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ABSTRACT 

Internally generated revenue (IGR) is an important source of revenue that can be used to fund public services 

and infrastructure projects. Accurate forecasting of IGR is essential for effective budgeting and financial 

planning. This study assessed the performance of ARIMA and ARFIMA models in forecasting internally 

generated revenue of Kaduna State. The study uses monthly IGR data from January 2003 to December 2023. 

The stationarity of the data was assessed using Augmented Dickey Fuller (ADF) and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) tests. The findings showed that both ARIMA and ARFIMA models perform well in 

forecasting IGR, but ARFIMA model outperforms ARIMA model in terms of mean squared error (MSE), root 

mean squared error (RMSE), and mean absolute error (MAE). The generated forecast values for 24 months 

using the model revealed that out-sample IGR forecasts fluctuated (decreasing and increasing). Thus, the study 

recommends the use of ARFIMA model for forecasting IGR in Kaduna State for better revenue planning and 

economic policy formulation. 
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INTRODUCTION  

Internally Generated Revenue (IGR) refers to the income that 

a government or organization generates from its own 

activities within its jurisdiction, excluding external sources 

such as Federal allocations or grants. This revenue is typically 

derived from taxes, fees, license, and other charges imposed 

on businesses, individuals, and transaction conducted within 

the entity’s geographical boundaries (Uduma et al., 2021). 

The internally generated revenue (IGR) is an important source 

of revenue that can be used to fund public services and 

infrastructure projects. It has taken the second position in 

sources of revenue when Nigeria put heavy reliance on oil 

(Okorie et al., 2018). Every institution is encouraged to 

augment its finances by generating revenue internally. The 

forecasting and control of such internally generated revenue 

could help in knowing the patterns and characteristics of the 

revenue for formulating a very good and impactful policies to 

achieve good governance. Kaduna State of Nigeria just as any 

other institution generates revenue internally to complement 

the efforts of the Federal Government. 

Time series modeling and forecasting are essential methods 

used in different fields, especially in economic and financial 

trends, due to their ability to manage risk and increase 

investment in financial and industrial markets (Suleiman et 

al., 2023). Therefore, a nontraditional and accurate statistical 

techniques called autoregressive integrated moving average 

(ARIMA) and fractional autoregressive integrated moving 

average (ARFIMA) models are considered to describe 

changes in internally generated revenue series.  

Autoregressive integrated moving average (ARIMA) models 

are popular and widely used class of univariate time series 

models for forecasting and analyzing economic and financial 

data (Zhang, 2013). The ARIMA model is a combination of 

three key components: Autoregressive (AR), which uses past 

values of the time series to forecast future values. The AR 

component is based on the idea that the current value of a time 

series is a function of past values. Integrated (I), which 

differences the time series to make it stationary. A time series 

is said to be stationary if its mean and variance remain 

constant over time. Moving average (MA), this component 

uses the errors (residuals) from past forecasts to improve 

future forecasts. The MA component is based on the idea that 

the errors in a time series are correlated with each other. 

Autoregressive fractionally integrated moving average 

(ARFIMA) models are extension of the ARIMA model that 

allows for fractional differencing. This means that the degree 

of differencing (d) can be a fraction, rather than an integer. 

Fractional differencing is useful for modeling time series data 

that exhibits long-range dependence, which means that the 

data is correlated over long periods of time (Liu, Chen and 

Zhang, 2017). ARFIMA models are particularly useful for 

modeling financial time series data, such as stock prices, 

internally generated revenue, and exchange rates. 

ARIMA models have been widely used for forecasting time 

series data, including revenue (Box & Jenkins, 1976). 

However, ARFIMA models have been shown to outperform 

ARIMA models in certain contexts, particularly when the data 

exhibits long-range dependence (Hosking, 1981). Several 

studies have used ARIMA and ARFIMA models for 

forecasting economic and financial data. For example, Alireza 

and Ahmad (2009) used ARIMA and ARFIMA Model to 

explore the long memory of the Stock Price Index. The 

findings showed that the ARFIMA is a significantly better 

model in this regard after comparing the forecasting 

performance of the two models. Shittu and Yaya (2009) 

assessed the forecasting performance of ARIMA and 

ARFIMA models for stationary type series that exhibited long 

memory properties. The ARFIMA model showed more 

realistic forecast values that reflected current economic 

realities in the countries studied. Omekara et al. (2016) 

examined the accuracy of ARIMA and ARFIMA in 

forecasting the liquidity ratio of Nigerian commercial banks. 

For each of the ARFIMA and ARIMA models, the optimal 

model was determined based on least AIC values. 

Hamzaoui & Regaieg (2017) examines the structure of the 

daily Euro to US dollar forward premium types of exchange 

rate using ARFIMA model. The results of the analysis 

confirmed the evidence of LM and fractional dynamics of the 

forward premium data. The ARFIMA model adequately fitted 

the data. Liu, Chen & Zhang (2018) compared and evaluated 
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four components of the ARFIMA model which are 

simulation, fractional order difference filter, estimation and 

forecast. The result of the study showed that the ARFIMA 

model gives a better fitting result, especially for the data with 

long rage dependence (LRD) or long memory property. 

Elmezouar et al. (2021) examined the accuracy of ARIMA, 

ARFIMA and NNAR in modeling and forecasting the total 

fisheries production data in India. Augmented Dickey Fuller 

(ADF) test was used in testing the fundamental assumption of 

stationarity. The results indicated that ARIMA and NNAR 

models were outperformed by ARFIMA model in forecasting 

the total fisheries prediction.  

Azza et al. (2021) assessed the performance of ARIMA and 

ARFURIMA models Kijang Emas monthly average prices in 

Malaysia. The findings revealed that ARFIMA model 

performed better in forecasting the Kijang Emas prices in 

Malaysia compared to the ARIMA model. Jibrin et al. (2021) 

compare the performance of ARIMA and ARFURIMA 

models using monthly Nigeria stock index. The findings 

indicated that ARFURIMA was the best fitted and accurate 

model. 

Nwakuya and Biu (2022) applied ARFIMA models on 

COVID-19 daily deaths in Nigeria. The estimates of d 

parameter for the ARFIMA models was obtained using 

Geweke Porter-Hudak estimator (GPH). Suleiman et al. 

(2023) identified the best ARIMA time series model for 

monthly crude oil price in Nigeria spanning from 2006 to 

2020. The best model was selected using the criteria of mean 

square error, root mean square error, and mean absolute error. 

Monge and Infante (2023) investigate historical data for crude 

oil prices using autoregressive fractionally integrated moving 

average (ARFIMA) models to determine whether shocks in 

the series have transitory or permanent effects. 

Kelkar et al. (2021) used Seasonal Autoregressive Integrated 

Moving Average (SARIMA) models to forecast American 

Southwest Airlines’ revenue for 2020. The study identifies 

SARIMA (0,1,0) (0,1,1)4 as the best-fitted model with the 

lowest AICs. Diagnostic tests confirm the model's accuracy 

and a solvency risk analysis is conducted to assess 

Southwest's financial performance during the COVID-19 

pandemic.  

Atoyebi et al. (2023) investigated forecasting currencies in 

circulation (CIC) in Nigeria using the Holt- Winters 

exponential smoothing methods, both additive and 

multiplicative. The analysis uses data from January 1960 to 

December 2022 to determine the optimal forecasting 

approach and the most effective smoothing parameters. Their 

results revealed that the multiplicative Holt-Winters method 

outperformed the additive method in accuracy, with 

significantly lower MAPE, MAD, and MSD values. Ajisola 

(2023) analyzed monthly data from the Federal Inland 

Revenue Service (FIRS) spanning 2010 to 2021, exploring 

three models for tax revenue forecasting: Multivariate Linear 

Regression (MLR), Seasonal Autoregressive Integrated 

Moving Average (SARIMA), and Multivariate Long Short 

Term Memory Networks (LSTM). The study finds that LSTM 

and MLR perform well due to their ability to predict using 

multiple independent variables. LSTM achieves a high R2 

score of 98.9% and an adjusted R2 score of 98.8%, suggesting 

its efficacy in forecasting tax revenue.  

Tasi’u et al. (2024) assessed the performance of SARIMA and 

Holt-Winters models in forecasting the tax revenue of 

Nigeria. Following Box and Jenkins model identification, 

estimation, and forecasting procedures, SARIMA 

(3,2,1)4(0,1,1)4 model was selected based on the minimum 

AIC value, outperforming other models. The Multiplicative 

Holt-Winters model was also chosen for similar reasons. An 

in-sample forecast with 80% training and 20% validation set 

revealed that the SARIMA model outperformed Holt-Winters 

based on RMSE and MAE.   

David et al. (2024) studied the symmetric and asymmetric 

characteristics as well as the persistence of shocks in the 

Nigerian crude oil return, utilizing monthly and daily crude 

oil prices spanning from January, 2006 to September, 2022 

and November 3, 2009 to November 4, 2022 respectively. 

Descriptive statistics, normality measures, time plots and 

Dickey Fuller generalized least squares unit root tests were 

employed to analyze the series properties. Symmetric ARMA 

(1,1) - GARCH (2,1) and Asymmetric (1,1) – TARCH (2,1) 

models for monthly and daily returns. Models selection 

criteria including AIC, SIC and HQC and log likelihood 

guided the order and error distribution selection. Result 

revealed non-normal distributions for both monthly and daily 

prices and returns, non-stationarity in prices, and weak 

stationarity in log returns with ARCH effects detected in both 

returns. 

In Nigeria, several studies have used regression and univariate 

time series models for forecasting internally generated 

revenue. For example, Patrick and John (2013) applied 

ARIMA Modeling to internally generated revenue of Akwa 

Ibom State, Nigeria. The best model was selected using 

minimum values of mean square error, root mean square 

error, and mean absolute error. Harrison et al. (2014) 

employed SARIMA modelling techniques to monthly 

internally generated revenue of Rivers State. Examination of 

the series reveals a seasonal nature of annual periodicity. 

Okorie et al. (2018) used ordinary least square regression and 

autoregressive average models to model and forecast the 

monthly generated revenue of Gombe State. Festus (2019) 

employed ARIMA methodology on internally generated 

revenue of Adamawa State. The best model was selected 

using the criteria of mean square error, root mean square error, 

and mean absolute error. 

Studies including, (Patrick et al. (2013); Harrison et al., 2014; 

Okorie et al., 2018; Festus, 2019), employed regression and 

ARIMA models to describe internally generated revenue 

records. However, the accuracy of these methods are weak 

when extreme fluctuations occur and are unable to provide 

accurate results when the data exhibits long-range 

dependence. In this paper, a method that is capable of 

modelling and forecasting extreme fluctuations and long 

memory time series will be used. The method will be 

compared with the existing ARIMA model and studies the 

monthly Kaduna State internally generated revenue. 

 

MATERIALS AND METHODS 

Autoregressive Integrated Moving Average ARIMA (p, d, 

q)  

Autoregressive integrated moving average (ARIMA) model 

is a statistical model proposed by Box and Jenkins (1976) to 

forecast and analyze time series data by integration process. 

Consider nonstationary time series 𝑌𝑡 and suppose the 

stationary 𝑑𝑡ℎ order difference of 𝑌𝑡 is denoted by Δ𝑑𝑌𝑡, then 

an ARIMA model of order p, d and q, denoted by ARIMA 

(p,d,q) is given as 

𝜙(𝐿)Δ𝑑𝑌𝑡 = 𝜃(𝐿)𝜀𝑡   (1) 

where, 𝐿 is the backward shift operator, 𝜀𝑡 is a white noise 

process and d is the integration parameter. 

 

Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) Model 

The ARFIMA models are extension of ARIMA models which 

allows modeling time series data that exhibits long-range 

dependence. The model has three parameters: p, d, and q, 
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where the parameter p represent the number of lags involved 

in the autoregressive portion in the series, q is the parameter 

representing the moving average portion, and d is the 

fractionally integrated parameter which usually takes a value 

in the interval of 0 < 𝑑 < 1.. 

Consider 𝑌𝑡 to be a nonstationary process with mean and 

variance changing over time. Then 𝑌𝑡 is said to be fractional 

integral process if 

(1 − 𝐿)𝑑𝑌𝑡 = 𝜀𝑡     (2) 

where this has the interpretation as follows: 

𝑌𝑡 − 𝑑𝑌𝑡−1 +
𝑑(𝑑−1)

2!
𝑌𝑡−2 −

𝑑(𝑑−1)(𝑑−2)

3!
𝑌𝑡−3+. . . = 𝜀𝑡 

     (3) 

where, 𝐿 is the backward shift operator, 𝜀𝑡 is a white noise 

process and d is the long memory parameter such that 0 < 𝑑 < 

1.  

The general form of an ARFIMA model of Granger and 

Joyeux (1980) is given as 

𝜙(𝐿)(1 − 𝐿)𝑑𝑌𝑡 = 𝜃(𝐿)𝜀𝑡, 0 < 𝑑 < 1.  (4) 

ARFIMA process is said to be nonstationary when 𝑑 ≥ 0.5, 

while the process is said to exhibit long memory if  0 < 𝑑 < 

0.5. The process shows short memory when 𝑑 = 0 and anti-

persistence when 𝑑 < 0. 

 

Detection of Long Memory  

Geweke and Porter-Hudak (1983) proposed a semi-

parametric approach to test for long memory, using the 

following regression;  

𝑙𝑛 𝐼 (𝑤𝑗) = 𝛽 − 𝑑 𝑙𝑛[4 𝑠𝑖𝑛2( 𝑤𝑗/2)] + 𝑛𝑗 (5) 

where 𝑤𝑗 = 2𝑛𝑗/𝑇, 𝑗 = 1, . . . , 𝑛; 𝑛𝑗  is the residual term and 

denotes Fourier frequencies.  𝐼(𝑤𝑗) represent the periodogram 

of a time series 𝑟1 and it is defined as  

𝐼(𝑤𝑗) =
1

2𝜋𝑇
|∑ 𝑟1

𝑇
𝑡=1 𝑒−𝑤𝑗

𝑡

|
2
   (6) 

 

Model Building Strategy 

Unit Root Test 

The data is checked for stationarity using tests such as 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Augmented 

Dickey Fuller (ADF) tests. 

The KPSS test statistic proposed by Kwiatkowski et al. (1992) 

with the null hypothesis that the data generating process is 

stationary is given as 

𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠(𝑡𝑘) =
1

𝑇2
∑

𝑠𝑡
2

�̂�∞
2

𝑇
𝑡=1   (7) 

where 𝑠𝑡 = ∑ 𝑤𝑗
𝑡
𝑗=1  with 𝑤𝑗 = 𝑦𝑡 − 𝑦 and�̂�∞

2 is an estimator 

of the long-run variance of the process. 

The ADF test statistic developed by Dickey and Fuller (1979) 

is given as 

ADF=
�̂�

𝑆𝐸(�̂�)
     (8) 

where𝑆𝐸(�̂�) is the standard error for �̂�, and �̂� denotes 

estimate. The null hypothesis of unit root is accepted if the 

test statistic is greater than the critical values. 

 

Model Selection 

The popular model selection criteria are AIC due to (Akaike, 

1974), HQC due to (Hannan – Quinn, 1979) and SIC due to 

SIC (Schwarz, 1978). The expressions for the three 

information selection criteria are, respectively, given as 

𝐴𝑘𝑎𝑖𝑘𝑒 ∶         𝐶𝑛(𝑘) = −
2 ln(𝐿𝑛(𝑘))

𝑛+2𝑘

𝑛

      (9) 

𝐻𝑎𝑛𝑛𝑎𝑛 − 𝑄𝑢𝑖𝑛𝑛: 𝐶𝑛(𝑘) = −
2 ln(𝐿𝑛(𝑘))
𝑛+2𝑘𝑙𝑛(ln(𝑛))

𝑛

  (10) 

𝑆𝑐ℎ𝑤𝑎𝑟𝑧 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛:  𝐶𝑛(𝑘) = −
2 ln(𝐿𝑛(𝑘))

𝑛+𝑘𝜑(𝑛)

𝑛

    (11) 

where k is the number of parameters, n is the number of 

observations.  𝜑(𝑛) = 2 in Akaike case, 𝜑(𝑛) = 2 ln(ln (𝑛)) 

in Hannan – Quinn case 𝜑(𝑛) = ln (𝑛) in the Schwarz case. 

 

Forecasting Evaluation 

Performance metrics such as Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE) and Mean Absolute 

Percentage Error (MAPE) were considered to assess the 

forecast accuracy; 

RMSE = √
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1

𝑛
   (12) 

MAE =
1

𝑛
∑ |ŷ𝑖 − 𝑦𝑖|𝑛

𝑖=1    (13) 

MAPE=
1

𝑛
∑ |

𝑦𝑖−ŷ𝑖

𝑦𝑖

𝑛
𝑡=1 | ∗ 100   (14) 

where 𝑦𝑖 is the true value, ŷ𝑖 is the predicted values when all 

samples are include in the model formation, 𝑛 is the number 

of observations. 

 

RESULTS AND DISCUSSION  

The study uses monthly internally generated revenue data of 

Kaduna State, obtained from Kaduna State Internal Revenue 

Service (KADIRS). The dataset covers a sufficiently long 

period spanning from January 2003 to December 2023 to 

analyze long-memory effects. R and Gretl statistical softwares 

were used in conducting the analysis. The pattern and 

behavior of the data was studied by Time plot, ACF and 

PACF as shown below. 

 

 
Figure 1: Time plot of internally generated revenue 
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Figure 1 revealed that the monthly average internally 

generated revenue is increasing at the beginning of each year 

(between January and April) and subsequently decreasing 

(between May and December). This suggested a form of 

seasonality in the series. The IGR series increase from 2010 

to 2015, then decrease from 2016 to 2019, with a further 

increase from 2020 to 2023; which is the peak. This indicates 

that the series consists of trend, meaning it’s not yet 

stationary. Further unit root tests such as KPSS and ADF tests 

were used to confirm the stationarity of the data. 

 

 
Figure 2: Time plot of fractional differencing 

 

Figure 2 presented the time plot of the fractional differencing 

for the IGR data. The plot after fractional differencing shows 

the mean and variance were stabilized. This means that the 

IGR series is stationary at fractional differencing.  

 

ACF and PACF Plot of the IGR Series 

 
Figure 3: ACF and PACF Plot of the IGR Series 

 

Figure 3 displayed the sample ACF and PACF of the IGR 

series. The autocorrelation function of IGR decreases slowly 

at a hyperbolic rate, an indication of long memory (or long-

range dependence), which is also conformed to a fractionally 

integrated series. The PACF is significant at lag 54 but decays 

very slowly to zero. 

 

Unit Root Test and Long Memory Test 

Table 1: ADF and KPSS Tests of the Data 

Test Lag Order Unit Root of the Original Data Unit Root at First Difference 

T-Statistic P-Values T-Statistic P-Values 

ADF Test  5 -1.32359 0.0638 -9.76023 1.94e-018 

 12 0.38859 0.9825 -9.8177 1.27e-018 

 20 1.95997 0.9999 -5.87809 2.34e-007 

KPSS Test 5 2.88736 0.0013 0.024352 0.8472 

 12 1.61586 0.0025 0.056119 0.7488 

 20 1.08174 0.0044 0.089088 0.6022 

 

ADF (Unit Root Test) 

H0: Presence of unit root in the IGR series 

Ha: No presence of unit root in the IGR series 

 

KPSS (Test of Stationary) 

H0: IGR series is stationary  

Ha: IGR series is non-stationary  
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From Table 1, the KPSS test result showed that the data was 

not stationary before first differencing, but was stationary 

after first differencing at 5% level of significance. Table 1 also 

displayed the ADF test result which revealed that there was 

presence of unit root in the data before first differencing but 

there was no presence of unit root in the data after first 

differencing at 5% level of significance. 

 

Table 2: Long Memory Estimate of IGR Series  

Test  Estimate (d) Z statistic p-value 

Geweke and Porter-Hundlak (GPH) 0.42363579 4.31967 0.0000 

 

The GPH test result is presented in Table 2. The estimate of 

the fractional parameter d is obtained to be 0.4236. GPH 

provides fractional difference parameter values which lies 

within the conventional long memory parameter. 

Identification of ARIMA and ARFIMA Models 

In this subsection, the identification, estimation and 

diagnostic test of the ARIMA and ARFIMA models will be 

discussed. Applying the principle of parsimony with d=1, p,q 

= (0, 1, 2, 3), sixteen (16) models were generated. The models 

will be selected based on the information selection criteria and 

the chosen models will be estimated and examine to ascertain 

their adequacy. 

 

Table 3: AIC, BIC and HQC for Candidate Models  

ARIMA ARFIMA 

(p, d, q) AIC BIC HQC (p, d, q) AIC BIC HQC 

(0,1,0) 795.4907 802.5416 798.3282 (0,0.4236,0) 919.1966 926.2555 922.0370 

(0,1,1) 706.0353 716.6117 710.2915 (0, 0.4236,1) 841.6057 852.1940 845.8662 

(0,1,2) 696.9869 711.0887 702.6618 (0, 0.4236,2) 769.7757 783.8934 775.4563 

(0,1,3) 679.5707 699.1980 689.6643 (0, 0.4236,3) 762.5294 780.1766 769.6303 

(1,1,0) 723.7519 734.3283 728.0081 (1, 0.4236,0) 759.0637 769.6520 763.3242 

(1,1,1) 723.8648 737.9666 729.5397 (1, 0.4236,1) 722.4480 736.5657 728.1286 

(1,1,2) 688.8381 706.4653 695.9317 (1, 0.4236,2) 717.1288 734.7760 724.2297 

(1,1,3) 677.5571 698.7098 686.0694 (1, 0.4236,3) 716.1032 733.7503 723.2040 

(2,1,0) 724.0943 738.1961 729.7692 (2, 0.4236,0) 714.1996 728.3174 719.8803 

(2,1,1) 681.1881 698.8154 688.2817 (2, 0.4236,1) 695.1032 722.7503 707.2040 

(2,1,2) 681.7638 702.9165 690.2762 (2, 0.4236,2) 717.8984 739.0750 726.4194 

(2,1,3)  679.3045 703.9827 689.2357 (2, 0.4236,3)+ 696.7058 721.4118 706.6469 

(3,1,0) 726.0750 743.7022 733.1686 (3, 0.4236,0) 716.0827 733.7299 723.1836 

(3,1,1) 678.7497 699.9024 687.2621 (3, 0.4236,1) 715.1475 736.3241 723.6686 

(3,1,2) 684.5500 709.2282 694.4812 (3, 0.4236,2) 700.2729 724.9789 710.2141 

(3,1,3)+ 624.9349 653.1385 636.2847 (3, 0.4236,3) 698.4644 726.6998 709.8257 

 

Table 3 presented the results of information selection criteria 

of the ARIMA and ARFIMA models. Tweny (20) models 

were tested based on the Alkaike information criteria (AIC); 

Bayesian information criteria (BIC); Hannan-Quinn 

information criteria (HQC), where ARIMA(3,1,3) and 

ARFIMA(2, 0.4236,3) models possessed the minimum values 

of AIC, BIC and HQC and therefore, were selected for further 

examination. 

 

Estimation of ARIMA and ARFIMA Models 

Table 4: Estimation of ARIMA (1,1,2) and ARFIMA(2, 0.4236,4) Models 

Parameters 
ARIMA (1,1,2) ARFIMA (2,0.4236,4) 

Coefficient Z-Statistic Coefficient Z-Statistic 

Const 0.0154399 11.79(4.61e-032) 4.47183 1.425 (0.1542) 

phi_1 −1.21184 −20.15(2.49e-09) −0.0151841 -0.69(0.4872) 

phi_2 −0.131530 −1.335(0.1819) 0.978885 44.98(0.0000) 

phi_3 0.491651 8.644(5.44e-018) - - 

theta_1 0.607407 15.84(1.68e-056) 0.389457 5.17(2.33e-07) 

theta_2 −0.684905 −16.14(1.28e-058) −0.321850 3.59(0.0003) 

theta_3 −0.922502 −36.19(9.04e-287) 0.253802 3.33(0.0009) 

Note: p-values are in parenthesis 

 

The estimated parameters of ARIMA (3,1,3) and ARFIMA 

(2, 0.4236,3) models are presented in Table 4. The parameters 

(phi-1, phi-3, theta_1, theta_2 and theta_3) in the ARIMA 

(3,1,3) model are statistically significant to the model at 5% 

level of significance. The parameters (phi-2, theta_1, theta_2, 

and theta_3) in the ARFIMA (2, 0.4236,4) model are 

statistically significant.  

Diagnostic Checking of ARIMA and ARFIMA Models 

Test for autocorrelation and partial autocorrelation, Jarque–

Bera and Ljung-Box tests were employed to ascertain the 

adequacy of the model. 
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Figure 4: Diagnostic Plots of the ARIMA(3,1,3) Model fitted to IGR series 

 

 

 

 

 

 

  

Figure 5: Diagnostic Plots of the ARFIMA (2, 0.4236,3) Model fitted to IGR series 

 

The diagnostic plots ARIMA(3,1,3) and ARFIMA (2, 

0.4236,3) models are displayed in Figure 4 and Figure 5, 

respectively. Both the figures revealed that there is no form of 

correlation amongst the residuals from the ACF and PACF 

plot. It was also observed that the residuals of the IGR series 

are stationary from the time plot. Therefore, ARIMA (3,1,3) 

and ARFIMA (2, 0.4236,3) models passed the standard 

criteria of being white noise, since the residuals are 

uncorrelated and stationary.  

 

Table 5: Diagnostic Tests of the ARIMA(1,1,2) and ARFIMA (2, 0.4236,4) Models 

Models  Jarque-Bera Test ARCH-LM Test 

ARIMA (1,1,2) 1.1215(0.1308) 1.5037(0.1122) 

ARFIMA (2, 0.4236,4) 1.5532(0.1326) 0.6422(0.6523) 

Note: p-values are in parenthesis 

 

The diagnostic test result using Jarque-Bera test and ARCH-

LM test of the ARIMA (3,1,3) and ARFIMA (2, 0.4236,3) 

models are presented in Table 5. The result indicated evidence 

of normality and homoscedasticity in the error terms since the 

p-values are greater than 5% level of significance. 

 

Table 6: Forecast Accuracy Measures of ARIMA and ARFIMA Models 

Models MSE RMSE MAE MAPE 

ARIMA (3,1,3) 0.6763 0.8224 0.5533 2.7706 

ARFIMA (2,0.4236,3) 0.6282 0.7926 0.5318 2.5600 
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The forecast accuracy results of the ARIMA and ARFIMA 

models are presented in Table 6. The smaller the value of the 

error, the better the forecasting performance of the model. The 

ARFIMA (2,0.4236,3) model possessed the minimum values 

of mean square error (0.6282), root mean square error 

(0.7926), mean absolute error (0.5318), and mean absolute 

percentage error (2.5600) compared to ARIMA (3,1,3) with 

mean square error (0.6763), root mean square error (0.8224), 

mean absolute error (0.5533), and mean absolute percentage 

error (2.7706). This may be attributed to the presence of long-

range dependence in the IGR series. Therefore, the prediction 

power of ARFIMA (2,0.4236,3) model is better and suitable 

for monthly periods forecasting, as such the model best fit the 

data. 

 
Figure 6: Forecast of IGR Series using ARFIMA (2,0.4236,3) 

 

Table 7: Forecast and 95% Confidence Interval of the IGR SERIES Using ARFIMA (2,0.4236,3) 

Year Prediction Lower Bound Upper Bound 

2024:1 2385274383 744563703.2 25193075202 

2024:2 185849915.5 493361420.6 18828961021 

2024:3 653119061.1 492748699.6 22124490511 

2024:4 463102977.1 586572597.9 19958441035 

2024:5 1593119690 531227540.2 18231432471 

2024:6 1116706986 733733361.1 24753184892 

2024:7 3762915903 477099005.2 16710698836 

2024:8 2608914314 623057718.8 25537454117 

2024:9 8616286256 566080987.5 19392980351 

2024:10 5912058999 611646354.4 21844434242 

2024:11 7044197040 706363121.8 24868455752 

2024:12 4785804609 533299106.4 18789330143 

2025:1 5595228400 801304033.2 28352356924 

2025:2 3765852123 553310563.8 19715618985 

2025:3 4322500970 730719336.9 26202456431 

2025:4 7837925252 685267615.8 24642637222 

2025:5 8837059301 612210661.9 22019207992 

2025:6 5845278042 835698951.2 30184953501 

2025:7 6476914004 556648879.1 20825618271 

2025:8 4249937016 839236405.4 30436850371 

2025:9 4630357889 668801595.9 24370178281 

2025:10 8196556795 717575693.2 26214606441 

2025:11 8784810610 838377472.2 30246776612 

2025:12 5679846246 633511687.3 23358139652 

 

The forecasts values along with 95% upper and lower 

confidence interval for 24 months (January 2024 to December 

2025) out-sample for the of the IGR series analyzed using the 

ARFIMA model are presented in Figure 4 and Table 8, 

respectively. The plots and forecast values revealed that out-

sample forecasts fluctuated (decreasing and increasing). This 

signifies that the ARFIMA (2,0.4236,3) is the appropriate 

model for modelling and forecasting the monthly internally 

generated revenue of Kaduna State, Nigeria.  
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CONCLUSION 

The study assessed the performance of ARIMA and ARFIMA 

models in forecasting internally generated revenue of Kaduna 

State. The findings demonstrate ARIMA and ARFIMA 

effectiveness in forecasting IGR series. The results showed 

ARFIMA model outperforms ARIMA model with minimum 

values of mean square error (0.6282), root mean square error 

(0.7926), mean absolute error (0.5318), and mean absolute 

percentage error (2.5600). Policymakers can leverage these 

forecasts for informed decision-making and resource 

allocation. Future research may explore hybrid models 

integrating ARFIMA with machine learning techniques for 

enhanced accuracy. 
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