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ABSTRACT 

This paper uses the Rossler attractor as a classical oscillator and presents a secure communication approach 

based on the hybrid synchronization of two identical chaotic systems via Lyapunov direct method. Equilibrium 

and bifurcation are two examples of fundamental dynamical features that are examined. A secure 

communication scheme is also presented based on synchronizing evolving chaotic systems with an uncertain 

parameter. The chaotic transmitter, the modulation, the chaotic receiver and the demodulation make up the 

communication scheme. The message signal is modulated into the system via the modulation process. Next, a 

public channel is used to transmit the chaotic signals to the recipient. The receiver end achieves synchronization 

between the transmitter and the receiver systems; and simultaneously estimates the unknown parameter through 

the design of the controller and parameter update law. The message signal is retrieved using the suitable 

demodulation technique and the detected parameter. To show the viability and validity of the described secure 

communication scheme, numerical simulations are performed. 
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INTRODUCTION 

Research on chaotic system synchronization has expanded 

significantly since the ground breaking work of Pecora and 

Carroll (1990). Numerous synchronization occurrences in 

chaotic systems have been reported until now, such as 

complete synchronization (Pecora & Carroll, 1990), 

generalized synchronization (Zheng & Hu, 2000), phase 

synchronization (Rosenblum et al., 1996), projective 

synchronization (Li & Xu, 2004) etc. It has also attracted a lot 

of research attention because of its relevant practical 

applications (Boccaletti et al., 2002). It is being applied to 

secure communication systems in which the intended chaotic 

signal in the transmitter is modulated and the original signal 

is then demodulated in the received signal in the receiver end 

(Cuomo & Oppenheim, 1993; Kocarev & Parlitz, 1995; Yau 

et al., 2012). Essentially, the novel idea for transmitting a 

message signal through chaotic systems is that a message 

signal is implanted in the transmitter system, which generates 

a chaotic signal. Eventually, the receiver recovers the message 

signal via a public channel and then, decodes the message 

signal. 

Secure communication systems have been studied using a 

variety of techniques (Rulkov & Tsimring, 1999; Li et al., 

2003; Miliou et al., 2007; Yeh & Wu, 2008; Lu et al., 2008; 

Zhao et al., 2014; Wu et al., 2015; Olusola et al., 2020). Also, 

three different case studies on chaos-based secure 

communication systems were presented by Zaher and Abu-

Rezq (2011); brain-emotional learning has been used to study 

a secure communication system through chaos 

synchronization (Samimi et al., 2020). A secure 

communication scheme that is based on a new hyperchaotic 

system with three quadratic nonlinearities was presented by 

Benkouider et al. (2022). Recently, a scientific study using 

the Current Feedback Amplifier and Op-Amp to realize a 

chaotic oscillator and apply it to secure communication was 

published (Rai et al., 2023). Also, hybrid synchronization has 

found its applications in signal processing and secure 

communication (Trikha & Jahanzaib, 2021; Bouraoui & 

Kemih, 2013; Ni-huan & Zhi-hong, 2012). 

To lower the suspicion of an intending intruder as well as 

make the intrusion more difficult, we use a system with 

minimal continuous chaos and a hybrid synchronization 

scheme in this study. 

 

System Description and Dynamical Analyses 

System Description 

We consider the original system presented by Rossler (1976), 

which can be described by following autonomous differential 

equations: 

{
�̇�1 =  −(𝑥2 + 𝑥3)       
�̇�2 =  𝑥1 + 𝑎𝑥2          
�̇�3 =  b+𝑥3(𝑥1 − 𝑐),

   (1) 

where 𝑎, 𝑏and𝑐 are real constant parameters that determine 

the behaviour of the system. The values first studied by 

Rossler (976) are 𝑎 = 𝑏 = 0.2 and 𝑐 = 5.7. 𝑥1, 𝑥2 and 𝑥3 are 

the three variables which evolve with time. The first two 

expressions in Equation (1) have linear terms that cause 

oscillations in the variables 𝑥1 and 𝑥2. The last expression has 

only one nonlinear term 𝑥1𝑥3, hence the system is expected to 

exhibit chaotic behaviour. 

This system has minimal continuous chaos for at least three 

reasons: (i) it has a single quadratic term, which reduces 

nonlinearity; (ii) a chaotic attractor is generated, which has 

one lobe as opposed to the two lobes of the Lorenz attractor; 

and (iii) its phase-space has the minimum dimension of three 

(Gaspard, 2005). With parameter values 𝑎 = 𝑏 = 0.2 and𝑐 =
5.7 (Gosar, 2011) and initial condition(0, 0, 0); the phase 

space is as shown in Figure 1. 
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Figure 1: Phase portrait of the Rossler attractor with the following parameters 𝑎 =
0.2, 𝑏 = 0.2, 𝑐 = 5.7 

 

The divergence of Equation (1) is in the form: 

{
Δ𝑉 =  

𝑑�̇�1

𝑑𝑥1
+

𝑑�̇�2

𝑑𝑥2
+

𝑑�̇�3

𝑑𝑥3

Δ𝑉 =  𝑎 − 𝑐
   (2) 

Obviously, for the parameter values considered, Δ𝑉 < 0. 

Consequently, Equation (1) is dissipative (Olusola et al., 

2020; Benkouider et al., 2022). Also, the equilibria of 

Equation (1) can be obtained by solving: 

{

−𝑥2 − 𝑥3 = 0         
𝑥1 + 𝑎𝑥2 = 0         
b+𝑥1𝑥3 − 𝑐𝑥3 = 0.

   (3) 

By linearizing the system around equilibrium point 𝐸0(0,0,0), 

it results in the following Jacobian matrix: 

𝐽 = |
0 −1 −1
1 𝑎 0
𝑥3 0 (𝑥1 − 𝑐)

|   (4) 

The eigenvalues can be determined by solving the following 

cubic Equation: 

𝜆3 − 𝜆2(𝑎 + 𝑥1 − 𝑐) + 𝜆(𝑎𝑥1 − 𝑎𝑐 + 𝑥3 + 1) − 𝑥1 + 𝑐 −
𝑎𝑥3 = 0.           (5) 

For the centrally located fixed point and parameter value 𝑎 =
0.2, 𝑏 = 0.2,and 𝑐 = 5.7, Equation (5) yields eigenvalues of: 

𝜆1,2 = 0.1000 ± 0.9950𝑖, 𝜆3 = −5.7000. 

 

Dynamical Analysis 

Dynamical properties of a dynamic system can be examined 

by the bifurcation diagram and the Lyapunov exponents 

spectrum. In this work, the bifurcation of Equation (1) against 

a varied parameter 𝑐 is examined; using MATLAB Simulink, 

the result as well as the Lyapunov exponent is shown in Figure 

2. Figure 2a and Figure 2b depict the bifurcation diagram and 

the Lyapunov exponents spectrum respectively. Figure 2c is a 

zoomed version of Figure 2b showing only the first and the 

second Lyapunov exponents. 

The value of 𝑐 varies from 0.5 to 6.5. The behaviour in Figure 

2a shows that when 0.5 ≤ 𝑐 ≤ 2.4, the dynamic is periodic. 

For 2.4 ≤ 𝑐 ≤ 3.6, the period-doubling behaviour of the 

system is observed. At 3.6 ≤ 𝑐 ≤ 4.1, the system has a 

second-period doubling behaviour, and finally, the chaos 

behaviour region starts from 𝑐 ≥ 4.1. Each bifurcation 

dynamic is corroborated with the Lyapunov exponents 

spectrum in Figure 2b. 
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Figure 2: Bifurcation diagram and the Lyapunov exponent spectrum of Equation (1) with 

varying 𝑐 when parameters 𝑎 = 𝑏 = 0.2 

 

Application to a Secure Communication Scheme 

This section introduces a secure communication strategy 

where the parameter of the chaotic drive system is modulated 

by the input signal to be conveyed. Figure 3 shows the block 

diagram. Through a public channel, the effective chaotic input 

signal is conveyed. The controller is activated when switch S 

is closed; otherwise, it is deactivated. 

 

 
Figure 3: Block diagram of the chaotic communication system 

 

Modulation Technique 

A superposition of sinusoidal waves can be used to express 

any type of electromagnetic signal. The function 𝑠(𝑡) =
𝐴 𝑠𝑖𝑛( 2𝜋𝑓𝑡 + 𝜙) represents a general sinusoidal signal, 

where 𝐴 represents the amplitude (often expressed in volts), 

𝑓 represents the frequency, and 𝜙 represents the phase 

difference. We conceal the original message 𝑠(𝑡) into the 

parameter 𝑐 of Equation (1). For 𝑐1 ≤ 𝑐 ≤ 𝑐2, where 𝑐1 = 4.5 

and 𝑐2 = 5.1, Equation (1) is chaotic in this range. Also, we 

consider a new parameter 𝜎(𝑡), such that 𝜎(𝑡) ∈ [4.5  5.1], 
and employ the modulation technique in Olusola et al. (2020), 

thus: 
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𝜎(𝑡) =
𝑐2 − 𝑐1

𝜋
𝑡𝑎𝑛−1( 𝑠(𝑡)) +

𝑐2 + 𝑐1

2
 

𝜎(𝑡) =
0.6

𝜋
𝑡𝑎𝑛−1( 𝑠(𝑡)) + 9.6.  (6) 

 

Design of the Controller 

Firstly, to design a suitable controller, parameter 𝑐 in 

Equation (1) is replaced by the new parameter 𝜎(𝑡) to obtain: 

{
�̇�1 =  −(𝑥2 + 𝑥3)            
�̇�2 =  𝑥1 + 𝑎𝑥2                
�̇�3 =  b+𝑥3(𝑥1 − 𝜎(𝑡)).

   (7) 

Equation (7) is hereafter referred to as the transmitter system.  

The receiver system is describable by the following equation: 

{
�̇�1 =  −(𝑦2 + 𝑦3) + 𝑢1            
�̇�2 =  y1 + 𝑎𝑦2 + 𝑢2                
�̇�3 =  b+y3(𝑦1 − �̂�(𝑡)) + 𝑢3,

  (8) 

where �̂�(𝑡) is an unknown parameter to be estimated; and 

𝑢𝑖(𝑖 = 1,2,3) are the controllers to be designed. The design 

of the controller is done in such a way that: (i) the transmitter 

system and the receiver system achieve hybrid 

synchronization; (ii) the parameters 𝜎(𝑡) and �̂�(𝑡)converge to 

the same value. 

Active control method is employed to examine the hybrid 

synchronization. This is done by defining the system error, 

parameter error and time derivative of error signals as 

follows: 

{

𝑒1 =  y1 − 𝑘1𝑥1

𝑒2 =  y2 + 𝑘2𝑥2

𝑒3 =  y3 − 𝑘3𝑥3,
    (9) 

where 𝑘𝑖 (𝑖 = 1,2,3), is the scaling factor. For simplicity, 𝑘𝑖 

is taken as unity in this work.  

Also, 

𝑒𝜎 = �̂�(𝑡) − 𝜎(𝑡).    (10) 

The time derivative of Equation (9) is:  

{

�̇�1 =  ẏ1 − 𝑘1�̇�1

�̇�2 =  ẏ2 + 𝑘2�̇�2

�̇�3 =  ẏ3 − 𝑘3�̇�3.
    (11) 

Substituting Equations (7) and (8) into Equation (11) yields: 

{

�̇�1 =  −(𝑒2 + 𝑒3) + 2𝑥2 + 𝑢1                                 
�̇�2 =  𝑒1+ 𝑎𝑒2 + 2𝑥1 + 𝑢2                                      

�̇�3 =  𝑒1𝑒3 + 𝑒3𝑥1 + 𝑒1𝑥3 − �̂�(𝑡)𝑒3 + 𝑢3.            
(12) 

Also, taking the time derivative of parameter estimate error 

leads to: 

𝑒𝜎 = �̂�(𝑡) −
0.6

𝜋(1+𝑠2(𝑡))
.   (13) 

Hence, the hybrid synchronization problem becomes the 

stability problem of the error dynamics, Equation (13). We 

obtain the following theorem: 

The theorem: From Equations (12) and (13), hybrid 

synchronization between the transmitter system and the 

receiver system can be realized when the control function, 𝑢𝑖 

and the parameter update law are selected thus: 

{
𝑢1 =  −2𝑥2 + 𝑤1                               
𝑢2 =  −2𝑥1 + 𝑤2                              
𝑢3 =  −𝑒1𝑒3 − 𝑒3𝑥1 − 𝑒1𝑥3 + 𝑤3,

  (14) 

where 𝑤1 =  𝑒2 + 𝑒3, 𝑤2 =  −𝑒1 −  𝑎𝑒2, 𝑤3 =  �̂�(𝑡)𝑒3. 
and 

�̂�(𝑡) =
0.6

𝜋(1+𝑠2(𝑡))
,    (15) 

Proof: Let us consider: 

𝑊 = [𝑤1, 𝑤2, 𝑤3]𝑇 = 𝐴[𝑒1, 𝑒2, 𝑒3]𝑇 ,  (16) 

where 𝑊 = [𝑤1, 𝑤2, 𝑤3]𝑇  are the linear control input chosen 

such that the system becomes stable, then the transmitter and 

the receiver will achieve stable hybrid synchronization. Also, 

𝐴 is a 3 × 3matrix. The matrix 𝐴 should be chosen in such 

that all its eigenvalues have negative real parts. Consider the 

following choice of 𝐴: 

𝐴 = |

−1 1 1
−1 −(1 + 𝑎) 0
0 0 (�̂�(𝑡) − 1)

|,  (17) 

then, Equation (16) becomes: 

[𝑤1, 𝑤2, 𝑤3]𝑇 = |

−1 1 1
−1 −(1 + 𝑎) 0
0 0 (�̂�(𝑡) − 1)

| |

𝑒1

𝑒2

𝑒3

|. 

     (18) 

Substituting the solution of Equation (18) in Equation (14) 

yields: 

{

𝑢1 =  −𝑒1 + 𝑒2 + 𝑒3 − 2𝑥2                              

𝑢2 =  −𝑒1 − (1 + 𝑎)𝑒2 − 2𝑥1                          
𝑢3 =  −𝑒1𝑒3 − 𝑒3𝑥1 − 𝑒1𝑥3 − (1 − �̂�(𝑡))𝑒3.

 (19) 

Based on the Lyapunov second method, we construct a 

Lyapunov function: 

𝑉(𝑒1, 𝑒2, 𝑒3) =
1

2
∑ 𝑘𝑖 𝑒𝑖

2.   (20) 

By calculating the derivative of 𝑉(𝑡) along the trajectories of 

the error system (12) with 𝑘𝑖 (𝑖 = 1,2,3) being unity (as 

stated before), 

�̇�(𝑡) = 𝑒1�̇�1 + 𝑒2�̇�2 + 𝑒3�̇�3   (21) 

Using Equations (12) and (19) in Equation (21) gives: 

�̇�(𝑡) = 𝑒1(−𝑒1) + 𝑒2(−𝑒2) + 𝑒3(−�̂�(𝑡)𝑒3), 
�̇�(𝑡) = −𝑒1

2 − 𝑒2
2 − �̂�(𝑡)𝑒3

2, 
�̇�(𝑡) < 0.     (22) 

As the time, 𝑡, tends to ∞, the error function tends to zero; 

that is, hybrid synchronization between the transmitter system 

and the receiver system is achieved, and the zero point of the 

parameter error 𝑒𝜎 is globally and asymptotically stable. This 

result makes it clear that the derivative of the Lyapunov 

function is negative definite. It implies that the uncertain 

parameter 𝜎(𝑡) is also estimated in the receiver 

simultaneously. This completes the proof. 

 

Demodulation 

As the hybrid synchronization between the transmitter system 

and the receiver system appears, one can identify the 

parameter �̂�(𝑡). 

Consequently, from the invertible transformation Equation 

(6), the original message signal can be recovered as:  

𝑟(𝑡) = 𝑡𝑎𝑛 (
𝜋

0.6
(�̂�(𝑡) − 9.6)).  (23) 

Here 𝑟(𝑡) represents the recovered signal. Therefore, the 

receiver can successfully extract the message signal from �̂� 

by this demodulation technique. 

 

RESULTS AND DISCUSSION 

Numerical simulations were performed using the ODE45 

algorithm embedded in MATLAB to show the feasibility and 

effectiveness of this communication scheme. The parameter 

values are 𝑎 = 𝑏 = 0.2 �̂�(𝑡) = [4.5  5.1] with initial 

conditions 𝑥1(0) = −0.1, 𝑥2(0) = −0.1, 𝑥3(0) = 0.3 and 

𝑦1(0) = −0.2, 𝑦2(0) = 0.3, 𝑦3(0) = −0.1. The control 

gains 𝑘1 = 𝑘2 = 𝑘3 = 1. Equation (1) remains chaotic with 

this choice of parameter values. The hybrid synchronization 

errors between the transmitter system and the receiver system 

are depicted in Figures 4 and 5. 
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Figure 4: The hybrid synchronization error of the 

transmitter system and the receiver system before the 

controller is activated  

 
Figure 5: The hybrid synchronization error of the transmitter 

system and the receiver system after the controller is 

activated 

 

Figure 4 depicts the hybrid synchronization error of the 

transmitter system and the receiver system before the 

controller is activated; while Figure 5 shows the hybrid 

synchronization error of the transmitter system and the 

receiver system after the controller is activated. It is evident 

that after the designed controllers were activated, the coupled 

transmitter system and the receiver system become 

asymptotically stable at time, 𝑡 ≥ 5. This validates the 

feasibility and effectiveness of the designed controller. 

For the message signal, 𝑠(𝑡) = 𝐴 𝑠𝑖𝑛( 2𝜋𝑓𝑡 + 𝜙), hidden in 

the transmitter, one readily obtain 

𝜎(𝑡) =
0.6

𝜋
𝑡𝑎𝑛−1( 𝐴 𝑠𝑖𝑛( 2𝜋𝑓𝑡 + 𝜙)) + 9.6. (24) 

The message, 𝑠(𝑡), was embedded in the parameter 𝜎(𝑡)of the 

transmitter system (Equation (7)) which resulted into the 

phase portrait shown in Figure 6 with the following choice of 

parameters: 𝐴 = 22𝑉, 𝑓 = 50𝐻𝑧 and 𝜙 = 450.  

 
Figure 6: Phase portrait of the Rossler attractor after the message was embedded with the 

following parameters 𝑎 = 0.2, 𝑏 = 0.2, 𝑐 = 5.7, 𝐴 = 22𝑉, 𝑓 = 50𝐻𝑧, 𝜙 = 450 

 

As expected, the transmitted message slightly affected the 

phase portrait of the Rossler system. The chaotic massage was 

received by the receiver and identified as 𝑟(𝑡) in the 

demodulation stage (Equation (23). 

The signal paths of the sent message signal and the recovered 

message signal are depicted in Figures 7 to 9.  
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Figure 7: The original message signal 𝑠(𝑡) 

 
Figure 8: The recovered message signal 𝑟(𝑡). Figure 7 and 

Figure 8 show the signal paths of the sent message signal 

and the recovered message signal respectively 

 

 
Figure 9: The original message signal 𝑠(𝑡) and the recovered message signal 𝑟(𝑡) 

 

The correlation between the recovered message signal and the 

original message signal is clearly shown in Figure 8. Thus, the 

desired secure communication goal is accomplished, and the 

message signal is accurately received. 

 

CONCLUSION  

This work has presented a secure communication strategy that 

is achieved via a minimal continuous chaos system. When the 

designed controllers are activated, they are capable of making 

the time derivative of the Lyapunov function negative 

definite, which ensures the stability of the error dynamics and, 

consequently, the synchronization of the systems. This 

scheme allows the message signal to be successfully and 

secretly passed through four main paths: modulation, chaotic 

transmitter, chaotic receiver, and demodulation. Finally, the 

presented communication scheme was subjected to numerical 

simulations to prove its effectiveness and feasibility. 
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