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ABSTRACT 

Cadmium (Cd) and lead (Pb) are non-essential, highly toxic heavy metals with severe health implications. Cd, 

a Group One carcinogen, bioaccumulates in kidneys and liver, causing renal dysfunction, osteoporosis, and 

lung cancer even at low doses. Pb, a potent neurotoxin, disrupts cognitive development in children and elevates 

cardiovascular risks in adults, with no safe exposure threshold established. This study investigates the 

contamination of groundwater by Pb and Cd in ten samples from Unguwan Lumbaye, Nigeria, employing 

deterministic and probabilistic risk assessments to resolve conflicting risk prioritizations. The concentrations 

of Cd (0.040 – 0.070 ppm) and Pb (0.068 – 1.330 ppm) exceeded World Health Organization (WHO) limits 

by 17× and Pb by 65×, respectively. Deterministic methods identified Pb as the primary non-carcinogenic 

threat (HQ = 5.43 vs. Cd: HQ = 1.50), yet probabilistic Monte Carlo simulations (100,000 iterations) revealed 

universal carcinogenic risk for Cd (100% exceedance probability) compared to Pb (12.3%). This reversal stems 

from Cd’s extreme carcinogenic potency (slope factor = 6.1) and insensitivity to exposure variability, 

contrasting with Pb dependency on ingestion rates and body weights. Therefore, the Monte Carlo simulation 

played a key role in revealing risk reversal by highlighting cadmium's consistent carcinogenic threat across all 

exposure scenarios. Geochemical correlations, highlighted the complexity of metal mobility, whereas 

sensitivity analyses highlighted body weight and concentration as important risk factors. The study supports 

using probabilistic methods in regulation, emphasizing Pb hotspot remediation and agrochemical reforms to 

reduce Cd risks, while calling for adaptive measures to protect groundwater-reliant communities.  
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INTRODUCTION 

Conflicting risk prioritizations between deterministic and 

probabilistic frameworks make it difficult to control 

contamination in places that depend on untreated 

groundwater, especially in agriculturally intensive areas 

where exposure to heavy metals poses a dual danger to food 

security and human health (Li et al., 2014). Recent 

comparisons in oasis agricultural regions of Northwest China 

revealed that Monte Carlo derived ILCR values were up to 30 

% higher than those from deterministic assessments, leading 

to markedly different risk-management decisions and 

highlighting the challenge of reconciling these frameworks in 

practice (Lei et al., 2022; Guan et al., 2022). Deterministic 

risk assessment, which rely on fixed parameters such as 

average ingestion rates, body weight, and static contaminant 

concentrations, generate singular hazard estimates most 

notably the Hazard Quotient (HQ), calculated as the ratio of 

chronic daily intake (CDI) to reference doses (RfD) (USEPA, 

2023). Although these models make risk communication a 

little easier, they frequently ignore variations in exposure 

pathways and toxicological potency, which could lead to a 

misrepresentation of risks in the real world (Smith et al., 

2017). In fact, a multi-receptor Monte Carlo study of 

agricultural soils demonstrated that deterministic HQ 

calculations underestimated cumulative non-carcinogenic 

risk by as much as 25 % when compared against the 

probabilistic distribution of HQ values, potentially obscuring 

vulnerable subpopulations (Wu et al., 2024; El-Ansary et al., 

2023).  

However, probabilistic methods, like Monte Carlo 

simulations, take into consideration parameter variability, 

such as bootstrapped contaminant concentrations, log-normal 

distributions of ingestion rate, and normal distributions of 

body weight, in order to estimate incremental lifetime cancer 

risk (ILCR) as a function of exposure duration and slope 

factors (SF) (WHO, 2011; Li et al., 2014). The novelty of this 

study lies in its explicit reconciliation of lead-cadmium risk 

disparities by integrating deterministic hazard 

quotients with probabilistic carcinogenic risk models, 

provides a dual-modal framework for prioritizing 

interventions, addressing both acute (Pb) and latent (Cd) 

threats in groundwater-dependent communities, thereby 

bridging a critical gap in agrarian risk management 

paradigms. 

Therefore, this study aims to reconcile both frameworks by 

measuring heavy metal concentrations, comparing 

probabilistic ILCR with deterministic HQ, and analyzing risk 

drivers using sensitivity analysis. This provides insights into 

adaptive risk mitigation strategies for communities that 

depend on groundwater. The findings are intended to guide 

policies that address widespread Cd contamination as well as 

localized Pb hotspots, guaranteeing sustainable management 

of water resources in rural areas. 
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MATERIALS AND METHODS 

The methodology for assessing heavy metal contamination in 

groundwater samples from Unguwan Lumbaye, Nigeria, was 

conducted in alignment with standardized protocols for heavy 

metal analysis. 

 

Materials 

Water samples preparation for the detection of heavy metals 

was achieved with the use of distilled water, nitric acid, 

hydrocholoric acid, beaker, funnel, hotplate, filter paper, 

sample bottle, analytical balance, glass strirring rod, Atomic 

Absorption Spectroscopy (AAS) and Python 3.10 (NumPy, 

SciPy, Pandas) for simulations. 

 

Study Area  

The study was conducted in Unguwan Lumbaye, a farming 

community within Zaria Local Government Area, Kaduna 

State, Nigeria. Located in the Guinea Savannah agro-

ecological zone, the area has a tropical climate with distinct 

dry (November–March) and wet (April–October) seasons. 

This area depends largely on groundwater for domestic use 

and irrigation of major crops (such as sorghum and maize) due 

to its lateritic soils, which affect the geochemistry of 

groundwater. Unguwan Lumbaye was chosen due to its 

reliance on untreated groundwater and closeness to possible 

sources of contamination, such as uncontrolled garbage 

dumping and agricultural runoff. 

 

Methodology  

This methodology ensures robust quantification of heavy 

metals, resolving discrepancies between deterministic and 

probabilistic risk paradigms. 

 

Sample Collection and Preparation 

Ten groundwater samples were collected from boreholes and 

wells during the dry season to minimize dilution effect. The 

collected samples were transported to the Multi-User 

Laboratory in the Department of Chemistry, Ahmadu Bello 

University, Zaria, and processed as follows: 

 

Digestion 

Each sample (1 g) was placed in a 50 mL beaker and 10 mL 

of aqua regia (7.5 mL concentrated HNO₃ + 2.5 mL 

concentrated HCl) was added to dissolve organic/inorganic 

matrices. The mixture was heated on a hotplate (100 – 170 

°C) until near-dryness or precipitate formation, ensuring 

complete oxidation of refractory metals. After cooling, 

residues were re-dissolved with distilled water, filtered 

(Whatman No. 42 filter paper), and diluted to a final volume 

of 50 mL. 

 

Sample Analysis 

The prepared samples were analyzed using Atomic 

Absorption Spectrometer (AAS) and cross-validated 

with Microwave Plasma-Atomic Emission Spectrometer 

(MP-AES) to ensure accuracy. Calibration curves were 

generated using certified reference materials (CRM-TMDW), 

with wavelengths specific to each metal: Pb (283.3 nm) and 

Cd (228.8 nm). 

 

Quantification of Heavy Metal Concentrations 

The instrument reading (absorbance) for each metal was 

converted to concentration (ppm) using the formula: 

Actual concentration =
Instrument reading×Final volume (mL)×Dilution factor

Weight of sample (g)
 (1) 

where: 

Instrument reading: Absorbance/emission value from 

AAS/MP-AES. 

Final volume: 50 mL (post-digestion dilution volume). 

Dilution factor: 1 (no further dilution beyond the 50 mL 

adjustment). 

Weight of sample: 1 g (constant for all samples) 

 

Health Risk Assessment 

Deterministic Risk Assessment 

Deterministic models uses fixed, average values (e.g., mean 

concentrations, default exposure parameters) to calculate a 

single risk value, ideal for baseline risk estimates. The 

deterministic methods ignore variability in exposure 

parameters (e.g., ingestion rate, body weight) and chemical 

toxicity, treating risk as a static "worst-case" estimate. 

Chronic Daily Intake (CDI): 

CDI (mg/kg/day) =
C×IR×EF×ED

BW×AT
   (2) 

where 

C = Metal concentration (mg/L). 

IR = Ingestion rate (2 L/day). 

EF = Exposure frequency (365 days/year). 

ED = Exposure duration (30 years). 

BW = Body weight (70 kg). 

AT = Averaging time (ED × 365 days). 

 

Hazard Quotient (HQ): 

HQ =
CDI

RfD
      (3) 

RfD (mg/kg/day): Reference doses for non-carcinogenic 

effects: Pb (0.0035) and Cd (0.001). 

CD = CDI × SF      (4) 

SF (mg/kg/day)⁻¹: Slope factors for carcinogens are Pb 

(0.0085) and Cd (6.1). 

 

Probabilistic Risk Assessment 

Probabilistic model incorporates variability and uncertainty 

by modeling distributions for input parameters (e.g., 

concentrations, ingestion rate, body weight) to generate a 

range of possible outcomes, critical for capturing real-world 

exposure scenarios (e.g., high ingestion in children) 

Contaminant concentrations and ingestion rates are modeled 

using log-normal distributions because these parameters are 

inherently positive and empirically exhibit right-skewed, 

multiplicative variability, reflecting first-order kinetic 

processes that naturally generate log-normal concentration 

patterns in the environment, thereby providing a more 

realistic representation of high-end exposures than a 

symmetric (normal) model.  

A Monte Carlo simulation (100,000 iterations to ensure 

convergence of risk estimates) modelled variability in 

exposure parameters: 

Concentrations: Bootstrapped from empirical data (10 

samples). 

Ingestion Rate: Log-normal distribution (mean = 2 L/day, σ = 

0.5). 

Body Weight: Truncated normal distribution (μ = 70 kg, σ = 

10 kg; bounds: 40 – 100 kg). 

Incremental Lifetime Cancer Risk (ILCR): 

ILCR = CDI × SF     (5) 

Exceedance probability: Percentage of simulations where 

ILCR > 1 × 10−4. 

Sensitivity analysis: Sensitivity analysis using Pearson’s 

correlation coefficient (r) quantifies the relative influence of 

input parameters (e.g., concentration, ingestion rate, body 

weight) on the variability of health risks (ILCR) for lead (Pb) 

and cadmium (Cd).  
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r =
∑ (xi−x̅)(yi−y̅)𝑛

𝑖=1

√∑ (xi−x̅)2𝑛
𝑛=1 √∑ (yi−y̅)2𝑛

𝑛=1

     (6) 

where: 

xi = Values of the input parameter (e.g., concentration, 

ingestion rate, body weight) across n Monte Carlo 

simulations. 

yi = Values of the output variable (ILCR for Pb or Cd) 

across n simulations. 

x̅, y̅ = Means of x and y, respectively. 

n = Number of simulations (e.g., 100,000). 

The coefficient ranges from -1 to 1: 

Positive r: Direct relationship (e.g., higher concentration → 

higher risk). 

Negative r: Inverse relationship (e.g., lower body weight → 

higher risk). 

Magnitude: Strength of association (∣r∣ > 0.7 = strong; ∣r∣ < 

0.3 = weak). 

 

RESULTS AND DISCUSSION 

Heavy Metal Concentrations and Deterministic Risk 

Metrics 

The mean concentration of Lead (Pb) was found to be 0.656 

ppm which exceeds the WHO limit value of 0.01 ppm by 65.6 

times (Table 1), reflecting significant contamination likely 

from anthropogenic sources such as leaded plumbing and 

historical pesticide usage (Nduka et al., 2016; Yawuck and 

Allems, 2023). The deterministic Hazard Quotient (HQ = 

5.43) indicates severe non-carcinogenic risk, driven by high 

concentration of Pb and moderate reference dose (RfD = 

0.0035 mg/kg/day). Additionally, the mean concentration of 

cadmium (Cd) was found to be 0.053 ppm (17.7 times higher 

than WHO's 0.003 ppm) (Table 1), Cd contamination is linked 

to phosphate fertilizers (Alloway, 2013). Despite a lower HQ 

(1.50), its carcinogenic risk (CR = 9.1E-03) dominates due to 

an extreme slope factor (SF = 6.1). 

Table 1: Heavy Metal Concentrations and Deterministic Risk Metrics 

Parameter Lead (Pb) Cadmium (Cd) 

Mean Concentration (ppm) 0.656 0.053 

Permissible Limit (ppm) ( WHO, 2011) 0.01 0.003 

Exceedance Factor 65.6× 17.7× 

Hazard Quotient (HQ) 5.43 1.50 

Carcinogenic Risk (CR) 1.6E-04 9.1E-03 

 

The deterministic framework prioritizes Pb due to its higher 

HQ (5.43), which reflects acute non-carcinogenic risk. 

However, Cd's long-term carcinogenic threat is highlighted 

by the fact that its CR is two orders of magnitude greater than 

Pb's. This discrepancy arises because deterministic methods 

use fixed parameters (e.g., average ingestion rate), masking 

variability in exposure pathways. According to research 

associated with low-dose Cd exposure to cancer and renal 

dysfunction, Pb risk is concentration-driven, whereas Cd risk 

is increased by its inherent toxicity (Järup, 2003). 

 

Probabilistic Risk Distributions (ILCR Statistics) 

The mean incremental lifetime cancer risk (ILCR = 3.45E-05) 

for Pb is low, with only 12.3% of simulations exceeding the 

1E-4 threshold. The 95th percentile (1.12E-04) suggests 

localized high-risk scenarios, likely in children or high-

ingestion populations. While Cd revealed a universal 

exceedance (100% of simulations > 1E-4) with a mean ILCR 

of 1.23E-03 which highlights unavoidable carcinogenic risk 

(Table 2). The 95th percentile (3.89E-03) aligns with global 

studies in Cd-polluted regions (Islam et al., 2020). 

Table 2: Probabilistic ILCR Statistics 

Metric Lead (Pb) Cadmium (Cd) 

Mean ILCR 3.45E-05 1.23E-03 

5th Percentile 4.12E-06 2.15E-04 

Median 2.53E-05 9.87E-04 

95th Percentile 1.12E-04 3.89E-03 

Exceedance Probability (ILCR > 1E-4) 12.3% 100% 

 

Probabilistic modelling reveals a risk reversal: Cd 

carcinogenic dominance emerges despite its lower 

deterministic HQ (1.50). This occurs because Cd slope factor 

(SF) magnifies even minimal exposures into significant risk, 

whereas Pb risk is diluted by variability in ingestion rate and 

body weight. For example, a child (BW = 40 kg) drinking 3 

L/day faces Pb HQ = 8.1, but probabilistic simulations show 

only 12.3% of such scenarios exceed thresholds. In contrast, 

Cd SF ensures all exposure scenarios breach safety limit, as 

observed in agricultural regions using phosphate fertilizers 

(Alloway, 2013). 

In addition, Figure 1 shows a left-skewed distribution with 

most simulations below 1E-4. The tail beyond the threshold 

(12.3%) represents high-exposure subpopulations while 

Figure 2 shows that the entire distribution of Cd lies above 

1E-4, illustrating universal risk. 
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Figure 1: Pb Probabilistic Risk Distributions (Mean ILCR: 3.45E-05 (95th percentile is 1.12E-04; 12.3% > 1E-4))  

 

 
Figure 2: Cd Probabilistic Risk Distributions (Mean ILCR: 1.23E-03 (95th percentile is 3.89E-03; 100% > 1E-4)) 

 

Figure 1 and 2 visualize the probabilistic risk dual nature. The 

Pb risk is context-dependent, tied to specific exposure 

scenarios, while the Cd risk is pervasive due to its 

carcinogenic potency. This aligns with global studies showing 

Cd ILCR exceeding thresholds even in regions with lower 

contamination (Sharma et al., 2021). The figures emphasize 

the need for probabilistic method to capture hidden risks 

overlook by deterministic averages. 

 

Uncertainty Analysis (Cumulative Distribution Functions 

(CDFs)) for Pb and Cd ILCR 

The Pb revealed a gradual CDF rise (Right-skewed 

distribution), crossing the threshold at 12.3% cumulative 

probability (exceeding 1E-4 threshold) (Figure 3) while the 

Cd shows a sharp vertical rise at ILCR = 2.15E-04 (5th 

percentile), reaching 100% cumulative probability by 3.89E-

03 (wide distribution) with 100% exceedance probability, 

indicating universal risk (entire curve lies above the threshold 

(red dashed line)) (Figure 4). 
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Figure 3: Cumulative Distribution Functions (CDFs)) for Pb 

 

 
Figure 4: Cumulative Distribution Functions (CDFs)) for Pb 

 

The CDFs highlight risk inevitability for Cd versus risk 

variability for Pb. For Pb, 50% of simulations show ILCR > 

2.5E-05, indicating moderate chronic exposure. For Cd, 95% 

of simulations exceed 3.89E-03, far surpassing regulatory 

thresholds. This mirrors findings in Bangladesh’s Buriganga 

River, where Cd carcinogenic risk was unavoidable despite 

lower concentrations (Islam et al., 2020). 

 

Sensitivity Analysis (Pearson’s r-values) 

Sensitivity analysis using Pearson’s correlation coefficient (r) 

quantifies the relative influence of input parameters 

(concentration, ingestion rate and body weight) on the 

variability of health risks (ILCR) for lead (Pb) and cadmium 

(Cd) (Table 3). 

 

Table 3: Sensitivity Analysis (Pearson’s r-values) 

Parameter Pb Cd Interpretation 

Concentration 0.92 0.95 Dominant driver of risk; Cd sensitivity is marginally stronger. 

Ingestion Rate 0.85 0.88 High sensitivity; Cd risk increases more rapidly with water consumption. 

Body Weight -0.78 -0.81 
Strong inverse relationship; children (lower BW) face disproportionately higher 

risks. 

 

For the Pb, the concentration (r = 0.92) and the body weight 

(r = -0.78) dominate variability. Therefore, reducing Pb levels 

would disproportionately lower risk, while for Cd, the 

concentration (r = 0.95) is the primary driver, with body 

weight (r = -0.81) having a lesser but significant inverse 

relationship. These can be summerized as: 

Positive r (0.92): Higher concentration → Higher ILCR.  

Negative r ( -0.78): Higher body weight → Lower ILCR. 



DUAL-MODAL RISK ASSESSMENT OF…            Jibril et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 5, May, 2025, pp 301 – 308 306 

 
Figure 5: Sensitivity Analysis Matrix Map (Heatmap) of r-values for Pb and Cd  

 

However, the sensitivity analysis clarifies intervention 

priorities. For Pb, targeting contamination hotspots (Sample 

6: 1.330 ppm) and replacing leaded plumbing and historical 

pesticide would yield the greatest risk reduction. For Cd, 

regulating phosphate fertilizers is critical, as concentration 

explains 95% of ILCR variability. The inverse correlation 

with body weight highlights heightened risks for low-weight 

populations (e.g., children), aligning with findings from 

Nigerian communities (Bello et al., 2019).  

Finally, it's important to highlight the contrast between 

deterministic and probabilistic results, emphasizing the 

necessity of probabilistic approaches for comprehensive risk 

assessment. 

 

Explanation of the Reversed Risk Significance between Pb 

and Cd in Deterministic vs. Probabilistic Assessments 

Conflict Resolution: Deterministic methods underestimated 

Pb exceedance probability (12.3% vs. point estimate HQ 

(5.43)) by ignoring variability in ingestion rate and body 

weight. Cd 100% exceedance probability in simulations 

contrasted with deterministic averages, emphasizing the need 

for stochastic models in regulatory frameworks. The apparent 

contradiction between deterministic and probabilistic results 

arises from fundamental differences in how these methods 

evaluate risk. Here’s a detailed breakdown: 

Cadmium’s Carcinogenic Dominance: Cadmium extreme 

carcinogenic potency arises from its slope factor, SF = 6.1 

(mg/kg/day) ⁻¹, which is 700 times higher than lead (SF = 

0.0085 (mg/kg/day)⁻¹). This means that even trace Cd 

concentrations (mean = 0.053 ppm) amplify into significant 

carcinogenic risk. For instance, the deterministic carcinogenic 

risk (CR = 9.1E-03) aligns with probabilistic incremental 

lifetime cancer risk (ILCR = 1.23E-03), but Monte Carlo 

simulation reveal a 100% exceedance probability of the 

USEPA threshold value of 1E-4. This universal risk stems 

from Cd bioaccumulative nature and its ability to induce 

oxidative stress, DNA damage, and renal dysfunction at low 

doses (Nordberg et al., 2018). Unlike Pb, Cd risk is not diluted 

by variability in exposure parameters (e.g., ingestion rate, 

body weight) because its toxicity dominates outcomes across 

all scenarios. 

 

Geochemical and Anthropogenic Interactions 

Cd Diffuse Contamination: Cadmium widespread presence 

(mean = 0.053 ppm) is linked to decades of phosphate 

fertilizer usage, which introduces Cd as a contaminant in 

agricultural soils (Alloway, 2013). Unlike Pb, which localizes 

near pollution sources (e.g., leaded plumbing and historical 

pesticide), Cd disperses uniformly across the community, 

ensuring consistent exposure through irrigation and drinking 

water. 

 

Comparative Analysis with Global Studies 

Lead Levels: Unguwan Lumbaye’s Pb levels (0.656 ppm) 

exceed those in: 

Zaria, Nigeria with 0.85 ppm (Bello et al., 2019): Reflects 

similar anthropogenic sources (e.g., leaded fuels, mining). 

Indian Farmlands with 0.62 ppm (Sharma et al., 2021): 

Highlights Nigeria’s lag in phasing out leaded materials. 

Cadmium Concentrations: Cd levels (0.053 ppm) surpass 

those in Bangladesh’s Buriganga River with 0.013 ppm 

(Islam et al., 2020), underscoring Nigeria’s lax regulation of 

agrochemicals. The 17.7 times exceedance of WHO limits 

signals urgent need for fertilizer reform. 
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Table 4: Deterministic vs. Probabilistic Risk Comparison (summery) 

Parameter Lead (Pb) Cadmium (Cd) 

Deterministic HQ 5.43 (High Risk) 1.50 (Moderate Risk) 

Probabilistic Exceedance 12.3% of simulations > 1E-4 100% of simulations > 1E-4 

Dominant Risk Driver Concentration variability Carcinogenic slope factor (SF) 

Key Sensitivity Ingestion rate, body weight Concentration, SF 

 

Policy Implications 

Cadmium Mitigation 

Ban Phosphate Fertilizers: Replace Cd-contaminated 

fertilizers with organic alternatives, as done in the EU under 

Directive 2003/2003. 

Community Filtration Systems: Install activated alumina 

filters, proven to reduce Cd levels by > 90% in Bangladesh 

(Islam et al., 2020). 

 

Lead Interventions 

Targeted Pipe Replacements and cleaning historical pesticide: 

Prioritize leaded plumbing replacements and cleaning 

historical pesticide in hotspots (e.g., Sample 6) to reduce acute 

exposure. 

Soil Remediation: Apply phosphate amendments to 

immobilize Pb in Fe-rich soils, leveraging natural 

geochemical processes (Appel and Ma, 2002). 

 

Synthesis 

The Pb and Cd risk reversal highlights the limitations of 

deterministic approaches, which prioritize Pb’s acute toxicity 

but overlook Cd’s carcinogenic inevitability. Probabilistic 

frameworks, by contrast, capture Cd’s universal threat and Pb 

context-dependent risks, advocating for dual 

strategies: agrochemical reform for Cd and targeted 

infrastructure upgrades for Pb. These geochemical and 

exposure science-based actions are essential for safeguarding 

rural communities that depend on untreated groundwater. 

However, despite the careful timing of sampling during the 

dry season to reduce dilution by rainfall, the study’s inference 

is constrained by a relatively small dataset of only ten 

borehole and well samples, which limits statistical robustness 

and may not capture the full spatial heterogeneity of the 

aquifer system. By excluding wet‐season sampling, the 

analysis overlooks potentially important seasonal fluctuations 

in groundwater chemistry. 

In addition, when assessing lead and cadmium risks, it’s 

crucial to acknowledge that other, unmeasured contaminants 

could skew both exposure estimates and toxicological 

interactions (Mali et al., 2024; Mundra et al., 2025). For 

instance, arsenic, chromium, mercury, nickel, and manganese 

frequently co-exist in groundwater and can either enhance or 

inhibit the mobility, bioavailability, and health impacts of Pb 

and Cd. Without comprehensive speciation and multi-element 

analysis, variations in pH, redox conditions, or competing 

ligand levels may alter metal partitioning and lead to 

underestimation of actual exposure (Mali et al., 2024). 

 

CONCLUSION 

The comprehensive assessment of heavy metal contamination 

in groundwater sources from Unguwan Lumbaye revealed 

critical insights into the distribution, health risks, and sources 

of lead (Pb) and cadmium (Cd). The Pb and Cd emerged as 

the significant contaminants, with Pb exhibiting a 

deterministic hazard quotient (HQ = 5.43) far exceeding safe 

thresholds, indicative of acute non-carcinogenic risks. In 

contrast, Cd demonstrated universal carcinogenic risk, with 

probabilistic incremental lifetime cancer risk (ILCR) 

simulations revealing a 100% exceedance probability of the 

1E-4 threshold, driven by its extreme carcinogenic potency 

(slope factor of 6.1) and widespread presence linked to 

phosphate fertilizer use. This risk reversal where deterministic 

methods prioritized Pb due to its high concentration, while 

probabilistic frameworks highlighted Cd’s unavoidable 

carcinogenicity emphasizes the necessity of integrating 

stochastic models into regulatory frameworks to account for 

exposure variability and toxicological potency. Comparative 

analysis contextualized these findings: Pb levels surpassed 

those reported in Zaria, Nigeria, and Indian farmlands, 

reflecting Nigeria’s lag in phasing out leaded materials, while 

Cd concentrations exceeded those in Bangladesh’s Buriganga 

River, emphasizing unregulated agrochemical use. The study 

advocates for immediate policy actions, including bans on 

Cd-laden fertilizers, community filtration systems, and 

targeted replacement of leaded infrastructure in 

contamination hotspots. This dual-modal risk assessment 

bridging deterministic and probabilistic paradigms provides a 

nuanced understanding of groundwater contamination in 

agrarian regions. It highlights the limitations of static risk 

models and emphasizes the imperative of adaptive, evidence-

based policies to safeguard public health and agricultural 

sustainability in communities reliant on untreated 

groundwater. Therefore, a key innovation of this study lies in 

its explicit coupling of deterministic hazard quotients with 

probabilistic Monte Carlo simulations to expose and resolve 

conflicting risk priorities: whereas traditional, point‐estimate 

approaches singled out lead as the dominant non‐carcinogenic 

threat, the probabilistic framework revealed cadmium’s 

unequivocal carcinogenic risk underscoring how reliance on 

fixed assumptions can mask true hazard potentials. 
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