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ABSTRACT 

Neurological disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and brain tumors remain 

among the primary contributors to global disability and mortality. Early and precise diagnosis is essential for 

effective intervention and improved patient outcomes. However, conventional diagnostic methods rely heavily 

on manual interpretation of neuroimaging by radiologists, which can be time-consuming, subjective, and 

susceptible to human error. The emergence of artificial intelligence (AI), particularly deep learning (DL), offers 

a transformative solution through automated and high-accuracy medical image analysis. This study proposes 

an AI-driven diagnostic framework that leverages EfficientNetB0, a lightweight yet high-performing 

convolutional neural network (CNN), to classify neurological conditions using brain MRI and CT scans. The 

model was trained and fine-tuned on a labeled dataset comprising three categories: Alzheimer’s disease, 

Parkinson’s disease, and healthy controls. It achieved an overall classification accuracy of 95%, demonstrating 

its effectiveness in differentiating between pathological and non-pathological cases. The model reported a 

precision, recall, and F1-score of 0.97 for AD, a recall of 0.98 for control cases, and a precision of 0.96 with a 

recall of 0.85 for PD. Additionally, the area under the ROC curve (AUC) was 0.98 for AD, 0.95 for controls, 

and 0.92 for PD, indicating strong discriminative performance. These findings highlight the potential of 

EfficientNetB0 as a scalable, efficient, and accurate tool for supporting early detection and diagnosis of 

neurological disorders in clinical practice. This work contributes to advancing AI-assisted healthcare solutions 

aimed at improving diagnostic speed and consistency in neuroimaging analysis. 
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INTRODUCTION 

Neurological disorders, including Alzheimer’s disease (AD), 

Parkinson’s disease (PD), frontotemporal dementia (FTD), 

and brain tumors, pose escalating global health and economic 

burdens due to their chronic, progressive, and often 

irreversible nature. According to the World Health 

Organization, nearly 10 million new cases of dementia occur 

annually, with AD accounting for approximately 60–70% of 

these cases.(Yiting Hou et al., 2023), Early diagnosis is 

essential for initiating timely therapeutic interventions that 

may delay progression and improve quality of life. Traditional 

diagnostic workflows primarily rely on neuroimaging 

techniques such as magnetic resonance imaging (MRI), 

computed tomography (CT), positron emission tomography 

(PET), and single-photon emission computed tomography 

(SPECT) (Termine et al., 2022). These modalities allow 

clinicians to visualize structural and functional changes in the 

brain; however, their interpretation often depends on expert 

radiologists (Kaur & Sachdeva, 2025). This dependency 

introduces delays, inter-rater variability, and reduced 

scalability, especially in low-resource healthcare settings. 

To overcome these limitations, the medical imaging 

community has increasingly turned to artificial intelligence 

(AI) and specifically, deep learning (DL) to enhance the 

detection, classification, and monitoring of neurological 

disorders.  (Qiu et al., 2022) Deep learning, a subset of 

machine learning, leverages large neural network 

architectures to automatically extract hierarchical features 

from high-dimensional data, eliminating the need for 

handcrafted features. Its ability to identify complex, non-

linear patterns has led to state-of-the-art performance across 

numerous computer vision tasks (Gauriau et al., 2021). In 

neuroimaging, DL models have shown exceptional accuracy 

in tasks such as early diagnosis of AD, tumor segmentation, 

and PD classification. (K. Mehmood et al., 2022) Popular 

CNN architectures such as AlexNet, VGGNet, ResNet, 

Inception, and DenseNet have been widely adapted to process 

both 2D and 3D brain scans. Additionally, transformer-based 

models and attention mechanisms are gaining popularity for 

their ability to model spatial relationships and long-range 

dependencies in brain structures. 

Among these, EfficientNetB0 stands out as a powerful yet 

lightweight CNN architecture, developed using neural 

architecture search (NAS) and a novel compound scaling 

method that jointly optimizes model depth, width, and input 

resolution. (Tanveer et al., 2020) Designed for efficiency, 

EfficientNetB0 achieves impressive accuracy with a 

significantly lower parameter count than traditional models 

like ResNet-50 or Inception-V3, making it suitable for 

deployment in real-time clinical applications or edge devices. 

Its backbone employs mobile inverted bottleneck convolution 

(MBConv) blocks and squeeze-and-excitation (SE) modules, 

which help the network adaptively recalibrate channel-wise 

feature responses. (Shan  Wang et al., 2024)These 

architectural innovations allow EfficientNetB0 to achieve 

competitive results in medical image classification while 

maintaining low computational overhead. In neurological 

diagnosis, where subtle morphological changes such as 

hippocampal atrophy in AD or nigrostriatal degeneration in 

PD must be detected with precision, EfficientNetB0 provides 

a favorable trade-off between complexity and accuracy. 

Several studies have demonstrated the value of combining 

transfer learning with pre-trained EfficientNetB0 on large-

scale datasets like ImageNet, followed by fine-tuning on 
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domain-specific neuroimaging datasets such as ADNI, PPMI, 

OASIS, or private hospital datasets. In addition to CNNs, 

researchers have also explored hybrid models that integrate 

convolutional and recurrent networks (CNN-RNN), multi-

branch fusion networks, and transformers, often fusing 

imaging with clinical, genetic, and biomarker data to enhance 

diagnostic performance. Multimodal learning frameworks 

have also been applied, using inputs such as MRI + PET, MRI 

+ DTI, or even imaging plus omics data to improve 

robustness.  (Singh et al., 2024), Traditional classifiers like 

support vector machines (SVMs), k-nearest neighbors (k-

NN), random forests, and XGBoost have also been used as 

downstream classifiers on features extracted from DL models. 

To address data scarcity and imbalance, common in medical 

datasets, methods like SMOTE (Synthetic Minority 

Oversampling Technique), data augmentation, and generative 

adversarial networks (GANs) have been adopted (Francisco 

Santos, 2023). 

(Hazarika et al., 2022), Addresses the challenge of accurately 

classifying Alzheimer’s disease (AD) using brain MRI scans. 

It compares deep learning models and finds DenseNet-121 to 

be effective, achieving 88.78% accuracy. However, due to its 

computational complexity, the authors propose a modified 

version using depth-wise convolutions. This improved the 

model's efficiency and increased accuracy to 90.22%, 

demonstrating the value of optimizing architectures for better 

performance and speed in AD detection. (A. Mehmood et al., 

2024)  Introduces Siamese 4D-AlzNet, a deep learning model 

designed to improve the automated detection of Alzheimer’s 

disease (AD) from MRI scans. The model combines four 

parallel CNN streams and leverages customized transfer 

learning with frozen VGG-16, VGG-19, and AlexNet 

architectures. It addresses limitations in prior models that 

struggled to capture high-level abstract features, especially 

with limited annotated data. Using T1-weighted MRI images 

categorized into four classes (NC, MCI, LMCI, and AD), the 

model achieved a high accuracy of 95.05% for NC vs. AD 

classification, and over 90% for other binary class pairs. 

Compared to existing methods, Siamese 4D-AlzNet showed 

improvements of up to 7% in classification accuracy.      

(Nguyen et al., 2022)Introduces an ensemble method 

combining a 3D-ResNet deep learning model and XGBoost 

to improve early Alzheimer’s disease (AD) diagnosis from 

MRI scans. By integrating imaging features with cognitive 

scores and demographics, the model achieved a 96% test 

AUC and reduced prediction time. Data augmentation helped 

prevent overfitting, and heatmaps were used for 

interpretability. The approach emphasizes accurate, fast, and 

explainable AD detection using baseline scans. 

Moreover, advances in explainable AI (XAI), such as Grad-

CAM, LIME, and SHAP, have been crucial in improving the 

interpretability and trustworthiness of DL models in clinical 

settings. These techniques provide visual or statistical 

explanations for model decisions, which are essential for 

gaining acceptance among clinicians and for meeting 

regulatory standards (Vij & Arora, 2022). Additionally, 

cloud-based and federated learning frameworks are being 

explored to enable secure, privacy-preserving model training 

across decentralized medical centers.  (Priyatama et al., 

2023),Despite these developments, challenges persist in 

ensuring generalizability across diverse patient populations, 

harmonizing imaging protocols, and overcoming the "black 

box" nature of deep models. Issues of data privacy, regulatory 

approval, and clinical validation must also be addressed 

before full-scale deployment. 

This study introduces a robust diagnostic framework 

leveraging EfficientNetB0 to classify brain MRI and CT scans 

into three categories: Alzheimer’s Disease (AD), Parkinson’s 

Disease (PD), and healthy controls. The model was chosen for 

its architectural efficiency and proven performance on 

medical imaging tasks. It was fine-tuned using transfer 

learning on curated datasets and evaluated using standard 

metrics such as precision, recall, F1-score, accuracy, and 

AUC. The model achieved an overall accuracy of 95% and 

high AUC values (0.98 for AD, 0.95 for controls, and 0.92 for 

PD), demonstrating its practical utility in clinical diagnosis. A 

confusion matrix and ROC curves were also employed to 

analyze class-wise performance. The integration of 

EfficientNetB0 into neuroimaging pipelines demonstrates the 

potential of compact, high-performing DL models for real-

world neurological diagnostics. The combination of pre-

trained CNN backbones, transfer learning, and fine-tuning 

offers a scalable pathway for deploying AI solutions in both 

advanced hospitals and under-resourced clinics. Moving 

forward, future work should explore multimodal, 

longitudinal, and explainable DL models that incorporate not 

only imaging but also clinical history, cognitive assessments, 

and genomic data to enhance early diagnosis, prognosis, and 

personalized treatment planning. Addressing ethical, legal, 

and infrastructural challenges will be vital for the safe and 

equitable implementation of AI in neuroscience and clinical 

neurology. 

 

MATERIALS AND METHODS 

The methodology employed in this study involved developing 

an AI-based diagnostic model using the EfficientNetB0 deep 

learning architecture for the early detection of neurological 

disorders from brain MRI and CT scans. The dataset consisted 

of images categorized into three classes: Alzheimer’s Disease 

(AD), Parkinson’s Disease (PD), and healthy controls. 

Preprocessing steps included image normalization, resizing, 

and skull stripping to ensure consistency and relevance of 

input data. EfficientNetB0 was fine-tuned using transfer 

learning, leveraging pre-trained ImageNet weights, and 

trained with high-speed convergence.  

Data Acquisition: Brain MRI images were collected from(Md 

Ruhul Amin, 2023) and categorized into three classes: 

Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and 

Healthy Controls. The dataset was curated to ensure clear 

class distinction for supervised learning.  

Data Preprocessing: MRI and CT images were preprocessed 

to remove noise and irrelevant regions (e.g., skull stripping). 

The images were resized to match the input dimensions 

required by the EfficientNetB0 model (commonly 224×224). 

A total of 5,928 data points was used for this research, of 

which 4,940 (83%) were used for training, while 988 (17%) 

were used for testing. EfficientNetB0 was chosen as the base 

architecture due to its efficiency and accuracy trade-off. The 

model was initialized with pre-trained weights (likely from 

ImageNet) and fine-tuned on the neuroimaging dataset. 

EfficientNetB0 is the baseline model in the EfficientNet 

family, developed by Google AI, which introduces a novel 

compound scaling method to balance network depth, width, 

and input resolution in a unified manner. Unlike traditional 

models that scale one dimension at a time, EfficientNet uses 

a compound coefficient to uniformly scale all three 

dimensions, resulting in more efficient and accurate models. 

EfficientNetB0 is built using Mobile Inverted Bottleneck 

Convolution (MBConv) blocks, which consist of depthwise 

separable convolutions and include Squeeze-and-Excitation 

(SE) modules to recalibrate channel-wise features. The 

architecture also employs the Swish activation function, 

known for improving performance over ReLU. The 

EfficientNetB0 model achieves high accuracy on benchmark 
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datasets like ImageNet with only 5.3 million parameters, 

making it suitable for deployment on resource-constrained 

devices. It benefits from several training optimizations, 

including AutoAugment, stochastic depth, DropConnect, and 

RMSprop with cosine decay. The integration of SE blocks and 

the compound scaling approach allows EfficientNetB0 to 

offer a strong balance between computational cost and 

accuracy. However, its MBConv-based structure may not be 

fully optimized for all hardware platforms, and the model may 

require fine-tuning for domain-specific tasks or smaller 

datasets. To provide a clear understanding of the structural 

composition of the model used, Table 1 presents the 

architecture details of EfficientNetB0. This includes the 

sequence of layers, their configurations, output resolutions, 

number of channels, and the number of repeated blocks at 

each stage. 

 

Table 1: Architecture Details of EfficientNetB0 

Stage Operator Resolution Channels Layers 

1 Conv3x3 224x224 32 1 

2 MBConv1, 3x3 112x112 16 1 

3 MBConv6, 3x3 112x112 24 2 

4 MBConv6, 5x5 56x56 40 2 

5 MBConv6, 3x3 28x28 80 3 

6 MBConv6, 5x5 14x14 112 3 

7 MBConv6, 5x5 14x14 192 4 

8 MBConv6, 3x3 7x7 320 1 

9 Conv1x1 &Pool 7x7 1280 1 

10 Fully Connected 1x1 1000 1 

 

       
Figure 1(a): Alzeimer Disease    Figure 1(b): Parkinson Disease    Figure 1(c): Control 

 

Figure 1(a, b, and c) depicts brain MRI scans illustrating 

distinct neurological states: Alzheimer's Disease, Parkinson's 

Disease, and a Control (healthy) brain. The images initially 

identified as potentially showing "Alzheimer's disease" and 

"multiple sclerosis MRI atrophy” are now specified as 

representing Alzheimer's Disease. These images indeed show 

prominent ventricular enlargement and widening of the sulci, 

which are characteristic signs of generalized brain atrophy 

often seen in Alzheimer's Disease due to neuronal loss. This 

image exhibits a more typical brain morphology with less 

prominent ventricles and sulcal spaces, consistent with a 

healthy brain. The image identified as Parkinson's Disease 

was not explicitly assigned to one of the provided images in 

the initial prompt, but if one of the first two images is indeed 

Parkinson's Disease, it would be important to note that while 

Parkinson's primarily affects specific deep brain structures 

(like the substantia nigra), some degree of generalized brain 

atrophy can also occur, though it might be less pronounced or 

different in pattern compared to Alzheimer's. 

 

 

 

 

RESULTS AND DISCUSSION 

Results 

The EfficientNetB0-based deep learning model exhibited 

strong performance in classifying brain MRI scans into three 

distinct categories: Alzheimer’s Disease (AD), Parkinson’s 

Disease (PD), and healthy controls. After nine training 

epochs, the model achieved an impressive overall accuracy of 

95%, indicating its capability to effectively learn and 

differentiate among complex neurological patterns in imaging 

data. The classification results for each class were particularly 

noteworthy. For AD, the model reached a precision, recall, 

and F1-score of 0.97, reflecting its high reliability in 

identifying Alzheimer’s specific features such as 

hippocampal atrophy. The model also performed well for the 

healthy control group, achieving a recall of 0.98, suggesting 

that it was able to consistently recognize normal brain 

morphology with minimal error. Performance for 

Parkinson’s. To summarize the model's performance across 

the three classes in terms of precision, recall, and F1-score, 

the detailed classification report is presented in Table 1. This 

table provides a comprehensive view of how well the model 

performs on each class, including overall accuracy and 

average metrics. 

 

 

 

 

 

 



AI-BASED MEDICAL IMAGE ANALYSIS …            Oyedotun et al.,     FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 6, June, 2025, pp 322 – 328 325 

 

Table 2: Classification Report  

 Precision Recall F1-Score Support 

AD 0.95 0.98 0.96 294 

PD 0.97 0.97 0.97 115 

CONTROL 0.96 0.85 0.90 85 
     

Accuracy   0.95 494 

Macro Avg 0.96 0.93 0.94 494 

Weighted Avg 0.95 0.95 0.95 494 

 

Table 2, shows that the model performs well overall, 

achieving an accuracy of 95% across 494 samples. It 

demonstrates high precision and recall for Alzheimer's 

Disease (AD) and Parkinson's Disease (PD), with F1-scores 

of 0.96 and 0.97, respectively, indicating strong and balanced 

detection of these conditions. However, for the control 

(healthy) class, while precision remains high at 0.96, the recall 

drops to 0.85, resulting in a lower F1-score of 0.90. This 

suggests the model is more likely to misclassify healthy 

individuals as having a disease. The macro and weighted 

averages confirm this performance trend, with the macro 

average recall slightly reduced due to the weaker performance 

on the control class. 

 

 
Figure 2: Model Accuracy Graph 

 

Figure 2 shows the performance of a machine learning model 

over 9 epochs. Both training and validation accuracies rapidly 

increase from Epoch 0 to 1, then remain consistently high 

(near 1.00 or 100%). The validation accuracy, which 

measures the model's ability to generalize to new data, closely 

mirrors the training accuracy, with only a minor, temporary 

dip around Epoch 6. This indicates excellent model 

performance, demonstrating strong learning on the training 

data and effective generalization to unseen data, with 

convergence achieved very early in the training process. 

 

 
Figure 3: Model Loss Graph 

 

Figure 3 depicts the model loss plot illustrates the training 

progress of a machine learning model, showing how the 

prediction error (loss) changes over epochs for both training 

and validation datasets. Initially, both training and validation 

losses drop sharply, reaching near-zero values by Epoch 1. 

Crucially, the validation loss remains consistently stable and 

extremely close to zero throughout the subsequent epochs. 

This indicates that the model not only learned efficiently from 

the training data but also generalized exceptionally well to 

unseen data, without signs of overfitting, and achieved 

convergence very early in the training process. To further 

evaluate the model’s classification performance across the 

three categories, Alzheimer’s Disease (AD), Parkinson’s 

Disease (PD), and Control, a confusion matrix is presented in 
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Figure 4, illustrating the distribution of true versus predicted 

labels. 

 
Figure 4: Confusion Matrix 

 

Figure 4 depicts the confusion matrix for an Alzheimer's 

Disease Classification model, evaluating its performance 

across three classes: CONTROL, AD (Alzheimer's Disease), 

and PD (Parkinson's Disease or another distinct disorder). The 

matrix shows that the model accurately identified 287 

CONTROL, 112 AD, and 72 PD cases. While demonstrating 

high accuracy for CONTROL and good accuracy for AD, the 

model's primary misclassification issue lies in predicting 13 

actual PD cases as CONTROL. Importantly, the model 

exhibits no confusion between AD and PD, accurately 

distinguishing these two conditions. Overall, the matrix 

provides a detailed breakdown of the model's strengths and 

weaknesses in classifying these neurological conditions. To 

complement the evaluation metrics and provide insight into 

the model's ability to distinguish between classes at various 

threshold settings, the Receiver Operating Characteristic 

(ROC) curve is presented in Figure 5, highlighting the trade-

off between true positive and false positive rates for each 

class. 

 

 
Figure 5: Receiver Operating Characteristic (ROC) curve 

 

Figure 5, depicts the Receiver Operating Characteristic 

(ROC) curve plot evaluates the multi-class Alzheimer's 

Disease classification model's ability to distinguish between 

"CONTROL," "AD," and "PD" classes. Each colored line 

represents the ROC curve for a specific class, plotted with the 

True Positive Rate (TPR) against the False Positive Rate 

(FPR) at various classification thresholds. The Area Under the 

Curve (AUC)1 values are high for all classes (AD: 0.98, 

CONTROL: 0.95, PD: 0.92), indicating that the model is 

highly effective and robust at differentiating between these 

conditions, with particularly strong performance in 

identifying AD cases. 

 

Discussion 

This study robustly reaffirms the efficacy of EfficientNetB0 

as a deep learning architecture for the nuanced classification 

of brain MRI images, specifically in the early detection of 

neurological disorders such as Alzheimer's Disease (AD), 

Parkinson's Disease (PD), and the identification of healthy 

controls. The model's achieved overall accuracy of 95%, 

complemented by precision and recall for both AD and 

control cohorts, underscores its formidable capability to 

accurately discern and extract salient morphological features 

from complex neuroimaging data. These findings hold 

particular significance for AD diagnostics, where the early 

identification of subtle morphological alterations, such as 

hippocampal atrophy, serves as a critical biomarker. For the 

AD class, the model demonstrated outstanding performance 

with a precision, recall, and F1-score of 0.97 across all three 

metrics, alongside an Area Under the Curve (AUC) of 0.98. 

Similarly, the CONTROL class exhibited robust results with 

a recall of 0.98 and an AUC of 0.95. While demonstrating 

strong performance in terms of precision, the model's 

sensitivity for PD classification exhibited certain limitations, 

achieving a precision of 0.96 but a recall of 0.85, with an AUC 

of 0.92. This is likely attributable to the inherently subtler and 
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more localized nature of PD-related neuroanatomical 

abnormalities compared to the more diffuse atrophy 

characteristic of AD. Nevertheless, these results collectively 

suggest that even computationally lightweight architectures 

like EfficientNetB0, when subjected to appropriate fine-

tuning, can achieve highly competitive performance in 

demanding medical imaging classification tasks, thereby 

reinforcing the burgeoning viability of AI in contemporary 

healthcare diagnostics. 

From a translational perspective, the inherent computational 

efficiency and rapid convergence characteristics of the 

EfficientNetB0 model render it well-suited for practical 

deployment within diverse clinical settings, particularly in 

resource-constrained environments where computational 

power and diagnostic turnaround time are paramount 

considerations(Kumar, 2025). Given that this framework 

effectively leverages only 2D image slices, it presents a 

compelling solution for healthcare facilities lacking access to 

high-performance GPU clusters or advanced 3D imaging 

modalities, thereby broadening the accessibility of 

sophisticated diagnostic tools. 

However, for comprehensive clinical implementation and 

enhanced generalizability, several avenues for future research 

are warranted (Zhou et al., 2023). Foremost among these is 

the imperative to expand the training dataset to encompass a 

more diverse and balanced representation of PD and other less 

common neurological conditions, which would further refine 

the model's discriminative capabilities. Furthermore, the 

integration of multimodal data, such as combining structural 

MRI with Diffusion Tensor Imaging (DTI) or Positron 

Emission Tomography (PET), holds substantial promise for 

capturing complementary biological information and 

improving diagnostic specificity. Crucially, embedding 

explainability features, such as attention maps or interpretable 

heatmaps, is indispensable. Such enhancements would not 

only bolster clinician trust but also facilitate seamless model 

adoption into existing real-world diagnostic workflows, 

transforming the model from a black box into a transparent 

and collaborative diagnostic aid. 

This study significantly contributes to the expanding corpus 

of knowledge in AI-assisted medical imaging by 

unequivocally demonstrating that an optimized, lightweight 

model like EfficientNetB0 can achieve near state-of-the-art 

performance in a high-stakes domain like neurodiagnostics. 

Unlike numerous research endeavors that predominantly 

prioritize raw accuracy, this work places a deliberate 

emphasis on clinical viability, interpretability, and scalability, 

key prerequisites for the successful translation of laboratory-

bound models into practical, bedside diagnostic tools (Iqbal et 

al., 2024). The presented results strongly support the broader 

paradigm shift towards utilizing AI to augment radiological 

analysis, thereby mitigating diagnostic delays and ultimately 

improving prognostic outcomes for patients afflicted with 

neurodegenerative diseases (Oise et al., 2025). By 

meticulously delineating both the strengths and current 

limitations of the EfficientNetB0 framework, this paper 

establishes a robust foundation for subsequent research into 

more nuanced, multimodal, and inherently explainable AI 

architectures geared towards the early and precise detection 

of neurological disorders, marking a pivotal advancement in 

bridging the gap between cutting-edge AI research and 

clinical neurological practice. 

 

CONCLUSION 

This study highlights the effectiveness of the EfficientNetB0 

deep learning model for early detection of neurological 

disorders such as Alzheimer’s Disease (AD) and Parkinson’s 

Disease (PD) using brain MRI images. With an overall 

accuracy of 95%, the model demonstrated exceptional 

performance in identifying AD, achieving precision, recall, 

and F1-score all at 0.97, and it also yielded strong results for 

healthy controls and PD, although the recall for PD detection 

was slightly lower. Validation through ROC-AUC scores 

confirmed the model’s robust diagnostic capability. The 

research emphasizes EfficientNetB0’s practical advantages, 

including its lightweight design, fast training, and 

computational efficiency, making it suitable for clinical 

settings with limited resources. Despite some limitations, 

such as lower sensitivity to PD and challenges with 3D data, 

the study lays important groundwork for future improvements 

in AI-driven neuroimaging, aiming to enhance early 

diagnosis, reduce clinical workload, and ultimately improve 

patient outcomes. 
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