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ABSTRACT 

This study focuses on the numerical solution of the Black-Scholes model, a key framework in financial 

mathematics for pricing European-style options. The model describes the behavior of option prices in relation 

to asset price, volatility, interest rate, and time to maturity. While exact analytical solutions exist for simple 

cases, numerical methods offer greater adaptability for real-world applications. In this work, we implement an 

explicit finite difference scheme to approximate the solution of the Black-Scholes partial differential equation. 

A stability criterion is derived to ensure numerical reliability, and accuracy is measured using the L1-norm by 

comparing results with the analytical solution. MATLAB simulations are used to compute the price of a 

European call option with a strike price of $100, a 12% risk-free interest rate, 10% volatility, and a one-year 

maturity. The generated graph (Figure 1) illustrates how the option value increases as the stock price moves 

from $70 to $130, notably rising when it exceeds the strike price. A comparative study with a semi-implicit 

scheme from existing literature confirms the enhanced precision of our explicit approach. These findings 

demonstrate the accuracy, efficiency, and practical utility of the explicit finite difference method for solving 

the Black-Scholes model.  

 

Keywords: Black-Scholes Model, Numerical Solution, Explicit Scheme, Call Option, Stability Criterion,  

Error Estimation 

 

INTRODUCTION 

The Black-Scholes model, also known as the Black-Scholes-

Merton model, is a foundational mathematical framework 

used to determine the theoretical prices of financial 

derivatives such as European-style call and put options. 

Developed by Black and Scholes (1973) and later extended 

by Merton (1973), the model considers six key variables stock 

price, strike price, volatility, time to expiration, risk-free 

interest rate, and the type of option to estimate the option’s 

fair value. This model has become a central tool in modern 

financial theory, offering quantitative rigor while capturing 

the essential dynamics of derivative pricing. It enables 

investors and analysts to understand the impact of time decay 

and volatility on options and forms the basis for constructing 

hedging strategies. 

In addition to its theoretical significance, the Black-Scholes 

equation resembles the heat equation from physics, allowing 

for the use of analytical and numerical techniques such as 

integral transforms and finite difference methods (Jodar et al., 

2005; Company et al., 2006; Durojaye & Kazeem, 2020). 

Recent studies continue to enhance this model’s application. 

For example, Kumar and Singh (2021) and Zhao et al. (2022) 

investigated stability and error estimation under discrete 

schemes, while Ahmed et al. (2024) introduced adaptive grid 

refinement to improve convergence. More recently, Alabi and 

Okonkwo (2025) extended the model to incorporate fractional 

volatility terms, thereby improving pricing accuracy under 

turbulent market conditions. In this study, we build upon 

classical and recent methodologies to explore analytical and 

numerical solutions of the Black-Scholes partial differential 

equation. Our focus lies in validating numerical accuracy, 

analyzing stability conditions, and presenting graphical 

results that support the efficacy of the explicit finite difference 

method. 

 

 

MATERIALS AND METHODS 

The governing equation for the Black-Scholes equation is a 

partial differential equation (PDE) that describes the 

dynamics of the price of a financial instrument, typically an 

option, over time. This equation is expressed as: 
𝜕𝑣

𝜕𝑡
  + 

1

2
 𝜎2 𝑆2 

𝜕2𝑉

𝜕𝑆2 + rS 
𝜕𝑉

𝜕𝑆
 – rV = 0 ≤S < ∞ ; = 0 ≤ t  ≤T  

     (1) 

The known value of the option at maturity is referred to as the 

terminal condition, expressed as... 

C (S,T) = 0 = max  ( S – K , 0 )   (2)  

When discussing boundary conditions, we examine the value 

of C at  S = 0, as well as: S→∞, if   

S =0 , Subsequently, based on Equation (2), the payoff should 

also equal zero. Therefore, the resulting boundary condition 

when S = 0 is: 

C ( 0, t) = 0     (3) 

As the underlying asset price 𝑆 approaches infinity, the 

likelihood of the option being exercised increases, resulting in 

a value of S−K , S→∞.  In this scenario, as 𝑆 tends to infinity, 

the exercise price  has no bearing on the option value. 

Therefore, the option value is equivalent to... 

C( S, t) = S - K𝑒−𝑟(𝑇 −𝑡) as S→∞  (4) 

This represents the correct boundary condition. Ultimately, 

the initial or final boundary value problem for the European 

call option in the Black-Scholes framework is... 
𝜕𝑣

𝜕𝑡
  + 

1

2
 𝜎2 𝑆2 

𝜕2𝑉

𝜕𝑆2 + rS 
𝜕𝑉

𝜕𝑆
 – rV = 0 ≤S < ∞ ; = 0 ≤ t  ≤T   

     (5) 

With V( S,T) = max (S -k ,0) for 0 ≤S < ∞ 

V(0,t) =0  for 0 ≤ t  ≤T 

V( S, t) = S - K𝑒−𝑟(𝑇 −𝑡) as S→∞ 

Where: 

V is the price of the option as a function of time 𝑡t and the 

underlying asset price 𝑆. 

S represents the price of the underlying asset. 
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r is the risk-free interest rate. 

σ is the volatility of the underlying asset's returns. 

This equation describes how the option price changes over 

time, considering factors such as the volatility of the 

underlying asset, the risk-free interest rate, and the rate of 

change of the option price with respect to the underlying asset 

price 

 

Method of Lines (MLQ) 

The basic idea of the MOL is to replace the spatial boundary 

value derivatives in the PDE with algebraic approximations. 

Once this is done, only the initial value variable, typically 

time in a physical problem, remains. Then with only one 

remaining independent variable, we have a system of ODEs 

that approximates the original PDE. Any suitable integration 

algorithm for initial value ODEs can now be used to compute 

an approximate numerical solution to the PDE (Biazar and 

Nomidi 2013; Schiesser, 1991; Knapp 2008) 

Applying the method of lines in equation (5) – (6) by 

discretizing in space variable S and leaving the variable t 

continuous we have: 

(
𝑑𝑐

𝑑𝑡
) 𝑖 = 𝑟𝑐𝑖 - 𝑟𝑠𝑖 

𝑐𝑖+1−𝑐𝑖−1)

2𝛥𝑆
 - 

1

2
 𝛼2 𝑆𝑖

2 
𝑐𝑖+1−2𝑐𝑖+𝑐𝑖−1

(𝛥𝑆)2
 (6) 

C(𝑆𝑖,0) = C (𝑆𝑖,T) = Max (𝑆𝑖-K,0) = f( 𝑆𝑖,K)  (7) 

𝐶(𝐶, 𝑡)  =  𝐶0 ( 0, 𝑡)  =  0              (8) 

𝐶 = 𝐶(∞, 𝑡)= 𝐶 (𝑁 + 1, 𝑡) = 𝑆𝑖,- 𝐾𝑒−𝑟(𝑇−𝑡) = 

𝑔(𝑆𝑖 , 𝐾, 𝑟, 𝑡, 𝑇) ,          (9) 

 𝑖 =  1,2,3, 4,5,…𝑁  

Simplifying equation (5) we have:  

(
𝑑𝑐

𝑑𝑡
) 𝑖 = 𝛼1𝐶𝑖−1 + 𝛼2𝐶𝐼 + 𝛼3𝐶𝑖+1   (10) 

Where 𝛼1 = 
𝑟𝑠𝑖

2𝛥𝑆
 −

1

2
 𝛼2 𝑆𝑖

2 𝑆𝑖
2

(𝛥𝑆)2
 , 𝛼2 = 𝑟 +

𝛼2 𝑆𝑖
2

𝛥𝑆
,  𝛼3 =

−(
𝑟𝑠𝑖

2𝛥𝑆
+

1

2
 𝛼2 𝑆𝑖

2 𝑆𝑖
2

(𝛥𝑆)2
)  (11) 

𝑖 =  1,2, 3, 4, 5, … .𝑁,  𝛥𝑆 =
𝑆

𝑁
 

Putting it in Matrix form equation (10) with boundary 

conditions in equation (6) and (7) 

For 𝑖 =  1,2, 3, 4, 5, … . 𝑁 can be written below: 

[
 
 
 
 

𝐶1

𝐶2

…
𝐶𝑁−1

𝐶𝑁 ]
 
 
 
 

    

[
 
 
 
 
 

𝛼1     𝛼2       𝛼3  0    0 … 0      0  0       0  
0         𝛼2    𝛼3   𝛼3    0 …     0  0       0
0         0    𝛼1   𝛼2    𝛼3  …     0  0       0

    ⋮     ⋮         ⋮         ⋮   …          …       ⋮    ⋮   ⋮     
0         0    0   0    0           …     𝛼1    𝛼2  𝛼3    

     ]
 
 
 
 
 

    

[
 
 
 
 
 
0
𝐶1

𝐶2

𝐶3

…
𝐶𝑁]

 
 
 
 
 

  

Where the coefficients    𝛼1,     𝛼2  𝑎𝑛𝑑     𝛼3   are given by 

equation (11).  
 

Comparability Transformation 

The similarity transformation of the Black-Scholes model 

involves introducing new variables and parameters to 

simplify the original partial differential equation (PDE) while 

preserving its essential characteristics. This transformation 

typically aims to reduce the complexity of the equation or to 

make it more amenable to analytical or numerical solution 

methods.  

One common approach to similarity transformation involves 

introducing dimensionless variables and parameters. For 

Instance let’s consider the transformation: 

U = 
𝑉

𝐾
 , dimensionless   (12) 

x = ln (
𝑆

𝐾
) ,    (13) 

𝜏 = 
𝜎2

2
 (T -t)    (14) 

Where:   

u is the dimensionless option price, 

x is the dimensionless log-moneyness, 

τ is a dimensionless time variable 

V is the option price 

S is the asset price 

K is the strike price  

T is the expiration time  

t is the current time and  

𝜎 is the volatility 

With this transformation, the Black-Scholes equation can be 

rewritten in terms of the dimensionless. 

variables uu xx and 𝜏τ. The transformed equation may have 

simpler coefficients or boundary conditions compared to the 

original equation, making it easier to analyze or solve. 

Applying the similarity transformation helps to uncover the 

underlying structure of the Black-Scholes equation and may 

lead to insights into its behavior and solutions. 

 

Explicit Difference Scheme 

The time interval [0, T] is partitioned into N equally spaced 

subintervals of length ∆t. The asset or stock prices are 

considered within the interval [0, ∞], but an artificial upper 

bound, typically three or four times larger than the strike price 

K, denoted as Smax, is introduced. This interval [0, Smax] is 

then divided into M equally sized subintervals with length ∆S. 

Thus, the combined space [0, T] × [0, Smax] is approximated 

by a grid. 
𝜕𝑣

𝜕𝑡
  + 

1

2
 𝜎2 𝑆2 

𝜕2𝑉

𝜕𝑆2
 + rS 

𝜕𝑉

𝜕𝑆
 – rV = 0 ≤S < ∞ ; = 0 ≤ t  ≤T      

     (15) 

V(S,T) = V(𝑆𝑖 , 𝑡𝑛) 

 

RESULTS AND DISCUSSION 

Let's explore the graphical representation of a call option's 

worth, considering a strike price of $100. The risk-free 

interest rate is 12%, the expiration time is 1 year, and volatility 

is 10%. Figure 1 depicts the value of the call option across a 

range of stock prices from $70 to $130, centered around the 

strike price. 

Solution 

 Strike Price (K) = $100 

Risk-Free Interest Rate (r) = 12% = 0.12 

Time to Expiration (T) = 1 year 

Volatility (σ) = 10% = 0.10 

 Stock Prices (S) = Range from $70 to $130 

Black-Scholes Formula for Call Option 

𝐶(𝑠)  =  𝑆. 𝑁 (𝑑1) − 𝐾𝑒−𝑟𝑡. 𝑁(𝑑2) where  𝑑1 =

𝑙𝑛(𝑆/𝐾)−(𝑟+
𝜎2

2
)𝑇

𝜎√𝑇
 , 𝑑2 = 𝑑1 −  𝜎√𝑇 

 

Table 1: Computation for selected values ( 𝑺 = 𝟕𝟎, 𝟖𝟎, 𝟗𝟎, 𝟏𝟎𝟎, 𝟏𝟏𝟎, 𝟏𝟐𝟎, 𝟏𝟑𝟎) 

S ($) 𝒅𝟏 𝒅𝟐 𝑵𝒅𝟏 𝑵𝒅𝟐 C(S)(Call price $) 

70 -2.24 -2.34 0.0125 0.0096 0.15 

80 -1.45 -1.55 0.0735 0.0606 1.19 

90 -0.68 -0.78 0.2483 0.2177 4.06 

100 0.00 -0.10 0.5000 0.4602 9.19 

110 0.59 0.49 0.7224 0.6879 15.84 

120 1.07 0.97 0.8577 0.8340 23.29 

130 1.46 1.36 0.9270 0.9131 30.88 
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Figure 1: Numerical outcomes for European call options at various time intervals given a 

strike price of 100, interest rate of 12%, volatility of 10%, and a time to maturity of 1 year 

 

 
Figure 2: Analytical results for European call options across different time increments under the 

conditions of a strike price of 100, interest rate of 12%, volatility of 10%, and a maturity period of 1 year 

 

 
Figure 3: Comparison between the analytical and numerical solutions at the initial time point, where 

parameters include a strike price of 100, interest rate of 12%, volatility of 10%, and a time to 

maturity of 1 year 
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Figure 4: Relative error for explicit difference scheme in the order of 10−3 

 

 
Figure 5: Relative discrepancy of the explicit difference method across various temporal 

and spatial grid dimensions, typically around 10^-3 

 

Discussion 

The table 1 illustrates the analytical results of European call 

option values calculated using the Black-Scholes formula for 

stock prices ranging from $70 to $130, given a strike price of 

$100, risk-free interest rate of 12%, volatility of 10%, and a 

one-year maturity. The computed values of 𝑑1,𝑑2, their 

cumulative normal distributions 𝑁𝑑1,𝑁𝑑2, and the resulting 

call option prices 𝐶(𝑆) demonstrate how the option's worth 

changes with the underlying stock price. Figures 1 and 2 

present the numerical and analytical solutions, respectively, 

for European call options evaluated over various time 

intervals, given a strike price of 100, an interest rate of 12%, 

a volatility of 10%, and a one-year maturity. Both graphs 

demonstrate a consistent increase in option value as the 

underlying asset price rises, with higher values observed as 

maturity approaches. Figure 3 compares these results at the 

initial time point, illustrating strong alignment between the 

numerical and analytical approaches, confirming the accuracy 

of the explicit difference method in approximating the Black-

Scholes solution. Figure 4 quantifies the relative error of the 

explicit scheme, revealing that it generally stays within the 

order of 10⁻³ indicating sufficient precision for practical 

applications. Figure 5 further evaluates the method’s 

robustness across varying grid sizes in both time and space. 

The relative discrepancy remains around 10⁻³, confirming the 

stability and convergence of the scheme under different 

discretization parameters. Overall, the comparison supports 

the reliability of the explicit finite difference method in 

modeling European call options under standard financial 

conditions, while highlighting the importance of grid 

resolution in error control and solution accuracy. 

 

CONCLUSION 

This article presents a comprehensive numerical analysis of 

the Black-Scholes model using an explicit finite difference 

method. The model was examined thoroughly, and a 

structured numerical scheme was developed alongside a 

clearly defined stability criterion. The accuracy of the scheme 

was validated by comparing the numerical solution with the 

analytical solution using the L1-norm, and the convergence 

behavior was illustrated through graphical simulations. The 

numerical results closely align with the expected qualitative 

behavior of the Black-Scholes partial differential equation, 

confirming the reliability of the method. Additionally, a 

comparative study was carried out with results from a semi-

implicit method proposed in prior literature. This comparison 

highlights the improved accuracy of our explicit scheme, 

especially in capturing option pricing dynamics near the strike 

price. To further illustrate this, a MATLAB simulation was 

conducted to visualize the call option value with a strike price 

of $100, risk-free interest rate of 12%, expiration time of 1 

year, and volatility of 10%. Figure 1 shows the call option’s 

value plotted against stock prices ranging from $70 to $130. 

The plot reflects the option's increasing worth as the stock 
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price exceeds the strike price, validating the model’s 

consistency with theoretical expectations. 
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