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ABSTRACT

In this paper, diagonally implicit Runge-Kutta-Nystrom (RKN) method of high-order for the numerical
solution of second order ordinary differential equations (ODE) possessing oscillatory solutions to be used on
parallel computers is constructed. The method has the properties of minimized local truncation error
coefficients as well as possessing non-empty interval of periodicity, thus suitable for oscillatory problems.
The method was tested with standard test problems from the literature and numerical results compared with
the analytical solution to show the advantage of the algorithm.

Keywords: ordinary differential equations, initial value problems, Runge-Kutta-Nystrom method, parallel
method, oscillatory problems, analytical solution.
example, in astronomy, seismology and when a second order
INTRODUCTION hyperbolic partial derivative equation is semi-discretized with

Runge-Kutta-Nystrom method is widely used for the Trespect to space variables. RKN method is usually employed to

numerical approximation of the initial value problem (IVP) approximate (1) at a discrete set of points (Xn v Yoo y;) . The
Yy =1(XY),y(X)=Y,, Y (X) =Y form of this method is given (Sharp ef al. (1990), Van de
1) Houwen and Sommeijer (1989), Franco and Gomez (2009)) by

having oscillatory solution often arises in application, for

You = yn+h yr’1+hzzbjf1
=

s (2)
Vo = Vo +hY b,

j=L
where

f,= flx,+c;h, y,+chy, +h*> a,f,
k=1

]

The RKN parameters a ko b i b i and C j are assumed to be real and a jk are the stage weights b i weights , C j the nodes and

s number of stages. In most methods, the C j satisfy the row simplifying assumption

1, < .
56 :kZajk j=1---,s 3)
=1
All the coefficients of the method can characterised by the Butcher tableau, Butcher (1964)
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RKN methods are divided into two broad classes: explicit (a Kk = 0, k > j) and implicit (ajk #0, k > j). The later

contains the class of diagonally implicit methods for which (ajk =0, k> j) and the a j are equal. In this article, the

consideration is on diagonally implicit methods.

In the literature, several high-order diagonally implicit Runge-
Kutta-Nystrom (DIRKN) methods have been proposed for the
integration of the IVP (1) on one-processor computers. For
example, the two-stage and three-stage DIRKN methods orders
three and four of Sharp et al. (1990), the two-stage DIRKN
methods of order four of Sommeijer (1987), DIRKN methods
for oscillatroty problems by Van der Houwen and Sommeijer
(1989), the RKN methods of orders three for solving fuzzy
differential equations of Kanagarajam and Sambath (2010).
However, parallel IVP solvers arise from the need to solve
many substantial problems faster than is currently possible.
The computational time on a conventional sequential machine
is so large that it affects the productivity of scientists and
engines working on the design of complex systems.

In this study, parallel diagonally implicit Runge-Kutta-Nystrom
(PDIRKN) method is presented for the approximation of the
IVP (1).

Parallel computers are computers with multiple processors and
this facility helps to speed up the computations in the solution
of ODEs. This is particularly useful for very large problems,
costly function evaluations, problems with long integration
intervals or for fast real-time simulations. A second motivation
is the desire to make a code, with the help of parallel
computations, not necessarily faster, but more robust and
reliable, Hairer et al. (1993). In attempts to solve (1), three
types of parallelism have been identified:

Parallelism across the method
Parallelism across the system (space)

0)
(if)

"_

@’y, y(0)=1Yy'(0)=iew,0el

(iii) Parallelism across the steps

Parallelism across the method is to perform several function
evaluations concurrently on different processors. The technique
of parallelism across the system is via the decomposition of a
problem into sub-problems which can then be solved in parallel
with the processors communicating as appropriate. Parallelism
across the step in which generation integration steps are
perform concurrently with a given numerical method (Burrage
(1997), Amodio and Brugnano (2008) for more details)

In this article, the development of PDIRKN method for solving
the IVPs associated with the special second order IVP (1) in the
first category, which is parallelism across the method is
investigated.

Crisci, et al. (1993), introduced fully parallel RKN methods by
imposing that the matrix A is diagonal. The method has
algebraic order two in two stages. This means that the stages
can be evaluated concurrently using two-processor machine.
Other contributors to the development of parallel methods
include Amodio and Brugnano (2008), which examined
possible extensions of parallel methods previously proposed in
the mid-nineties, Amodio and Brugnano (1997) which analysed
its connections with subsequent approaches to the parallel
solution of ODE-IVPs. Sommeijer (1993) describes the
construction of explicit RKN methods for parallel computers.

In order to test the performance of this method for oscillatory
problems, it is of interest to consider the test problem
(Tsitouras, (1998))

V= 4)
Application of the RKN method (2) to problem (4) yields the following recursive relation (Imoni (2017))
yn+l yn
=R(2) )
hyr’Hl hyr’]
where
1+zb"(1-zA) "¢ 1+zb"(1-zA)"c
R(z) = ©
T (1-zA)" 1+ (1-zA)"¢c
and
S ’ ' 7 T
A= {aik}j,kzl e:[l’“"l]T’b:[bl’ ’bs]Tb:[bl e ubl] aC:[Cly' 1Cs]
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The matrix R(Z) which determines the stability of the method is called the amplification matrix. Following Van der Houwen

and Sommeijer (1989), we introduced the functions S(Z) and p(Z) with

S(Z) = trace(R(Z)) and p(Z):det(R(Z)) (7
The characteristic equation corresponding to (6) is of the form
$*=s(2)¢ +p(2)=0 (8)

An essential property for computing periodic solution of (1) is the situation where the eigenvalues é’ 1o are on the unit circle.
Definition: An RKN method has periodicity interval | ;= (0, Zo) if the roots of its characteristic equation é’ 1, are on the
unit circle and é’ | F é’ 2 Vz e (0, Zo) y Zy is called the stability boundary (Van de Houwen and Sommeijer (1989))
Construction of the new PDIRKN Method

A Six stage, 3-parallel, 3-processor sixth order DIRKN method is investigated. The method has the sparsity pattern and diagraph
shown in figure 1

Runge —Kutta —Nystrom Matrix Digraph

1 g2 (oF]

MoHM OO K
Moo oM O
MO oMo o
o oW oo o
oMo oo o
Moo oo o

O

Q

Figure 1: The 6-Stage PDIRKN Matrix and Digraph

The symbol X denotes non-zero elements, (;,(, and (; denotes the number of processors Imoni (2017)

For this process with s = 6, p = 6, following Felberg (1972) the following order conditions are to be satisfied considering the
simplifying assumption (3)

6

Order two: :ZQ=Q+@+Q+Q+Q+Q=% ©)
i=1
6 1

Order three: bICi = blCl + b2C2 + b303 + b4C4 + b5C5 + b6C6 = 6 (10)
i=1
6 1

Order four: Zbuciz = blCl2 + bZC§ + b3C§ + b4C§ + b5C52 + b6C§ = E an
i=1
6 1

Order five: Zﬁ§=q§+Q@+QQ+QQ+QQ+QQ:§6 (12)

N

i=
6
Z bi aijCj = bla'ucl + bza21C1 + bzazzcz + b3a31C1 + bsaszcz + bsasacs +
i j=1
b,a,.c +b,a,,c, +b,a,.c, +b,a,c, +b.a,c +b.a,c, +
b5a53c3 + b5a'54c4 + bSaSSCS + bﬁaﬁlcl + b6a6202 + bGaGSCS +
1
120

(13)

b6a64c4 + b6a65C5 + beaeecs =
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6 1
Order six: Zb,ci“ = b1C14 +b2C;1 +b3C;1 +b4Cj +b5C54 +bGCg = % (14)
i=1

6
2 2
Z bi GqC; = blallcl + b2a210102 + bzazzcz + bzazzcz + b3a31C1C3 +
i,j=1

2
b3a32C2C3 + b3a33c3 + b4a41C1C4 + b4a42C2C4 + b4a43C304 +
b4a44C4 + b5a'51C1C5 + b5a5202C5 + b5a5303c5 + b5a54C4C5 + (15)
2
b5a55c5 + b6a61C1C6 + b6a62c2c6 + b6a63c3c6 + b6a64c406 +

b.a..c. +b.a..c? = —
6a656 6 66 6 180

6

2 2 2 2 2 2
E biciaijcj =ha,c +b,a,c +b,a,c; +ba,c’ +ba,C, +
i

2 2 2 2 2 2
b,a;,c; +b,a,,c; +b,a,C; +b,a,,¢5 +b,a,c, +bagc +

(16)
2 2 2 2 2 2
bsaszcz + b5a53C3 + bsas4c4 + bsasscs + bGaGlCl + beaazcz
1
+ b6a63C32 + b6a64cj + beasscs2 + beaeecez =
360
1., 6 ]
Assumptions: ECJ- :;ajk(j :1,...,6) 17)

There are 14 equations in 27 unknowns. Thus there are 13 free parameters chosen to be
Ci7C2’CS7C4’CS’C6’b6’a42'a44’a537a55’a62anda66‘

The process in the derivation of the method is the following:

1. Solve equations (9) — (12) and (14) to obtain
b, A o - B
60(C1 _CZ)(Cl _CS)(Cl _C4)(C1 _Cs) i 60(C1 - Cz)(cz —C3)(C2 _C4)(C2 _Cs)
b, = C - D
60(01 B Cs)(cz B C3)(03 B C4)(C3 o Cs) ) 60(03 o C4)(_C1 + C4)(_C2 + C4)(C4 B Cs)
E

60(C3 - CS)(_CJ_ + Cs)(_cz + C5)(—C4 + Cs)
2. Then use the assumption (17) to obtain
—1c2a—1c2 —cza—lc2 a, —a, —a a—102 a., —a.,—a
ail_E 1 22—5 2’a33—§ 31 41—5 4~ Q4o T Guz T Gusn 51—5 5 G52 7 Y53 T Asp
1.,
A :ECG — 85, — g — A
3. Equation (13) is then use to obtain

a - F
® 360b4 (CA - Cs)(cz —G (C4 —Cs )

4. Solve equation (15) to obtain

B G
o = 120b5 (Cl _Cz)(cz _Cs)

5. Then use equation (16) to get
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% = 360, (G, ¢ )(t:| —cy(C, —Cy))
6 \ M1 3 2 3\~4 6
A=2-3c, —3c, +5¢,c, —60b,c,c.c2 +60b.c,cd +60b,c.c —60b,c, +c,(—3+60b,c +
¢, (5—60b,c?) +5¢, (L—12b,cZ + 2c, (—1+6b,c,))) + ¢, (-3 +5¢, — 60b,c.cZ +60b,c:5¢, (—1+
12b,cZ + ¢, (2 -12b,c,) 2¢, (1+ (=3 +6hb,) +c, —6b,c,)) +5¢, (L—12b,c2 + 2¢, (~1+6b,C;)))

B =-2+3c, +3c, —5¢,C, —60b,c,c.c? —60b,c,ce —60b,c.c +60b,c; +c,(3—60b,cS +c, (-5+
60b,c’) +c, (-5 +60b,c +c, (10 —60b,c,)) + ¢, (3—5¢, +60b,c.c; —60b,cS +c,(—5+60b,c? +
¢; (10— 60b,c;)) +5¢, (1 +12b,c? + ¢, (2 —-12b,c,) + 2¢, (1 + (-3 + 6b, )(5 - 6b,C, ))))

C =(2-3c, —3c, +5¢, —60b,c,c.c2 +60b,c,c +60b,c,c +60b,c.ce —60b,ce +c,(-3+
60b,C. + ¢, (5—60h,c?) +5c, (1 —12b,cZ + 2¢, (—1+ 6hb,C, ))) + ¢, (-3 + 5¢, — 60b,c,C2 +
60b,c; —5¢, (—~1+12b,c2 + ¢, (2—12b,c,) + 2¢, (1+ (-3 + 6b, )c, —6b,C,)) +5¢, (L—12b,c.
+2¢,(—1+6Db,c,))))

D = (-2 +3c, + 3¢, —5¢,¢, +60b,c,c.c2 —60b,c,cS —60b,c,cS +60b,c.C +60b,cy +
¢, (3—60b,c] + ¢, (—5+60b,c?) + ¢, (-5 + 60b,c’ + ¢, (10— 60b,c,))) +¢, (3—5¢, +
60b,c.c; —60b,c] +c,(-5+60b,cZ + ¢, (10— 60b,c, )) +5¢, (-1+12b,c2 +c, (2 -
12b,c,) + 2¢,(1+ (=3 + 6b;)c, —6h,C,))))

E = (-2 +3c, + 3¢, — 5¢,¢, + 60b,c,c,c2 — 60b,c,ce —60b,c,c +60b.c,cd +60b.cy +
¢, (3—60b,c; +c,(—5+60b,c?) +c, (-5 +60b,c; +c, (10 —60b,c,))) +¢,(3-5¢C, +
60b,c,c> —60b,c] +c,(-5+60b,cZ +c, (10— 60b,C,)) +5¢, (-1 +12b,c> +c, (2
12b,c,) + 2¢,(1+ (—=3+6b,)c, —6b,C;))))

F =180b,c; —180b,c; —180b,c; (c, + ¢, ) +180b,c] (c,c. + ¢, (c; — ¢, ) —360a,3b,c2(c, —C,) +
180b,c,ci (c, — c,)+180b,cic, + ¢, (-2 —360a,,b,c,c, —360a,,b,c,c, —360a,,b,c,C, +
360a,,b,c? +180b,c,c; +360a,,b,c,c, —360a,b.c,c, —360a,b,c,c, +360a,b.c,c, +
360a,,b,c,c, +360a,,b.c,c. +360a,,bc,c, +360ab.c2 +180b.c,cd +180b,c’(c, —c,) +
180b,c: (c, —¢;) +3c, +360a,,b,c,c, +360a,,b.c,c, +360a,h,c,c, —360a,b,c,c, —
360a,,b,c,c, —360a,,b,c,c, —360a,,b,c,c, —180b,c,cZc, —360a.b.c.c, —180b.c,cic,) +
¢, (2+360a,,b,c,c, — 360a,,b,c; —180b,c,c, —180b,c’(c, —c,) +360a,,b,c, (c, —c;) —3c,
—360a,,b,c,c, +360a.b.c,c, —360a,,b,c,c, —360a,bc,c. +360a,,b,c,c, +180b,c,cc, —
360a,,h.c,c, +360a,,b,c,c, +360a,,b,c,C, +360a,,b,c.c, —360a,,b,c2 +180b,c,c.c2 —
180b,c,c) +360¢’ (a,,b, (C, —C;) +ag,b, (— ¢, +¢,) —3(c, — ¢, )(~¢,(-1+1120a,,b,c, +
120ab.c, + 120a,,b,c,) + 2(-1+60a,,b,c. + 60a,b,c2 +60a,b.c2)))))
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G = (-2 +120a,,b,c? + 60b,c; +120a,,b,c, (¢, —¢c,) + ¢, — 60b,c’c, —120a,,b,c,C,

—60b,cSc, —120a,,b,c,c, +120a,,b,c. —120a,b.c,c, +120a,b.c? —120a,b,cC,cC,
+120a,,b,cZ —c,(—1+60b,c 3+120a,,b, (c, —c,) +120a,,b; (c, — ;) —120a,,b, (c, - c,))
—120a,,b,c, —120a.b.c, —120a,b,c, + 60b,c, +120a,,b,c, +60b,c,c. +120a.b.c, +
60h,c,c. +120a,,b,c, +60b,C,C2))

H = -180b,c; +180b,c] —180b,c,C;c, +180b,c,C (c, — ;) +180b,c; (c, +C, ) + 360a,,b.c2 (-c, +C,)
+180h,¢3 (c,c, — (¢, +¢,)c,) —360c: (a,,b, (C, —C;) + ag,b, (—C; +¢,)) —3(c, — ¢, ) (-2 —c¢, (-1+
120a,,b,c, +120a,b.c, +120a,,b,c,) +120(a,,b,C’ +a,b,c2 +a,h,cl)) +c, (2 +3(-1+120(a,,b,
—(ag, + a5 )b, —aggh; )¢, )c, +180b.c’ (¢, +c,) +180(2a,b.c,c, +b,cl (—c, +¢,) +22a,,b.cc, +
2a.b.c.c, —2a,,b,c.c —2a,b.c.c. —2a,,b,c.C +2a,h.c,C —2a.b.cl +b.cc,cl —b.cc +
2a,,b, (c,c, — (¢, +C,)C,) + 2b, (8, (C, +C;) + @ (C, +C,))Cs + by (—23,, +C,C,)ce —b,C,cl))) +
¢,(—2+180b,c’(c, —c,) +3c, +360a,,b,c, (¢, + ¢, ) + 180(-2a,,b, (¢, —¢,)(c, —¢;) + ¢, (2a,b; (c, —¢)

+0,C; (€, = C5) + 2(ag, +865)05C5 ) — 25 (85,0, + 865 (€, +C5))Cs + by (285 — €65 )¢5 +0,6,65)))

Use assumption (3.9) to get
0, b, and
Minimization of Local Truncation Error

Using the explicit expressions of the above solution, the 7™ order (or principal) local truncation error

T(7)H and HT'(”H can be

found explicitly. This is done by substituting the solutions into the principal truncation error coefficients of the 7™ order equations

given by
N7
[2)= 2 |77l a9
j=1
where
6
M — (1) — (M — 2 (7) (7) -
M =70 =¢{ Zbc -—, i =) bcla ¢, - — Zbc 3G -
i i,j=1 R 252 i,j=1 04
(7) @) Z @ 26: 1
_2.8 =) = -1, = b.a.y.a.kck——
=i Y 840’ =T 504

The expression is a little lengthy but it can be used easily with a minimization package in order to find an optimal value for
[ anae]
T

method is expressed in Butcher tableau below

and|[T and numerically minimize to choose values for the free parameters. The resulting 6-stage order 6 PDIRKN
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Table 1: Butcher Tableau of the Coefficients for 6-Stage PDIRKN Method

9 81

50 | 5000

B, 169

100 20000

1 1

2 ’ ’ 8

17 1422296617561 43 166035272001 143

25 7904360320000 250 316174412800 500

29 169351174719 ~ 4633102482 43 0 87

50 380850250000 13329758750 500 200

3 93807851587 7 6753974598 0 o 3

5 632966400000 200 63296640000 20

b ~ 37081 665728 258941 333799 26201 9
120000 1373625 319680 742500 54000 20

b’ 1520321 4826528 258941 667598 183407 9
6000000 11446875 639360 4640625 900000 50

The stability interval of the method is examined using (6) and obtain the amplification matrix given by
plgy B My 80 1 U g A, A, % s L L Ly

2 125 500 200 2500 5000 125 250 400 500 500 50
32 1 L T 1 p 2,0, 1 3 0 1, 8 4
100 1250 50 500 5000 500 25 500 250 2000 625 50000

R(z) =

A boundary locus plot of R(Z) gives the stability interval of approximately (-3.2, 0).The stability region of the 6-stage
PDIRKN method is shown in figure (2), where the stability region lies inside the boundary.

FUDMA Journal of Sciences (FJS) Vol. 4 No. 3, September, 2020, pp 513 - 522
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Figure 2: Stability Region for the 6-Stage PDIRKN Method

In order to implement the method in variable step size setting we would have to embed a lower order method, while using same
function evaluations as the sixth order method. This means that the higher and lower order methods share the same matrix A and

vector ¢ but they have different weight vectors b and b’

Numerical Examples

In this section, we present some problems which will be tested by the new method. The method was implemented sequentially
since parallel computers were not readily available. We compare the new method derived in this paper with the analytical
solution. The numerical results are given in Tables 2 and 3 and the nations used are as follows:

H-Step size, FCN - Number of function evaluations, STEP - Number of steps, EMAX- Max ||yn - y(x n)” that is, the absolute

value of the computed solution minus the exact solution.
Example 1

Y'==y,¥(%)=0,¥(X)=10<x<10
with analytical solution Y(X) = Sin(X)
Example 2
y'=-25y,y(0)=0,y'(0) =5
with analytical solution Y(X) = Sin(5X)
The numerical results for the two examples above are depicted in Tables 2and 3. One measure of the accuracy of a method is to

examine EMAX, the maximum error which is defined as the absolute value of the computed solution minus the analytical
solution.

FUDMA Journal of Sciences (FJS) Vol. 4 No. 3, September, 2020, pp 513 - 522 520



A DIAGONALLY IMPLICIT...

Imoni

Table 2 Numerical Results for Example 1

FJS

H FCN STEP EMAX
1 950 95 1.043822187
2
1 1890 189 8.787876x1072
4
1 3550 386 5.4388997 x107?
8
1 4620 462 3.3768231x10°°
10
1 7220 722 1.8982962 %1072
16
1 9510 951 8.1211125x10™*
20
1 93140 9314 5.1293866x10™*
250
Table 3 Numerical Results for Example 2
H FCN STEP EMAX
1 2310 231 0.119492675
2
1 5330 533 8.86332473x10%
4
1 12660 1266 2.35642176 %107
10
1 26230 2623 1.592566935x10°
25
1 136550 13655 7.481039222 x10*
50
1 253420 25342 1.540506182x10™
100
1 1356720 135672 8.392525871x10™
200
DISCUSSION OF RESULTS AND CONCLUSION CONCLUSION

Discussion of Results

The use of the usual test based on computing the maximum
global error over the whole integration interval has been
employed since it gives a more significant measure of
efficiency. As it can be observed from Table 2 and Table 3, the
numerical results compared favourably with the analytic
solution. In terms of the global error, the higher the number of
steps the smaller is the error produced.

In this paper, a class of a six-stage, 3-parallel, 3-processors
sixth order diagonally implicit RKN method for the numerical
of the special second order IVP (1) have been developed. The
new method have the properties of minimized local truncation
error coefficients as well as appropriate region of stability
which is recommended for solving ODE problems possessing
oscillatory solutions. Also, numerical tests were performed
using sequential computer and from the results depicted in
Tables 2 and 3, it is observed that the new method performed
favourably with the analytic solution. In a future research, the

FUDMA Journal of Sciences (FJS) Vol. 4 No. 3, September, 2020, pp 513 - 522
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method will be implemented on parallel codes with variable
step size and to be compared with sequential code.
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