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Abstract

In this article, the numerical solution of fractional order integro-differential equations using Exponential-
Fitted Collocation (EFC) approach is discussed. The normal integro-differential equations with nth-
integer ordered derivatives were considered and solved at some neighborhood ⌈α⌉− and ⌈α⌉+ where
⌈α⌉− ≤ n ≤ ⌈α⌉+ indicate some carefully chosen fractional order values to the left and right of
n. The solutions are compared to the exact solution which was given at n values. Here, we desire
to find the value of α that will produce a faster and better convergent to the exact solution given
at the value of n. A trial solution in shifted Chebyshev polynomials basis function was assumed
and substituted into the slightly perturbed problem considered. After collocation, (N +1) algebraic
system of equations was obtained. The values of unknown constants coefficients from the system of
equations were substituted into the assumed trial solution to get the required approximate solution.
Three (3) illustrative examples are solved to verify the reliability, simplicity and accuracy of the
collocation method considered.

Keywords: Fractional order Integro-differential Equations and Exponentially Fitted Collocation
method Solution.

INTRODUCTION

According to Al-Zuhairi et al (2024), integro-
differential, differential and fractional integro-
differential equations alike are important in describ-
ing physical, natural, and biological phenomena
as well as in engineering and biological technolo-
gies. To solve these equations, numerous numer-
ical methods have been advanced for the solution
of which includes Adomian Decomposition Method
(ADM), Finite Difference Method (FDM), Colloca-
tion Method (CM) to mention a few.
Ajileye et al., (2024) and Ajileye et al., (2023)
studied the solution of Volterra integro-differential
equations using collocation approach and standard
collocation points method respectively to convert
their equations to set of linear system of equa-
tions. The results obtained in both investigations
showed that the methods are good and are capable
of solving the class of problems accurately. More
recently, Olotu et al., (2025) carried out a com-
prehensive analysis study of the Differential Trans-
form Method (DTM) for solving ordinary differ-
ential equations (ODEs) of various orders. In the

study, the authors focused the method’s ability to
handle both linear and nonlinear ODEs without lin-
earization, discretization, or perturbation and ob-
tained remarkably expressive results that are com-
parable the to existing literature. Falade and Taiwo
(2023) proposed an exponentially fitted collocation
algorithm (EFCA) for the solutions of nth-order
Fredholm type integro-differential equations. The
proposed numerical algorithm was experimented on
some examples and the results were compared with
the exact solutions and some existing methods and
were found to be accurate and reliable.
Aduroja et al., (2023) used collocation approxi-
mation method to solve some classes of Volterra
integro-differential equations with polynomial ba-
sis functions and obtained the required algebraic
equation after some transformations. The obtained
system of equations was solved by Gaussian elim-
ination method and the constants obtained were
substituted into the trial solution and this yielded
accurate solutions.
Uwaheren et al., (2022) used on Akbari-Ganji’s
method to solve Volterra type of integro differen-
tial difference equations and the approximate re-
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sults obtained compared to the exact solution was
found to be good and they converged rapidly.
Alshbool et al., (2022) advanced two techniques
of Bernstein operational fractional polynomials
and Bernstein operational matrices of differentia-
tion metheds to solve fractional integro-differential
equations (FIDEs) and the schemes were generated
based on the idea of the conventional operational
matrices. After collocation, the approximate solu-
tions obtained showed that the proposed methods
were good and converged to the exact solution.
Uwaheren et al., (2021) applied Legendre Galerkin
method for solving fractional integro-differential
equations of Fredholm type. Using the equation
of the problem the authors were able to reduce the
errors of the approximate solution without the use
of another method of linearization on the non-linear
part of the problem. Oyedepo et al., (2021) worked
on the modified homotopy perturbation technique
on fractional integro-differential difference equa-
tions and and had good results that converged to
the exact solution.
Owolanke et al., (2019) applied exponentially fit-
ted collocation method to solve singular multi-order
fractional integro-differential equations. In the
work, Canonical polynomials were constructed and
used as basis functions for the solution of slightly
perturbed singular multi-order integr-differential
equation and the experiment produced very good
results as compared with the exact solutions.
Falade (2019) Solved integro differential equa-
tions using exponential fitted collocation approx-
imate technique. In the work, 1st, 2nd, 3rd, and
5th–orders linear Volterra and Fredholm integro-
differential equations were solved using the pro-
posed technique. The authors concluded that the
proposed technique was successfully used and the
results compared favorably to the exact solution.
Owolanke et al., (2017) developed and implemented
a new two-step hybrid method for the solution of
general second order ordinary differential equation.
The research used eight order two-step Taylor se-
ries algorithm and the obtained equation were col-
located at all grid and off-grid points to get the
required approximate solution.
Amer, Saleh, Mohamed, and Abdelrhman (2013)
worked on solution of linear and nonlinear
boundary value problems fourth-order fractional
integro-differential equations using Variation iter-
ation method (VIM) and Adomian decomposition
method (ADM). The authors converted the integro-
differential equations to infinite series of convergent
equations by two methods and Compared the re-
sults obtained with the exact solutions. The results
showed that the proposed methods are accurate and
efficiency.
Some relevant terms used in this work are briefly
defined below

Integro-differential Equation: An integro-
differential equation is an equation that involves
both integrals and derivatives of a function. The
general order of linear integro-differential equation
is expressed as

u(n)(x)+

∫ xn

x0

f(x, u(t))dt = g(x, u(x)), u(x0) = u0

(1)
Fractional Integro-differential Equation: A
Fractional Integro-differential equation is similar to
the conventional integro-differential equation. The
general fractional order integro-differential equa-
tion (Weibeer, 2005) is expressed as:

(2)
Dαu(x) +

∫ xn

x0

k(x, t)f(x, u(t))dt

= g(x, u(x)), u(x0)

= u0

where u(x) is the unknown function, Dα(x) is
the derivative, k(x, t) is the kernel of the problem
and x0 and xn are the limits of the integral. The
fractional derivative Dα of a function f(t) = tn

with an arbitrary parameter α is given by

Dα(tn) =
Γ(n+ 1)

Γ(n− α+ 1)
tn−α (3)

Higher Order Fractional Integro-differential
Equations: The general Nth order Fractional
integro-differential equations is of the form

(4)

Dαy(x) +Dα−1y(x) + · · ·+ y(x)

+ λ

∫ xn

x0

k(x, t)y(t)dt = f(x) x

∈ [a, b]

together with the initial conditions

(5)

y(a) = α0, yi(a)

= α1, y
ii(a)

= α2, · · · , yn−1(a)

= αn−1

Where k(x, t) is a kernel functions, f(x) is a given
function and y(x) is the unknown functions to be
determined.
Collocation Method: Collocation method is
a numerical technique which involves selecting a
finite-dimensional space of potential solutions (of-
ten polynomials of a specific degree) and a set of
points in the domain, known as collocation points.
The trial solution is then chosen such that it satis-
fies the given equation at these collocation points.
It simply means evaluating a problem at equally
spaced interval in the domain of consideration.
Basic Chebyshev Polynomials: The Cheby-
shev polynomials of the first kind and of degree
k are defined on the interval [−1, 1] as: Tk(x) =
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cos(k cos−1(x)) The recurrence relation is given
as:

Tk+1(x) = 2xTk(x)−Tk−1(x), k = 1, 2, 3, · · · (6)

The shifted Chebyshev polynomials of degree n on
the closed interval [0, 1] is defined as: T ∗

n(x) =
Tn(2x − 1) The recurrence formula on the closed
form interval [0, 1] is:

T ∗
n+1(x) = 2(2x− 1)T ∗

n(x)− T ∗
n−1(x), n > 1 (7)

Also, a few terms are listed thus:

T ∗
0 (x) = 1

T ∗
1 (x) = 2x− 1

T ∗
2 (x) = 8x2 − 8x+ 1

T ∗
3 (x) = 32x3 − 48x2 + 18x− 1

T ∗
4 (x) = 128x4 − 256x3 + 100x2 − 32x+ 1

T ∗
5 (x) = 512x5 − 128x4 + 1120x3 − 400x2 + 50x− 1.etc

(8)
Basic Legendre Polynomials: The well-known
Legendre polynomials P(s) is defined in the interval
[-1,1] by the Rodrigues’ formula:

Pn(s) =
1

2nn!

dn

dsn
[(s2 − 1)n] (9)

where, P0(s) = 1 and P1(s) = s for n = 0, 1. It will
be observed that an nth derivative of the formula
has to be carried out before a polynomial of degree
n is obtained at all times. That process is how-
ever time consuming and so a recurrence formula
to obtain the polynomial for n > 2 is given as:

Pn+1(s) =
(2n+ 1)

n+ 1
sPn(s)−

n

n+ 1
Pn−1(s) (10)

To transform (2.12) to shifted Legendre polynomial
in the interval [0,1], set s = 2t− 1 where t ∈ [0, 1],
then Pn(s) = Ln(2t−1) and Ln+1(t) will be defined
as:

(11)
Ln+1(t) =

(2n+ 1)(2t− 1)

n+ 1
Ln(t)

− n

n+ 1
Ln−1(t), n

= 1, 2, ....,

A few numbers of the Legendre polynomials are
given as follows:

L0(t) = 1

L1(t) = (2t− 1)

L2(t) = (6t2 − 6t+ 1)

L3(t) = (20t3 − 30t2 + 12t− 1)

L4(t) = (70t4 − 140t3 + 90t2 − 20t+ 1)

(12)

METHODOLOGY

Exponential-fitted collocation method

We considered the general class of Fredholm
Integro-differential equation given in equations (4)
and (5):
To find a single approximation solution to the equa-
tions, we assumed a trial solution of the form

uN (x) =

N∑
i=0

aiT
∗
i (x)

= a0 + a1(2x− 1) + a2(8x
2 − 8x+ 1)

+ a3(32x
3 − 48x2 + 18x− 1)

+ a4(128x
4 − 256x3 + 100x2 − 32x+ 1)

+ a5(512x
5 − 128x4 + 1120x3 − 400x2

+ 50x− 1) + · · ·

(13)

where ai are the unknown constants to be deter-
mined and T ∗

i (x) are shifted Chebyshev polynomial
An exponentially fitted approximate term proposed
by Falade (2019) is modified here to be,

(14)

HN (x) =

n∑
i=0

(aiL
∗(x) + τie

x)

=

⌈α⌉∑
i=0

(
aiLN−n−i(x) + τie

i
)

a≤ x ≤ b

where L∗ is the perturbation polynomial in terms
of the shifted Legendre polynomials, ⌈α⌉ is called
the ceiling α, nearest upper or lower integer to α
and τi are free tau parameters.
Substituting equation (11) into equation (4), gives

(15)

Dα

(
N∑
i=0

aiT
∗
i (x)

)

+Dα−1

(
N∑
i=0

aiT
∗
i (x)

)

+ · · ·+

(
N∑
i=0

aiT
∗
i (x)

)

+ λ

∫ b

a

k(x, t)

(
N∑
i=0

aiT
∗
i (t)

)
dt

= g(x)
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We slightly perturb equation (8) by adding HN (x)
defined in equation (12) and we have

(16)

Dα

(
N∑
i=0

aiT
∗
i (x)

)

+Dα−1

(
N∑
i=0

aiT
∗
i (x)

)

+ · · ·+

(
N∑
i=0

aiT
∗
i (x)

)

+ λ

∫ b

a

k(x, t)

(
N∑
i=0

aiT
∗
i (t)

)
dt

+

⌈α⌉∑
i =0

(
aiLN−n−i(x) + τie

i
)
= g(x)

where n is the order of the problem and N is the
degree of the assumed approximant
We collocation equation (14) at an equi-distance

points xk: xk = a+ (b−a)k
N ,

for k = 0, 1, 2, · · ·N to get

(17)

Dα

(
N∑
i=0

aiT
∗
i (xk)

)

+Dα−1

(
N∑
i=0

aiT
∗
i (xk)

)

+ · · ·+

(
N∑
i=0

aiT
∗
i (xk)

)

+ λ

∫ b

a

k(x, t)

(
N∑
i=0

aiT
∗
i (t)

)
dt

+

⌈α⌉∑
i =0

(
aiLN−n−i(xk) + τie

i
)
= g(xk)

Equation (15) give rise to (N +1) algebraic system
of equations at k = 0, 1, 2, · · ·N with (N + 1) un-
known constants.
Additional n equations are obtained from the initial
conditions given in equation (5) so that altogether
we have (N + n+ 1) equations.
However, we can achieve the (N + n + 1) system
of equations if equation (15) is collocated straight

forward at xk = a+ (b−a)k
(N+n) ; k = 0, 1, 2, · · · (N + n)

Thus, unique values of the constants
a0, a1, a2, · · · , aN , τ0, τ1, τ2, · · · , τn are obtained by
solving system of equations. The values are sub-
stituted back into equation (6) to obtain a single
polynomial approximation which is the required
exponential-fitted approximate solution.

Numerical Examples

In this section, we solve four examples following
the proposed methodology
Example 1
Consider the seven-order Fredholm integro-
differential equations

y(7)(x)−
∫ 1

0

x2y(t)dt = −8ex+x2+ex(1−x) (18)

subject to the initial conditions

(19)

y(0) = 1, yi(0)

= 0, yii(0)

= −1, yiii(0)

= 0, yiv(0)

= −1, yv(0)

= 0,

yvi(0)

= 1

The exact solution is y(x) = cosx
To solve equation (16) for N = 8, n = 7 and at
α = 15

2 , the assumed approximate solution, equa-
tion (11) together with exponential-fitted perturba-
tion solution, equation (12) are substituted into it.
After some necessary simplifications in accordance
with the proposed method algorithm, we obtained
the values of the constant coefficients:

a0 = 0.6634996325 a1

= −0.4780893692 a2

= −0.1622098711 a3

= −0.0220799461

a4

= −0.00191577123 a5

= −0.0001225927 a6

= −0.0000062252 a7

= −2.6206× 10−7

a8

= −9.4413× 10−9 τ1

= −2.8835× 10−8 τ2

= 3.2820× 10−8 τ3

= −1.0352× 10−7

τ4

= 1.3676× 10−7 τ5

= −2.2008× 10−7 τ6

= 9.0765× 10−7 τ7

= 1.4729× 10−5
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Substituting the values of ai (0 ≤ i ≤ 7) obtained
into equation (11) and after simplification gives

y8(x) = −0.000003400739338x− 0.4001700368x2

− 0.3333900124x3 − 0.1250141698x4 −

0.03333616728x5 − 0.006944916766x6

− 0.0011905436x7 − 0.0001736275128x8

(20)

Also, solving equation (16) for N = 8, n = 7 at
α = 15

2 , and following the same process, we ob-
tained the values the constants as follows:

a0 = 0.8639999325 a1

= −0.6480951112 a2

= −1.1644008711 a3

= −0.02205454261

a4

= −0.040194219 a5

= −3.0601225928 a6

= −0.0000062302 a7

= −2.31625× 10−6

a8

= −8.4543× 10−7 τ1

= −2.8586× 10−8 τ2

= 2.2428× 10−8 τ3

= −1.14203× 10−6

τ4

= 1.7536× 10−7 τ5

= −2.2520× 10−7 τ6

= 4.0697× 10−7 τ7

= 3.47317× 10−5

Substituting the values of ai into equation (11) and
after simplification gives

y8(x) = −0.03400739338x− 0.5001700368x2

− 0.3333900124x3

− 0.1250141698x4 − 0.033336

16728x5 − 0.006944916766x6

− 0.0011905436x7 − 0.00017362751x8

(21)

Equations (19) and (20) are the required approxi-
mate solutions for example 1

Figure 1: Graph representation of example 1

Example 2
Consider the eight-order Fredholm integro-
differential equations

y8(x)− y(x)−
∫ 1

0

y(t)dt = −8ex + x2 (22)

subject to the initial conditions

(23)

y(0) = 0, yi(0)

= −1, yii(0)

= 0, yiii(0)

= −1, yiv(0)

= 0, yv(0)

= 1,

yvi(0)

= 0, yvii(0)

= −1

The exact solution is y(x) = sin(x)
Solving equation (21) for N = 12, n = 8, at α = 15

2
and α = 17

2 , using the assumed approximate solu-
tion, equation (11) together with exponential-fitted
perturbation equation (12) and following the same
procedure, we obtained respectively the required
approximate solutions as follows:

y12(x) = 0.9999889x− 0.00000007x2

− 0.1666666601x3 − 0.000000001798x4

− 0.00724983328x5

− 6.94491× 10−11 x6

− 0.0001499989x7 − 0.000000017362x8

− 0.0000002116x9 − 0.00000254876x10

− 0.0000000250522x11

− 0.000000001642x12 + 0.0009996599

(24)
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Table 1: Error of Results for Example 1

x Exact α = 13
2 EFC Error α = 15

2 EFC Error
0.0 1.000000 1.000000 0.0000 1.000000 0.0000
0.1 0.994653 0.994653 4.90e-10 0.994653 5.00e-10
0.2 0.977122 0.977122 4.10e-10 0.977121 2.32e-10
0.3 0.944901 0.944901 1.30e-10 0.944901 3.04e-09
0.4 0.895094 0.895094 1.20e-09 0.895095 3.50e-09
0.5 0.824360 0.824360 3.50e-08 0.824360 3.10e-09
0.6 0.728847 0.728847 3.70e-07 0.728847 2.22e-09
0.7 0.604125 0.604125 3.82e-07 0.604125 1.21e-08
0.8 0.445108 0.445106 4.20e-06 0.445108 3.19e-08
0.9 0.245960 0.245961 4.10e-06 0.245960 1.60e-07
1.0 0.999847 0.999846 1.64e-06 0.999847 1.36e-07

Table 2: Error of Results for Example 2

x Exact α = 15
2 EFC Error α = 17

2 EFC Error
0.0 0.000000 0.000000 1.3397e-10 0.001340 1.3397e-10
0.1 0.099833 0.099833 1.3742e-10 0.099833 1.3742e-10
0.2 0.198669 0.198669 1.4078e-09 0.198669 1.4078e-10
0.3 0.295520 0.295520 1.4175e-09 0.295520 1.4175e-10
0.4 0.389418 0.389418 1.3430e-09 0.389418 1.3430e-09
0.5 0.479426 0.479426 1.0682e-08 0.479426 1.0682e-08
0.6 0.564642 0.564642 4.0220e-08 0.564642 4.0220e-08
0.7 0.644218 0.644218 9.3852e-08 0.644218 9.3852e-08
0.8 0.717356 0.717356 3.3490e-07 0.717356 3.3490e-06
0.9 0.783327 0.783317 7.3537e-07 0.783329 6.1367e-06
1.0 0.841471 0.841398 1.3625e-06 0.841471 1.3425e-05

y12(x) = 0.99988888x− 0.0000990007x2

− 0.16663369833x3

− 0.0000000016x4 − 0.0025983328x5

− 6.94491× 10−11 x6 − 0.1000428993x7

− 0.0000000136x8 − 0.0000002692x9

− 0.000000025476x10

− 0.00000024505211110002x11

− 0.00801642x12 + 0.000999999

(25)

Figure 2: Graph representation of example 2

Example 3
Consider the tenth-order Fredholm integro-
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differential equations

(26)
y10(x)−

∫ π
2

0

(x3 + t2sinx)yvii(t)dt

= cosx−
(
1− π2

4

)
sinx+ 2x3 + (π − 4)

subject to the initial conditions

(27)

y(0) = −1, yi(0)

= 1, yii(0)

= 1, yiii(0)

= −1, yiv(0)

= −1, yv(0)

= 1,

yvi(0)

= 1, yvii(0)

= −1 yviii(0)

= −1 yix(0)

= 1

The exact solution is y(x) = sinx− cosx
Solving equation (25) for N = 12, n = 10, at
α = 19

2 and α = 21
2 , using the assumed approximate

solution, equation (11) together with exponential-
fitted perturbation equation (12) and following the
same procedure, we obtained respectively the re-
quired approximate solutions as follows:

y12(x) = 0.999988999x− 0.50000007003898x2

− 0.1666690012564x3

− 0.041000000012698x4

+ 0.00833528x5 + 0.001494491x6

− 0.00019998999x7 − 0.00024000173x8

+ 0.00091191100222x9

− 0.0000000254876x10

− 0.0000000111102x11

− 0.000000001642x12 − 1.0009996599

(28)

y12(x) = 0.9888998998x− 0.490099000700368x2

− 0.1667336983900x3

− 0.04200000001698x4

+ 0.0083328x5 + 0.0013694491x6

− 0.0001428999936x7

− 0.0000250173627x8 + 0.0909090222x9

− 0.0000000254876x10

− 0.090000000021111x11

− 0.00801642x12 − 1.00090099999

(29)

Figure 3: Graph representation of example 3

Example 4
Consider the third-order Fredholm integro-
differential equations

y(3)(x) = sinx+ x−
∫ π

2

0

(xt)y
′
(t)dt (30)

subject to the initial conditions

y(0) = 1, y
′
(0) = 0, y

′′
(0) = 1 (31)

The exact solution is y(x) = cosx
Solving equation (29) for N = 6, n = 3, at α = 5

2
and α = 7

2 , using the assumed approximate solu-
tion, equation (11) together with exponential-fitted
perturbation equation (12) and following the proce-
dure of proposed method, we obtained respectively
the required approximate solutions as follows:

y6(x) = 0.0001200005x+ 0.50000007368x2

−0.000000166669x3+0.041007500016x4−
0.00833728x5 − 0.0013777725x6

+ 1.0009996599

(32)

y6(x) = 0.000112166x+ 0.4990700368x2

− 0.00000166733698x3

+ 0.0410000001698x4 −
0.0083329x5 − 0.00138888x6 + 1.0000099999

(33)
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Table 3: Error of Results for Example 3

x Exact α = 19
2 EFC Error α = 21

2 EFC Error
0.0 -1.000000 -1.000000 0.0000 -1.000000 0.0000
0.1 -0.895171 -0.895170 2.00e-10 -0.895170 2.00e-10
0.2 -0.781397 -0.781397 2.12e-10 -0.781397 1.45e-10
0.3 -0.659816 -0.659816 2.00e-10 -0.6598162 2.00e-10
0.4 -0.531642 -0.531642 1.40e-09 -0.531642 1.40e-09
0.5 -0.398157 -0.398157 1.07e-08 -0.398157 1.07e-08
0.6 -0.260693 -0.260693 5.64e-08 -0.260693 5.64e-08
0.7 -0.120624 -0.120624 2.60e-07 -0.120624 2.69e-08
0.8 0.020649 0.020648 7.57e-07 0.0206486 7.57e-07
0.9 0.161717 0.161714 2.19e-06 0.161714 2.19e-06
1.0 0.301168 0.301163 5.66e-06 0.3011630 5.66e-06

Table 4: Error of Results for Example 4

x Exact α = 5
2 EFC Error α = 7

2 EFC Error
0.0 1.000000 1.000099 9.996e-05 1.000010 1.000e-05
0.1 1.005004 1.006016 1.010e-05 1.005015 1.120e-05
0.2 1.020068 1.020108 1.017e-05 1.020059 1.076e-05
0.3 1.045342 1.045346 1.005e-05 1.045270 7.080e-05
0.4 1.081069 1.082006 9.364e-04 1.080864 2.054e-04
0.5 1.127596 1.128341 7.440e-04 1.127113 4.827e-04
0.6 1.185355 1.185673 3.182e-04 1.184342 1.012e-03
0.7 1.254868 1.254366 5.019e-04 1.252912 1.955e-03
0.8 1.336738 1.334799 1.939e-03 1.333202 3.535e-03
0.9 1.431644 1.427357 4.287e-03 1.425597 6.046e-03
1.0 1.540333 1.532412 7.921e-03 1.530468 9.864e-03

Figure 4: Graph representation of example 4

CONCLUSION

Exponential-fitted collocation methods have been
discussed and used successfully to solve higher or-

der fractional integro-differential equations using
shifted Chebyshev polynomial as basis function.
Three examples were solved and the results ob-
tained are tabulated in tables 1-3. From the tables
of results, it is observed that the results obtained
are close to the exact solution for the three exam-
ples considered. It means that fractional differen-
tiation at ⌈α⌉− and ⌈α⌉+ where ⌈α⌉− ≤ n ≤ ⌈α⌉+
yield good result close to the exact solution at n.
The basis functions applied and the one used to
perturb performed very well in terms of accuracy
achieved. However, from the graphs, it can be seen
that the results obtained agreed with the exact so-
lution more closely at lower values than the up-
per values on the x-axis. Still, the results obtained
agreed more closely throughout in problems 3 and
4. This maybe due to the transcendental nature of
the problems and the exact solution. It is concluded
that the proposed method is an effective tool for
solving higher order fractional integro-differential
equations and the derivatives of the class of prob-
lems considered yield same results whether frac-
tional or integer orders.
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