0.007 1.220386 −1.28217 ± 0.820777𝑖 1.28217 ± 0.820777𝑖 

𝑨𝟏 𝑨𝟐 𝑳𝟐 𝝀𝟏,𝟐 𝝀𝟑,𝟒 

0.00 0.02 0.04 0.06 0.08 0.10
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1.205

1.210
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Effects of Oblateness Black A1, Red A2 on L1 for Achird
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𝟎. 𝟎𝟎 0.00 −0.000001 −1.83952 ± 0.295922𝑖 1.83952 ± 0.295922𝑖 

𝟎. 𝟎𝟏𝟓 0.001 −0.009076 ±2.1041 ±1.72625 

𝟎. 𝟎𝟑𝟎 0.002 −0.016846 ±2.35723 ±1.60059 

𝟎. 𝟎𝟒𝟓 0.003 −0.023637 ±2.52329 ±1.54583 

𝟎. 𝟎𝟔𝟎 0.004 −0.029663 ±2.65502 ±1.51376 

𝟎. 𝟎𝟕𝟓 0.005 −0.035072 ±2.76647 ±1.4932 

𝟎. 𝟎𝟗𝟎 0.006 −0.039972 ±2.86417 ±1.47956 

𝟎. 𝟏𝟎𝟓 0.007 −0.044444 ±2.95185 ±1.4705 

𝑨𝟏 𝑨𝟐 𝑳𝟑 𝝀𝟏,𝟐 𝝀𝟑,𝟒 

𝟎. 𝟎𝟎 0.00 −0.198404 −1.09313 ± 0.833137𝑖 1.09313 ± 0.833137𝑖 

𝟎. 𝟎𝟏𝟓 0.001 −0.192659 −1.1535 ± 0.820698𝑖 1.1535 ± 0.820698𝑖 

𝟎. 𝟎𝟑𝟎 0.002 −0.187138 −1.21389 ± 0.805638𝑖 1.21389 ± 0.805638𝑖 

𝟎. 𝟎𝟒𝟓 0.003 −0.181826 −1.27434 ± 0.787739𝑖 1.27434 ± 0.787739𝑖 

𝟎. 𝟎𝟔𝟎 0.004 −0.176714 −1.33483 ± 0.766743𝑖 1.33483 ± 0.766743𝑖 

𝟎. 𝟎𝟕𝟓 0.005 −0.17179 −1.39536 ± 0.742327𝑖 1.39536 ± 0.742327𝑖 

𝟎. 𝟎𝟗𝟎 0.006 −0.167045 −1.45594 ± 0.714087𝑖 1.45594 ± 0.714087𝑖 

𝟎. 𝟏𝟎𝟓 0.007 −0.16247 −1.51656 ± 0.681496𝑖 1.51656 ± 0.681496𝑖 

 

Table 5: The characteristic roots (𝝀𝟏,𝟐;  𝝀𝟑,𝟒) of collinear points for the binary system Achird 

Oblateness Location Characteristic roots 

𝑨𝟏 𝑨𝟐 𝑳𝟏 𝝀𝟏,𝟐 𝝀𝟑,𝟒 

𝟎. 𝟎𝟎 0.00 1.264425 −0.93813 ± 0.80759𝑖 0.93813 ± 0.80759𝑖 

𝟎. 𝟎𝟏𝟓 0.001 1.267379 −0.965976 ± 0.806348𝑖 0.965976 ± 0.806348𝑖 

𝟎. 𝟎𝟑𝟎 0.002 1.27004 −0.992429 ± 0.80535𝑖 0.992429 ± 0.80535𝑖 

𝟎. 𝟎𝟒𝟓 0.003 1.272451 −1.0177 ± 0.804556𝑖 1.0177 ± 0.804556𝑖 

𝟎. 𝟎𝟔𝟎 0.004 1.274649 −1.04195 ± 0.803939𝑖 1.04195 ± 0.803939𝑖 

𝟎. 𝟎𝟕𝟓 0.005 1.276662 −1.06532 ± 0.803471𝑖 1.06532 ± 0.803471𝑖 

𝟎. 𝟎𝟗𝟎 0.006 1.278513 −1.08789 ± 0.803133𝑖 1.08789 ± 0.803133𝑖 

𝟎. 𝟏𝟎𝟓 0.007 1.280222 −1.10977 ± 0.802908𝑖 1.10977 ± 0.802908𝑖 

𝑨𝟏 𝑨𝟐 𝑳𝟐 𝝀𝟏,𝟐 𝝀𝟑,𝟒 

𝟎. 𝟎𝟎 0.00 −0.148571 −1.68359 ± 0.0794827𝑖 1.68359 ± 0.0794827𝑖 

𝟎. 𝟎𝟏𝟓 0.001 −0.156206 ±2.07113 ±1.43306 

𝟎. 𝟎𝟑𝟎 0.002 −0.162847 ±2.25762 ±1.36576 

𝟎. 𝟎𝟒𝟓 0.003 −0.168714 ±2.40109 ±1.3287 

𝟎. 𝟎𝟔𝟎 0.004 −0.173959 ±2.52119 ±1.30542 

𝟎. 𝟎𝟕𝟓 0.005 −0.17869 ±2.62604 ±1.28999 

𝟎. 𝟎𝟗𝟎 0.006 −0.182992 ±2.71991 ±1.2796 

𝟎. 𝟏𝟎𝟓 0.007 −0.186928 ±2.80549 ±1.27267 

𝑨𝟏 𝑨𝟐 𝑳𝟑 𝝀𝟏,𝟐 𝝀𝟑,𝟒 

𝟎. 𝟎𝟎 0.00 −0.232106 −1.34149 ± 0.610147𝑖 1.34149 ± 0.610147𝑖 

𝟎. 𝟎𝟏𝟓 0.001 −0.226908 −1.43032 ± 0.536497𝑖 1.43032 ± 0.536497𝑖 

𝟎. 𝟎𝟑𝟎 0.002 −0.221922 −1.5185 ± 0.440182𝑖 1.5185 ± 0.440182𝑖 

𝟎. 𝟎𝟒𝟓 0.003 −0.217137 −1.60617 ± 0.299887𝑖 1.60617 ± 0.299887𝑖 

𝟎. 𝟎𝟔𝟎 0.004 −0.212542 ±1.84763 ±1.53922 

𝟎. 𝟎𝟕𝟓 0.005 −0.208126 ±2.16437 ±1.39628 

𝟎. 𝟎𝟗𝟎 0.006 −0.20388 ±2.39728 ±1.33656 

𝟎. 𝟏𝟎𝟓 0.007 −0.199794 ±2.60537 ±1.30115 

 

Discussion 

We have studied the stability of collinear equilibrium points 

in the circular restricted three-body problem with radiating 

and oblate primaries. Analytical solutions are drawn from 

equations (9), (10), (11), (16), (19), (20) and (21). Using the 

software MATHEMATICA, we computed numerical values 

from equations (9), (10), (11) and (21) which are presented in 

Tables 3-5 and Figures 1-6. 

Equation (9, 10, 11) indicate that, the collinear equilibrium 

points are affected by oblateness and the radiation pressure 

factors of the primaries. This is confirmed in the locations of 

the collinear equilibrium points of the systems: Luyten 726-8 

and Achird as witnessed in table 3.  

As represented in Table 3, the positions of collinear 

equilibrium points are affected by the oblateness of the 

primaries, radiation pressure factors for the binary systems: 

Luyten 726-8 and Achird. Our study agrees with the result of 

Kumar and Ishwar (2011), Singh and Umar (2013), Singh and 

Tyokyaa (2017) in the absence of eccentricity of the orbits and 

semi-major axis.  As witnessed in Table 3 and Figures 1-6, the 

effects of the perturbed parameters on the positions of the 

collinear equilibrium points do not change its non-uniform 

movement. As the oblateness increases, the collinear 

equilibrium points 𝐿1 and 𝐿2 move away from the origin while 

the collinear equilibrium point 𝐿3  move closer to the origin 

for both systems.  
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CONCLUSION 

The stability study of collinear equilibrium points in the 

circular restricted three-body problem with radiating and 

oblate primaries have been carried out in this research for the 

binary systems: Luyten 726-8 and Achird. Analytical and 

numerical solutions are clearly outlined and computed 

respectively. 

We observed that the location of the collinear equilibrium 

points 𝐿𝑖(𝑖 = 1, 2, 3) changes positions due to the oblateness 

and radiating factors under review. The changes in the 

positions of the collinear equilibrium points does not change 

the status of the collinear equilibrium points as they remain 

unstable and unchanged. 

 As the oblateness increases, the region of stability of the 

collinear points decreases. Tables 4 and 5 depict the effects of 

the parameters for the aforementioned binary systems. The 

effects indicate that, the stability of collinear points is unstable 

for the stated binary systems. This is evidence as at least one 

characteristic root has a positive real part and a complex root. 

The stability behaviour of this study affirms with those of 

Singh and Umar (2012, 2013), and Abdulraheem and Singh 

(2006), Singh and Tyokyaa (2017). 

 

REFERENCES 

Abdulraheem A., Singh, J., (2008). Combined effects of 

perturbations, radiation and oblateness on the periodic orbits 

in the restricted three-body problem, Astrophys. Space Sci. 

317:9-13  

 

Abouelmagd, E. I., El-Shaboury, S.M. (2012). Periodic orbits 

under combined effects of oblateness and radiation in the 

restricted problem of three bodies. Astrophys, Space Sci. 

341:331-341  

 

Abouelmagd, E. I. (2012). Existence and stability of 

triangular points in the restricted three-body problem. 

Astrophys. Space Sci. 342:45-53. 

 

Aminu, A. H., Umar A., Singh, J. (2018). Investigation of the 

stability of a test particle in the vicinity of collinear 

equilibrium points with additional influence of an oblate 

primary and a triaxial stellar companion in the frame work of 

ER3BP. International Frontier Science Letters (SciPress). 

13(1), pp. 12.27. 

 

Ammar, M.K. (2012). Third-order secular solution of the 

variational equations of motion of a satellite in orbit around a 

non-spherical planet. Astrophys. Space Sci. 340:43. 

 

Bhatnagar, K.B., Hallan, P.P. (1979). Effect of perturbed 

potentials on the stability of libration points in the restricted 

problem. Celest. Mech. 20: 95-103. 

 

Kunitsyn, A.L. (2001). The stability of collinear libration 

points in the photogravitational three-body problem. J. 

Appl.Math. Mech. 65:703. 

 

Sharma, R.K. (1987). The linear stability of libration points 

of the photogravitational restricted three-body problem when 

the smaller primary is an oblate spheroid. Astrophys. Space 

Sci. 135:271. 

 

Singh, J., Taura, J.J. (2013). “Motion in the generalized 

restricted three-body problem” Astrophys. Space Sci. 343:95-

106. 

 

Singh, J., Taura, J.J. (2014). Effects of zonal harmonics and a 

circular cluster of material points on the stability of triangular 

equilibrium points in the R3BP. Astrophys. Space Sci. 350, 

127-132. 

 

Singh, J., Umar, A., (2013). On out of plane equilibrium 

points in the Elliptic restricted three-body problem with 

radiation and oblate primaries. Astrophys. Space Sci. 344, 13-

19. 

 

Singh, J., Leke, O., (2013). “Effects of oblateness, 

perturbations, radiation and varying masses on the stability of 

equilibrium points in the restricted three-body problem” 

Astrophys. Space Sci. 344:51. 

 

Singh, J., Umar, A., (2012b). on the stability of triangular 

equilibrium points in the elliptic R3BP under radiating and 

oblate primaries. Astrophys. Space Sci. 341, 349-358. 

 

Singh, J., Begha, J.M., (2011). Periodic orbits in the 

generalized perturbed Restricted three-body problem. 

Astrophys. Space Sci. 332, 319-324. 

 

Singh, J., Leke, O., (2012). Equilibrium points and stability in 

the restricted three-body problem with oblateness and 

variable masses. Astrophys. Space Sci. 340:27-41. 

 

Singh, J., Leke, O., (2013). Effect of oblateness, 

perturbations, radiation and varying masses on the stability of 

Equilibrium points in the restricted three-body problem. 

Astrophys. Space Sci. 344:51-61. 

 

Singh, J., Leke, O., (2014). Analytic and numerical treatment 

of motion of dust grain particle around triangular equilibrium 

points with post-AGB binary star and disc. Advances in Space 

research. 54: 1659-1677. 

 

Subbarao, P.V., Sharma, R.K., (1975). A note on the stability 

of the triangular points of equilibrium in the restricted three-

body problem. Astron & Astrophys. 43:381-383. 

 

Szebehely, V.G. (1967). Theory of Orbits. Academic Press, 

New York. 

 

Tkhai, N.V. (2012). Stability of the collinear libration points 

of the photogravitational three-body problem with an internal 

fourth order resonance. J. Appl.Math. Mech. 76:441. 

 

Tsirogiannis, G.A., Douskos, C.N., Perdios, E.A. (2006). 

Computation of the liapunov orbits in the photogravitational 

RTBP with oblateness. Astrophys. Space Sci. 305:389. 

 

 

 

https://creativecommons.org/licenses/by/4.0/

