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ABSTRACT

Numerical methods for solving ordinary differential equations (ODES) are essential in modeling dynamical
systems across science and engineering. While specialized methods exist for first-order and second-order
ODEs, developing a unified approach that efficiently handles both classes remain an active area of research.
In this paper, we present a novel two-step hybrid block method based on the backward differentiation formula
(BDF), capable of approximating solutions for both first- and second-order ODEs without requiring separate
derivations. The method is constructed using interpolation and collocation techniques, and its numerical
analysis confirms consistency, zero-stability, and convergence. Furthermore, stability analysis via the general
linear method demonstrates that the scheme is A-stable, making it suitable for stiff systems. Numerical
experiments including applications to the SIR epidemic model, Riccati differential equations, nonlinear stiff
chemical systems, and second-order nonlinear ODEs—validate the method’s accuracy and computational
efficiency. Comparative results with existing methods in the literature highlight its superior performance in
terms of error reduction and stability. This work contributes a versatile, high-precision tool for ODE solutions,

bridging gaps in the adaptability of traditional BDF-based approaches.

Keywords: Backward Differentiation Formula, Block, Collocation, Ordinary Differential Equation, Stiff

INTRODUCTION

Ordinary differential equations (ODEs) are fundamental in
modeling dynamic systems across engineering, physics,
biology, and economics. Initial value problems (IVPs)
involving first-order and second-order ODEs arise
prominently in real-world applications, such as epidemic
modeling (e.g., SIR systems), mechanical vibrations,
chemical kinetics, and control theory. While analytical
solutions are often intractable, numerical methods remain
indispensable for approximating these systems efficiently and
accurately. Among the diverse class of numerical integrators,
Backward Differentiation Formulae (BDF) have emerged as
a powerful tool for stiff and non-stiff ODEs due to their robust
stability properties and high-order convergence.

Traditional BDF methods are widely implemented for first-
order ODEs but require structural modifications or auxiliary
techniques (e.g., reduction to first-order systems) when
applied to second-order problems. This limitation motivates
the development of unified BDF-based schemes capable of
directly solving both first- and second-order I\VPs without
system transformations, thereby reducing computational
overhead and preserving the inherent structure of the original
problem. Recent advances in hybrid block methods and
continuous formulations have further demonstrated the
potential to enhance the adaptability and accuracy of BDF
approaches.

In this work, we present a continuous BDF-type method
derived through a hybrid interpolation-collocation

framework, designed to approximate solutions for both first-
and second-order 1VVPs within a single algorithmic structure.
The proposed method leverages the advantages of BDFsuch
as stiff stability and high-order convergence while extending
its applicability to second-order ODEs without decoupling

MATERIALS AND METHODS

In this study, we intend to develop numerical schemes in the
form of TBDF as follows:

Y() = ay(OYnsv + Zico @i(OVnsi + hB2(OYnsz +
h?8,()yns2 @)
whereh is the chosen step size and «a;(t) (i €
[0,2]), B.(t), 8,(t) are continuous coefficients to be
determined, while v is an off-step point.

Equation (1) is derived using interpolation and collocation
technique of the trial function of the form:

Y(6) = St s @

where i is the number of interpolation points, ¢ is the number
of collocation points and a;’s are unknown coefficients of the

power series function to be determined.

Equation (2) is interpolated at (0,%,%, 1,%,%) and collocating

its first and second derivatives at

to4o. These lead to a system of non-linear equations:
TA=y 3
and written explicitly as
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Solving (3) using the matrix inversion method via Maple 2015 program to acquire the values a;s which are then substituted

into (2) to generate the continuous scheme of the present proposed method as:

V(O = @o(On + @O yy2 + 02Oy + OOVt + (Y2 + @ (OFyy2 + RO i + 260

4
where:
44738276t = 1289101042 t2 2078610923 t3 = 1870656598 t* 190600024 t°> = 51358496 t°  28427648t7
ao(t) =1- 5125895 h ' 46133055 h? 46133055 h3 46133055 h* 9226611 h° | 9226611 h® 46133055 h7
15737088t 371958912t | 2131219264t3 2106968896 t* = 379433856 t5 319044608 t° = 36313088 t7
ai(t) T 1025179 h 5125895 h? 15377685 h3 15377685 h* 5125895 h5 15377685 h6 ' 15377685 h’
95895040 ¢ 2126356736 t> 5195873152 ¢% | 6011791232 t* 3618341632t5 A 1095852032t° 132100096 t’
a%(t) T " 9226611 h 9226611 hZ 9226611 K3 + 09226611 h* 9226611 hS + 0226611 h6 46133055 h7
52640340t 406490202 t? = 3185715157 t3 3907672090 t* = 821766744 t> 774916448t°% = 96198272 t7
a () = 1025179 h 1025179 h2 3075537 h3 3075537 ht 1025179 h5 3075537 h6 3075537 h7
199367424t 1578367872t% 4290192448t | 5498476608 t* 722577024 t° | 235172864 t°® 150263808 t’
af(t) T T T5125895h 5125895 h? 5125895 h? 5125895 h* 1025179 hS 1025179 h6 5125895 h7
37226176t 4486506272 t> | 12490323568 t3 16479914192 t*  11166266176t> 3737950976 t° 489389056 t”
as( )= 3075537 h 46133055 h? 46133055 h® 46133055 h* 46133055 h5 46133055 h® 46133055 h7
346905t 2849994 t? 8231951 t3 = 11402230t* 8197560 t5 = 2934176 t° 409984 t7
Pa(t) = - 1025179 h 1025179 h 1025179 A% ' 1025179 h® 1025179 h* ' 1025179 A5 1025179 h6
63360 ht 1047051 t% | 3053705t®  2143851t* 1570108 t° 576336 t° 83392¢t7
62(t) = — 751700~ 10z5179n% T 20503585 107517972 | 1025179 1025179 h% T 102517975
Evaluating (5) at c gives the discrete scheme
25725 115200 1053696 3087000 4390400 273630 , 22050 ;5
Yn+2 = T Toz5179 7 T Tozs179 yn+§ " 1025179 yn+f 1025179 Y"*+1 ~ Toz5179 yn+§ 1025179 hyn+a = 1025179 Tozsize 1V Yn+2
®)
To obtain the sufficient schemes required for first order ODEs, we obtain the first derivative of (4) and evaluate at t =
t bt i L A tn% to obtain;
15377685 , 6217425 , 320175 ;5
33538883 n+§ + 134155532 hynia = 38330152 h*Yn2 Q)
_ 279463 67089 2890191 860427 654487 1025179 , 191043
yn+; T 26607840°™ 1108660 n+§ 17738562 "1 " 1108660 n+§ 3325980 n+§ "~ 5543300 n+§ " 44346400 Y12 +
13239 ”
17738560 “Vn+2 U
11184569 1311424 4794752 16613952 9306544 1025179 , , 23127 ,
Yn+1 = Gog00a25 I 1386695 yn+§ 7896051 yn+§ "~ 21933475 yn+% "~ 39480255 yn+§ 5543300 /N + 3509356 hynia =
1056
877339 “Vn+2 ®)
_ _ 108517 14495 1603300 3155525 2678530 5125895 , 370525 v —
yn+§ 11685708 7 T 324603 yn+% 2921427 yn+§ 1298412 Y"1 T 2971227 yn+§ 8764281 n+% + 35057124 Wn+2
39575 ”
23371416 “Vn+2 ©)
_ 1959905 31471 1459375 34675225 2110665 5125895 ' 435675 S
yn+§ 382000752 7" 1326704 yn+i 5970168 yn+% 22452528 Y"1 T 1326704 yn+§ 31840896 n+§ + 22454528 Yn+2
129225 "
84909056 Y2 (10)
Similarly, we obtain the second derivative of (4), which evaluates tot =t 1,t .st,,t, s t, 3, thereby generating the
4 4 4

necessary number of schemes for solving second-order ODEs using the block method, as follows:

p2yn — 2578202084 743917824 4252713472 812980404 3156735744 8973012544 n
= — —_— 5 — 5— 3
In 26133055 " 5125895 Jn+l 9226611 7N+, 1025179 In+1 5125895 yn+; 46133055 yn+;
5699988 , 1047051 , » (11)
1025179 7 ™2 1025179 " JMt2
PENG 1188785003 98443548 39982600 61612593 152088636 474026812
= — 1 — 3 —_— - 5 —_—
yn+4l 92266110 ™ 5125895 yn+; 9226611 yn+; 2050358 Y"1 T 5125895 n+s ' 46133055
661941 ; 247517 ;5 o (12)
2050358 “*2 T 4100716 7 T+2
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" 7072754 4973772 1025179 25300830 29148876 78859328 219870
h? + /
= — 1 3 — 5 — 3 —_— -
yn+% 9226611 7" " 1025179 yn+; 9226611 yn+; 1025179 V™1 T Toz5179 yn+; 9226611 yn+5 Toz5179 Yn+2
38961
h2yy 13
Tozs179 L Yn+2 (13)
" 4226506 2740608 179493632 39292242 104447616 48906848
hZ
= - 1 3 = 5 — 3 =
Yn+1 = 16133055 /" ~ 5125895 yn+; 9226611 yn+; 1025179 Y*+1 T T5175805 yn+; 46133055 yn+;
10206 ; 2396 .5 g
1025179 M2 T 1025179 Jn+2 (14)
o 272597 502764 654952 39590727 188608716 93273124 217539 ,
h?y s = Yn — 1= 3 n+1 — 5 3= n+2 T
n+2 " 10251790 51258957 N+, 10251797 N+, | 2050358 5125895 7 n+s | 5125895 Z M+, 2050358
64171 ;5 o
4100716 h*Ynsz (15)
" 15361261 7707072 128988800 41305089 206243136 588400832
2
h Yy 3=— n 1— 3 e+l — 5 3+
n+s 46133055 51258957 n+y 9226611 7N+, | 1025179 5125895 7 n+, | 46133055 7 N+
1006047 , 282519 ;5 4
- h 16
1025179 'Yn+2 3050358 L Yn+2 (16)

It is important to note that equations (5) to (10) form the sufficient block method for solving first-order I\VVPs while the
combined equations (5) to (16) is for second-order I\VVPs. And more so, all the discrete schemes are gotten from the same
continuous method (4).

Convergence and Stability Analysis of the Method
The necessary and sufficient condition for the convergence of an LMM is consistency and zero stability (Lambert, 1973). In
what follow, we shall discuss the consistency, zero stability and absolute stability of the method.

Consistency
We write the developed method as;

25'{:0 AjYn+j — h™ Z?zo ﬁjfn+j =0 (17
and the local truncation error defined as
Ely(®),h] = Xk o [wjy(t + jh) — hayy' (t + jh) — h28;y" (t + jh)] (18)

We assume that y(t) is sufficiently differentiable such that the linear operator £defined above can be expanded as a Taylor’s
series about the point t, then,

§ly (), h] = coy(t) + crhy' (£) + c2h%y" (8) + -+ ¢, R x D (£) + - (19)
According Mohammed et al. (2022), (17) is said to be consistent if it has order of accuracy p > 1 forcy =¢; = ¢, =+ =
Cp+1 = 0and ¢y, # 0. The constant ¢, is the error constant. Hence the block method in (5) to (16) has a uniform order 6
with error constants calculated as:

3675 5979695 29214149443584 1173019
2099566592 1256002420736 4068799938560 1509303828480
2447365 8744195 102431347 274719821 T
5360841916416 29214149443584 146969661440 6046751784960
1232971 11798641 1125811 796449
67186130944 4703029166080 529090781184 36742415360

Since p > 1, then the method is consistent.

Zero Stability
We carry out the zero stability of the developed discrete schemes in (5) to (10) by considering the first characteristic polynomial
defined as

Ap) = |pP® — PO (20)
where
1 3827500 22427725 3987495 1196558 0
684467 2737868 684467 684467 y 1
67089 1 2890191 860427 654487 0 n+;
1108660 1773856 1108660 3325980 Yy +§
1311424 4794752 1 16613952 9306544 0 n 4
P(1) _ 4386695 7896051 21933475 39480255 y‘ﬂ+1
- 14495 1603300 3155525 1 2678530 0 yn+§
324603 2921427 1298412 2921427 4
31471 1459375 34675225 2110665 1 0 Vsl
- - 2
1326704 5970168 42454528 1326704 yn+2
115200 1053696 3087000 4390400 3292800 1
1025179 1025179 1025179 1025179 1025179
1308155
0 0 0 0 O
2737868 Y. 1
279463 n—-=
00 0 0 0 ——]7—— 4
26607840 V3
11184569 4
00000 ———— ||y
pO — 65800425 | | Jn-1 |
108517 5
00000 — Yn-2
11685708 y 4
1959905 _3
00 0 0 0 ———m n
382090752 y
25725 n-2
0O 0 0 0 O —_—
1025179
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Definition (Zero-stability): The block method (19) is said to be zero stable as h — 0if the roots of the first characteristic
polynomial A(p) satisfies |p;| < 1,j = 1,2,3, ... and for those roots with|p;| = 1, the multiplicity must not exceed 1, (Yakusak
and Owolanke, 2018).
Applying equation (20), we have
276146036578617416631420250

Ap) = 383988424547843575851295737 pS(p +1D=0 (21)

p =1{0,0,0,0,0,—1}
Hence, it is safe to say that the method is zero stable since it satisfies |p;| < 1 and by extension, the convergence holds.

Regions of Absolute Stability of the Proposed Methods

Again, in the spirit of (Yakusak and Owolanke, 2018), a linear multi-step method is said to be A-stable if its region of absolute
stability, contains the whole of the left-hand complex half-plane R(hp) < 0. It is important to investigate the performance of
the proposed methods in the case of h > 0 fixed. The stability matrix is formulated using:

A(z) = —(P — z2QW) — Z2RW)~1 (PO — zQ(®) (22)
where
V1
00000 0 ( . “\‘
(00000 0 \lyn—il
1025179 ,
e =10 0 0 0 0 o s || Vn-t
0 00 0O 0 Y,s
0 0000 0 c
00000 © \yn—g /
Vn—2
320175
00000 "~ 38330152 /Y,T;_l\
13239 4
00000 17738560 3’23
1056 4
RO — 00000 " 877339 Yn+1
39575 n
00000 " 23371416 y’”’;
129225 n
00000 84909056 \y"*'%/
22050 n
00 0 0O ~To25179 Yn+2
15377685 0 0 0 g 67425 o
33538883 134155532 nal
0 1025179 0 0 _ 151043 , !
5543300 44346400 || V43
23127 +
QW = 0 0 0 0 0 3509356 Yn+1
5125895 370525 '
0 0 8764281 0 0 35057124 yn+§
5125895 435675 '
0 0 0 31840896 0 "~ 42454528 yn’f%
273630 '
0 0 0 0 1025179 Vn+2

The matrix y(z) has eigenvalues{0,0,0, ..., pr} and the dominant eigenvalue A,:C — Cis a rational function (called the
stability function) with real coefficients given by
(2268002°+52101902*+4698507323+20673093222+4281525002+326592000)

Pk(z-) = 3240025_—10189825—7023624—6’_76724723+61_67073222—22503_1§OOZ+3_26592000 i i i i
Plotting py (z) via Maple (2015) environment displays the stability region of new method in figure 1 which is A-stable.

(23)
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Figure 1: Stability Region of the Method

Numerical Experiments
In this section, the effectiveness of the new method is
investigated through some numerical problems in first-order
and second-order ODEs.

First-order problems

Problem 1

The SIR model is an epidemiological model that counts the
notional number of people in a confined population that have
an infectious disease over time. This class of models gets its
name from the fact that it consists of linked equations that
relate the number of susceptible people S(t), the number of
infected people I(t), and the number of recovered people R(t).
This is an excellent and straightforward model for many
infectious diseases, including measles, mumps, and rubella. It

is given by the three coupled equations shown below:
das

L = u(1-5) - pIs (24)
&=l — I+ pIS (25)
& _ UR +vylI (26)

at
where u, § and y are positive parameters. Define x to be:
y=S+I+R

RESULTS AND DISCUSSION

and adding (24), (25) and (26), the following evolution
equation for y is obtained.

y =ul-y) @7
Kuboye and Adeyefa (2021) solved this problem with the
following parameters:
p=2y0)=3h=01
Exact solution: y(t) = 1 — pe ™™t

Problem 2

We consider the Riccati differential equation solved in
Kashkaria and Syamb (2019)
y=1+2y—y%y(0)=00<t<10

i _ 1 V2-1
Exact solution: y(t) = 1 4+ 2 tanh <\/2_t +-log (ﬁﬂ))

Problem 3

We consider the nonlinear system of stiff chemical problem
N 1

V1= +yin(0) =

y2=-y(0)=1

The exact solution is given as

vi(t) = - 22C2 y, (1) = exp(—t) where A = 10000

Table 1: Comparative Analysis of Errors for Problem 1 (h =0.1)

¢ Exact solution Error in Kashkari Error in Abolarin Error in Kuboye and Error in New
and Syam (2019) et al. (2020) Adeyefa (2021) Method

0.1 0.524385287749643  1.998x10%° 9.104x1015 3.846x1013 1.9200x 106
0.2 0.547581290982020  3.886%10°%° 7.105x10°1 7.319x1013 2.371x1016
0.3 0.569646011787471  5.440%x10°%° 8.882x101 1.044x1012 3.990x 1016
0.4 0.590634623461009  6.994x10%° 2.121x10 1.324x101? 4.287x1016
0.5 0.610599608464298  8.216x10%° 1.368x1013 1.575x101? 5.651x1016
0.6 0.629590889659141  9.548%10°%° 7.983x1013 1.797x1012 5.821x1016
0.7 0.647655955140644  1.055%10%4 3.699x1012 1.995x 102 6.960x10%6
0.8 0.681185924189114  1.132x10%4 - 2.168x1012 7.023x1076
0.9 0.681185924189114  1.221x10%4 - 2.320x10%2 7.968x1016
1.0 0.696734670143684 - - 2.452x1012 7.944x1016
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Table 2: Comparative Analysis of Errors for Problem 2

Yahaya et al.,
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Error in Kashkari

and Error in Abolarin et al.

Error in New

t Exact solution Syam (2019) (2020) Method

(h =0.05) (h=0.1) (h=0.1)
1.0 1.68949839159439 1.418x101 9.104x1015 1.480%10°°
2.0 2.35777165329150 7.234%x1018 7.105%x10%5 3.477x101
3.0 2.41081368593662 1.163x10%3 8.882x1015 7.959%x1013
4.0 2.41401238260570 2.132x104 2.121x1014 4.365x1013
5.0 2.41420167069693 2.664x10 1.368x1013 5.735x10
6.0 2.41421285950392 4.441x1016 7.983x1013 5.265x101
7.0 2.41421352082949 4.441x1016 3.699%1012 4.220x1016
8.0 2.41421355991764 4.441x1016 - 3.150%x107
9.0 2.41421356222798 4.441x1016 - 2.249%1018
10 2.41421356236453 4.441x1016 - 1.558x101°

Table 3: Comparative Analysis of Errors for problem 3

Error in Akinfenwa Error in Khalsaraei Errorin Mohammed

Error in New Method

t y;  etal. (2017) etal. (2020) etal. (2022) (h=01)
(h=0.01) (h =0.0001) (h=0.1) '
3 (1) 2.030x101° 1.779%x102° 3.790x10% 4.882x10%
(y2) 1.440%x10%4 2.079%10% 2.998x1018 4.249x1017
5 (1) 1.200%x102%° 2.493%10%° 1.60x102% 1.488%x102°
(yz)  3.210x10%° 4.664x1013 6.740x101° 3.013x108
(1) 1.110%x102%° 5.743x10% 7.120x10% 1.349%102°
10 (y,)  4.380x10Y 6.346x10%2 9.080x10% 4.995x10%°
Second Order Problems Y =t(y)?

Three problems from second order ordinary differential
equations are considered. These include a stiff linear equation
and nonlinear problems.

Problem 4

Consider the nonlinear problem: y™ + ()2 + y2 = 1 — sint
with the following initial conditions

y(0) =0,y'(0) =1and h = 0.1.

Exact Solution: Y(t) = sint

Problem 5
Consider the nonlinear problem:

with the following initial conditions
y(0) =1,5(0) =0.5and h = 0.1

Exact Solution: Y (t) = arctanh G t) +1

Problem 6

Consider the Stiff linear problem:
¥~ +1001y" + 1000y =0

with the following initial conditions
y(0)=1,y'(0) =—1and h = 0.1
Exact solution: Y (t) = exp (—t)

Profile solution for Problem 5

Exact solution
—— THBDF2
15 { === THBDF4
= THBDF&
14
13
=
12
11
10

00 0z 04

Figure 2: Profile solution

06 [} 10
t

for Problem 5
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Table 4: Comparative Analysis of Errors for Problem 4

Yahaya et al.,

FJS

Error in Guler et al.

t Exact solution

Error in Ogunlaran Error in New Method

(2019) and Kehinde (2022)
0.1 0.099833416646828152307 3.490%1008 9.300%x1010 1.739x1015
0.2 0.19866933079506121546 1.160x10°7 1.990%x10°%° 7.136x10%5
0.3 0.29552020666133957511 - - 4.113x10
0.4 0.38941834230865049167 1.130x1007 3.180x10°% 9.785x1014
0.5 0.47942553860420300027 4.610x10°7 3.230%x10°% 2.262x1013
0.6 0.56464247339503535720 7.800x10°7 3.510%x10% 3.780x101%3
0.7 0.64421768723769105367 1.400%107¢ 3.740x10°%° 6.377x1013
0.8 0.71735609089952276163 4.1600%10-08 3.530%x10°% 9.145x1013
0.9 0.78332690962748338846 1.400x1005 3.030%x10% 1.327x10%?
1.0 0.84147098480789650665 4.100x10°% 2.750%x10°% 1.747x101%?

Table 5: Comparative Analysis of Errors for Problem 5

t Exact solution Error in Abdelrahim & Error in Kuboye & Error in New
Omar (2016) Omar (2015) Method
0.1 1.0500417292784912682 1.310x1016 1.446x1024 9.607x10%6
0.2 1.1003353477310755806 3.975x1014 3.779x1013 1.095x1015
0.3 1.1511404359364668053 1.021x10 3.428x101 7.123x10°15
0.4 1.2027325540540821910 3.304x1013 6.987x108 9.470x10%5
0.5 1.2554128118829953416 - - 3.455x1014
0.6 1.3095196042031117155 - - 4.668x1014
0.7 1.3654437542713961691 - - 1.528x1013
0.8 1.4236489301936018069 - - 2.065%x1013
0.9 1.4847002785940517416 - - 7.451x1013
1.0 1.5493061443340548457 -1.293%x101? 2.017%x10°%7 1.014x101%2
Table 6: Absolute Error (Y(t) — y(t)) in the proposed methods for Problem 6
. Error in Adeniyi & Error in Ajileye et al. Error in New
t Exact solution Adeyefa (2013) / (2017) e Method
0.1 0.90483741803595957316 2.360x1010 1.206x1096 2.674x101
0.2 0.81873075307798185867 4,780%x1010 1.584x1005 9.633x10
0.3 0.74081822068171786607 5.817x1010 2.299%x10 1.030x10%3
0.4 0.67032004603563930074 7.356x1010 1.210x1095 3.526x1014
0.5 0.60653065971263342360 8.126x1010 2.996x1005 5.268x1014
0.6 0.54881163609402643263 8.941x10°% 4.678x10°% 2.389%x1013
0.7 0.49658530379140951470 9.914x10°% 2.742x10°% 2.624x1013
0.8 0.44932896411722159143 1.017x10 1.384x1004 2.613x1013
0.9 0.40656965974059911188 1.041x10°8 2.224x1004 3.169x1013
1.0 0.36787944117144232160 1.071x1008 2.810x10°%4 6.777x1013

Discussion

Tables 1-3 present a comparative analysis of errors for each
method at different step sizes (h) for first-order problems. The
results demonstrate that the newly developed method
achieves the smallest error values, confirming its superior
accuracy and efficiency. Notably, the errors produced by the
proposed method are significantly lower than those of existing
methods (Akinfenwa et al., 2017; Khalsaraei et al., 2020;
Kuboye et al.), highlighting its improved convergence
properties. The consistently larger error values in the
alternative methods indicate comparatively lower accuracy
and computational efficiency. Thus, the findings clearly
establish that the new method outperforms existing
approaches in terms of precision, efficiency, and convergence
rate.

Similarly, Tables 4 and 5 display error comparisons for
second-order problems, where the new method again exhibits
the smallest error values, reinforcing its robustness and
reliability. Additionally, Table 6 presents the absolute errors
of the proposed method, further confirming its enhanced
performance over competing techniques.

Based on these results, it can be concluded that the newly
developed method is the most accurate and exhibits the fastest
convergence among the tested approaches

CONCLUSION

In this paper, a continuous formulation of a multipurpose
numerical method that has the ability to provide numerical
solutions to both first and second-order ODEs is sought. In the
course of achieving this milestone, this research focuses on
the derivation of a 2-step block hybrid BDF. It is important to
emphasis that the method formulated is capable of solving
first-order ODEs and second-order without necessarily
deriving separate methods for different orders of ODEs.
Analysis of the numerical properties established that the
method is consistent and zero-stable which confirm its
convergence. Also the stability analysis yielded regions of
absolute stability that is A-stable which is peculiar to BDF
methods. Some numerical experiments considered in this
work include an application problem in SIR model, the
Riccati differential equation, nonlinear system of stiff
chemical problem and other nonlinear second order
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differential equations. Finally, comparative analysis shows
that the derived method has better effectiveness than some
methods found in the literature.
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