
HEAVY TRAFFIC APPROXIMATION…            Okechukwu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 6, June, 2025, pp 222 – 227 222 

8 

 

HEAVY TRAFFIC APPROXIMATION METHODS FOR OPTIMIZING TANDEM MULTISERVER QUEUING 

SYSTEMS IN ANTENATAL CLINICS 

 

*1Okechukwu Ifeoma Chizoba, 2Oruh Ben Ifeanyichukwu,  
3Omekara Chukwuemeka O. and 3Enogwe Samuel Ugochukwu 

 
1Department of Mathematics/Statistics, Caritas University Amorji-Nike, Enugu, Enugu State. 

2Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State. 
3Department of Statistics, Michael Okpara University of Agriculture, Umudike, Abia State. 

 

*Corresponding authors’ email: ifystat4real@yahoo.com  

 

ABSTRACT 

There have been issues of long waiting hours just to get attended to in real-world systems, which is 

unacceptable and inappropriate. This prolonged waiting time is a challenge in the health sector, in particular 

the antenatal clinic. However, since the prolonged waiting time causes the system to approach full utilisation 

(traffic intensity close to one, ρ→1), heavy traffic approximation methods were employed. This study 

extended and integrated heavy traffic approximation to the healthcare sector to optimise the performance and 

behaviour of the tandem queueing system of the antenatal clinic for scheduled customers (without the idea of 

reneging or balking). The heavy traffic approximation methods were applied to the tandem queueing system 

with multiserver stations in which queue discipline is first come, first served, infinite queue capacity and 

customers’ interarrival time and service time followed general distributions rather than exponential 

distributions. Real-world data that comprised arrival, service and waiting times were collected and analysed, 

and the results showed that the variabilities in the arrival and service processes significantly impacted the 

system performance as an increase (or decrease) in these processes brought about an increase (or decrease) in 

the expected waiting time. Also, high traffic intensity increased the expected waiting time and vice versa; and 

there is a significant decrease in the expected waiting time when the number of servers is increased by one. On 

average, the Whitt approximation method outperformed the Kingman approximation method in estimating the 

expected waiting time. 
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INTRODUCTION 

A tandem queuing system is a type of queuing model in which 

customers or entities sequentially pass through multiple 

service stages, or stations, arranged in series. In this system, a 

customer must complete service at one stage before 

proceeding to the next. Each stage may have one or more 

servers operating simultaneously to accommodate incoming 

entities (Chen and Yao, 2001; Whitt, 2002). An extension of 

the basic tandem queuing model is the tandem multi-server 

queuing system, where multiple servers are deployed at each 

service stage. In these systems, each stage has several servers 

that operate in parallel to process arriving customers or 

entities, facilitating the simultaneous handling of multiple 

individuals. This model is particularly relevant in scenarios 

that require managing a high volume of customers while 

reducing waiting times through shared resources. In a typical 

tandem multi-server system, customers enter sequentially, 

passing through various stages where multiple servers are 

available (e.g., receptionists, medical staff, or diagnostic 

equipment). Customers queue at each stage and are served by 

the first available server, after which they advance to the next 

stage in the sequence. This structure introduces a level of 

parallelism at each service stage, which can significantly 

enhance overall throughput and decrease individual waiting 

times, assuming the system is well-balanced and effectively 

managed. In healthcare settings, especially in antenatal 

clinics, tandem queuing systems naturally arise due to the 

sequential nature of care delivery. However, any delays or 

inefficiencies at one stage can propagate downstream, leading 

to longer overall waiting times and diminished system 

efficiency. Effective management of such systems under 

heavy traffic conditions—marked by high arrival rates near 

the system's capacity—is crucial for optimizing patient flow 

and resource utilization (Green et.al, 2006). Heavy traffic 

approximation serves as an essential analytical tool for 

studying queuing systems, particularly when operations occur 

under high traffic conditions. In tandem multi-server queuing 

systems, this situation arises when the arrival rate of 

customers (e.g., patients in an antenatal clinic) approaches the 

system’s capacity. Under these circumstances, the system’s 

performance tends to deteriorate, as demand for services 

exceeds the servers' ability to provide them, resulting in 

bottlenecks at various service stages. Consequently, patients 

experience longer waits times, servers may become 

overburdened, and overall patient satisfaction declines. When 

patient arrival rates are at or exceed the system's service 

capacity, these bottlenecks become increasingly pronounced.  

Poorly managed queues in antenatal clinics can lead to 

prolonged waiting times, which may discourage patients from 

accessing essential services and increase maternal and 

neonatal risks (WHO, 2016). Additionally, such inefficiencies 

may lead to resource mismanagement, where healthcare 

workers are either overburdened during peak periods or 

underutilized during off-peak times (Azraii et al., 2017), and 

cause patient dissatisfaction, as extended waits and congested 

systems diminish trust in healthcare services and hinder 

compliance with antenatal care recommendations. One 

potential strategy for enhancing system performance under 

these conditions is implementing heavy traffic approximation 

models. These models enable researchers and practitioners to 

evaluate and optimize tandem multi-server systems by 

predicting and elucidating system behavior as traffic levels 

rise. Utilizing simulation, approximation methods, or 

analytical models allows for the assessment of system 
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performance, identification of inefficiencies, and the 

development of strategies to improve throughput while 

minimizing delays and costs. The literature has extensively 

examined these models. For instance, Whitt (1983; 2002) and 

Kingman (1964) provide a foundational framework for 

understanding queueing systems under heavy traffic 

conditions, while Green et.al (2006) discuss applications of 

these models to optimize service systems within healthcare 

contexts. By applying these principles to tandem multi-server 

queueing systems in antenatal clinics, it becomes feasible to 

develop solutions that enhance overall service delivery and 

patient experiences, even amid high patient loads. This work 

is aimed at identifying the bottlenecks, optimizing the 

performance and behaviour of a tandem queueing system in 

the antenatal clinic for scheduled customers (without the idea 

of reneging or balking); It holds significant potential for 

improving the efficiency of antenatal clinics by addressing the 

queueing challenges in tandem multiserver systems.  

 

Literature Review 

Whitt (1983) introduced the Queueing Network Analyzer 

(QNA), a software tool designed for evaluating congestion in 

networks of queues under flexible conditions. The QNA uses 

moment-based approximations to analyze individual queue 

nodes as standard GI/G/m models, providing essential 

insights into system performance under heavy traffic. 

Medhi (2003) highlighted the challenges of deriving mean 

waiting times in more complex queueing systems, noting the 

availability of exact solutions for simpler models like M/M/c, 

but a lack of closed-form expressions for G/G/c systems. This 

has led to the development of various approximation 

techniques. 

Whitt (1993) further advanced the analysis of GI/G/m queues 

with his approximations that rely on the first two statistical 

moments of service and interarrival times. His work 

emphasized the importance of understanding waiting times in 

steady state, which helps in integrating GI/G/m models into 

larger queueing networks. 

Green (2006) noted that although exact formulas for non-

Markovian multi-server queues do not exist, several effective 

and straightforward approximations that can be utilized. 

These approximations illustrate that as the coefficient of 

variation of service time increases, the average delay also 

increases; and to compute the coefficient of variation, it is 

necessary to obtain both the mean and the standard deviation 

of the interarrival and service times. 

In their article, Wu and McGinnis (2013) introduced an 

approximation method grounded in the observed 

characteristics of tandem queue behaviour, specifically 

focusing on the concepts of intrinsic gap and intrinsic ratio. 

They capitalized on the nearly linear and heavy-traffic 

properties of the intrinsic ratio, which tend to be observed in 

practical production scenarios. The proposed approach 

outperformed existing approximation methods over a wide 

variety of cases and demonstrated significant potential for 

producing accurate estimates of mean queue times in real-

world production environments when applied to historical 

data. 

Moon and Shin (2019) focused on tandem queues, proposing 

an approximate analysis method that accounts for service 

times modelled with phase-type distributions and utilizing a 

decomposition approach. Their results suggest this method is 

effective for real-world applications. 

Mala and Varma (2016) applied basic queueing theory to a 

single-server local healthcare clinic, assessing various 

performance metrics with the goal of minimizing patient wait 

times and optimizing clinic efficiency.  

Elsewhere, Emenonye et al. (2022) examined queue models 

in relation to teletraffic 

System in which there was a formulation of a tele-traffic 

problem and an established solution through the model. They 

thus, concluded that the model showed improved services 

leading to increased customers’ satisfaction and also 

minimized cost 

Moreso, Ailobhio et al. (2020) utilized queueing models to 

improve service rates for expectant mothers at a hospital, 

successfully reducing their waiting times and analyzing 

performance measures associated with the queueing system. 

This approach illustrates the practical implications of 

queueing theory in enhancing healthcare service delivery. 

 

MATERIALS AND METHODS 

System Description 

The antenatal clinic operates as a tandem multiserver system. 

We therefore consider a tandem queue system of n arrivals 

with 𝑘  service stations. The customers from outside (at the 

arrival rate 𝜆) arrive at the first station (𝑖), after receiving 

service at the station 𝑖, 𝑖 < 𝑘, moves to station 𝑖 + 1 and after 

receiving service at the station 𝑖 + 1 continues until they reach 

the station 𝑘 and exit the system after receiving service. Thus, 

station 𝑘 is the final stage in the processing of the customer. 

The buffer capacity of the stations is assumed to be infinite 

and the service time follows general distributions with 

parameter 𝜇𝑖; 𝑖 = 1, 𝑖 + 1, … 𝑘. The service discipline at all 

stations is First Come First Served (FCFS); a job waiting or 

being processed at the station 𝑖 incurs costs with the rate ℎ𝑖, 

and we assume that ℎ𝑖 is non-decreasing in 𝑖.  
The tandem queueing system of the antenatal clinic is 

modelled as a series of three sequential stations (stages) 

comprising: Vitals assessment, Accounts and Consultation. 

Thus, the modified antenatal clinic’s tandem queueing system 

is represented below: 

 
The existing model in use for the antenatal clinic is 
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The 𝑮/𝐆/𝐜 Tandem Queueing model 

Data for this study were collected from the ante-natal clinic of 

a state teaching hospital for four weeks time period; the 

collected data were on arrival time, service time, waiting time 

and number of servers at each station.  

The assumptions for the 𝐺/G/c tandem queueing system 

include:  

i. General interarrival and service times 

ii. Multiple service stations in series with Single or 

multiple servers at each station 

iii. Queue discipline is FCFS 

iv. No feedback, no balking, no reneging and no jockeying 

v. Independent interarrival and service time 

vi. The calling population is infinite 

vii. Infinite queue capacity 

viii. Stability condition (steady state) 

ix. System operates under heavy traffic (utilization close to 

1). 

x. Servers are identical at each stage. 

The basic notations include: 

𝜆 – the arrival rate 

𝜇 – the service rate/server 

𝑐 – number of servers 

𝜌 =
𝜆

𝑐𝜇
 – traffic intensity (system utilization) 

1

𝜇
 – mean service time 

1

𝜆
 – interarrival time 

𝑐𝑎
2- squared coefficient of variation of interarrival time 

𝑐𝑠
2- squared coefficient of variation of service time 

In situations where queueing systems are complex, like 

𝐺/𝐺/𝑐 queueing systems, exact analytical solutions are 

generally (typically) intractable (difficult to derive). In such 

situations, performance measures are determined by the use 

of bounds and approximations methods. Approximations are 

methods used to estimate performance measures in many 

complex queueing systems where exact analytical solutions 

are intractable and the arrival process is assumed to be a 

renewal process. These methods like heavy traffic or diffusion 

approximations are important as they provide reasonable 

predictions for system behaviour. The approximations are 

either derived by interpolation or asymptotic analysis. 

 

Heavy-traffic Approximation 

A queueing system with traffic intensity 𝜌 close to unity (that 

is, system approaches full utilization) is called a heavy-traffic 

queueing system. Kingman (1961) was the first to investigate 

the behaviour of a queueing system 𝐺/G/1 in the heavy traffic 

case, which was sort of central limit theorem for heavy traffic 

and the theorem stated that under heavy traffic, the steady-

state waiting time distribution in a queue can be approximated 

by an exponential distribution. 

According to Medhi (2003), the Kingman’s approximation for 

waiting time distribution after inverting the Laplace transform 

(LST) is 

𝑊(𝑡) ≈ 1 − exp {−
2(1−𝜌)

𝜆(𝜎𝑎
2+𝜎𝑠

2)
𝑡}  (1) 

which gives the distribution function of the waiting time to an 

approximation; and the distribution is exponential with the 

mean given as 

𝐸(𝑊) ≈
𝜆(𝜎𝑎

2+𝜎𝑠
2)

2(1−𝜌)
      (2) 

The result for E(W) for large 𝜌(< 1) according to Kingman 

(1964) can also be expressed as 

𝐸𝑊(𝐺/G/1) ≈
(𝑐𝑎

2+𝑐𝑠
2)

2
𝐸𝑊(𝑀/𝑀/1)   (3) 

where  

𝐸𝑊(𝑀/𝑀/1) ≈
𝜌

𝜇(1−𝜌)
    (4) 

and 𝑐𝑎
2 , 𝑐𝑠

2 is the squared of the coefficient of variation of 

interarrival, service time. 

Whitt (1983), provided an approximation for the mean 

waiting time in a 𝐺/𝐺/1 queueing model given as: 

𝐸𝑊(𝐺/G/1) ≈
𝜌(𝑐𝑎

2+𝑐𝑠
2)𝑔

2𝜇(1−𝜌)
    (5) 

where 𝑔 ≡ 𝑔(𝜌, 𝑐𝑎
2 , 𝑐𝑠

2) is defined as 

𝑔 ≡ 𝑔(𝜌, 𝑐𝑎
2, 𝑐𝑠

2) = {
𝑒𝑥𝑝 {−

2(1−𝜌)

3𝜌

(1−𝑐𝑎
2)

𝑐𝑎
2+𝑐𝑠

2 } ;  𝑐𝑎
2 ≤ 1

1                                    ; 𝑐𝑎
2 > 1

 (6) 

Kingman (1964) made a conjecture from the result of 𝐺/M/c 

system that, for heavy traffic, the waiting time for a 𝐺/G/c 

queueing model should be exponentially distributed with 

mean; 

𝐸𝑊(𝐺/G/c ) ≈
𝜎𝑎

2+
𝜎𝑠

2

𝑐2

2(
1−𝜌

𝜆
)
     (7) 

Kӧllerstrӧm (1974) proved Kingman’s conjecture and the 

approximate distribution of waiting time in 𝐺/G/c queueing 

model in heavy traffic is exponential and is given by 𝑊(𝑡) ≈

1 − exp {−
2

(1−𝜌)

𝜆

𝜎𝑎
2+

𝜎𝑠
2

𝑐2

𝑡}     (8) 

According to Whitt (1983), in heavy–traffic as 𝜌 → 1, the 

approximation for the mean waiting time is 

𝐸𝑊(𝜌, 𝑐𝑎
2 , 𝑐𝑠

2, 𝑐) ≈
1

𝑐𝜇(1−𝜌)
 
(𝑐𝑎

2+𝑐𝑠
2)

2
   (9)  

and by virtue of heavy-traffic limit theorems, we know that 

(9) is also asymptotically correct for 𝐺/𝐺/𝑐 systems as 𝜌 →
1 for fixed 𝑐 

 

RESULTS AND DISCUSSION 

We considered a three nodes (stations) tandem queueing 

system, an antenatal clinic, with a general arrival and service 

time distribution. The arrival and the service processes of the 

𝐺/𝐺/𝑐 model for the three stations in the antenatal clinic were 

computed and used to evaluate the Kingman and Whitt’s 

approximation methods. The minimum number of servers at 

the three stations (nodes) are: three, two and five servers. 

 

Approximations of Expected Waiting Time for a G/G/c Queueing Model in Tandem Queueing System 

Table 1: A Comparison of Approximations of Expected Waiting Time for a G/G/c Queueing Model in Tandem 

Queueing System of Data Set 1 

Nodes Arrival / Service Process Traffic Intensity, 𝝆 
Methods 

Kgm Whitt 

1 𝑐𝑎
2 2.043 0.85 

 

0.425 

 

237.37 

 

37.75 

 

71.41 

 

27.94 

 

𝜎𝑎
2 23.785 

𝑐𝑠
2 22.380 

𝜎𝑠
2 1770.113 

2 𝑐𝑎
2 0.290 0.96 

 

0.479 

 

2616.68 

 

92.86 

 

3.53 

 

0.27 

 

𝜎𝑎
2 12.902 

𝑐𝑠
2 0.018 

𝜎𝑠
2 1552.490 
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3 𝑐𝑎
2 4.076 0.97 

 

0.483 

 

253.52 

 

14.50 

 

49.36 

 

7.16 

 

𝜎𝑎
2 51.422 

𝑐𝑠
2 0.248 

𝜎𝑠
2 62.967 

 

From the Table 1 above; it is observed that: 

i. The traffic intensities are high in the three stations but 

very high in the second and the third stations, the system 

very close to overload (unstable). This may be due to high 

variability of the service processes in the stations. 

ii. High traffic intensity and high variability in the service 

process has a negative impact on the expected waiting 

time (very high waiting time) especially with Kingman’s 

approximation method which causes bottlenecks at the 

stations. 

iii. The arrival and the service processes having different 

general distributions affects the expected waiting time – 

the two approximation methods, both have high waiting 

time.  

iv. Whitt approximation method significantly outperformed 

the Kingman’s approximation method in the 

approximation of the expected waiting time. 

v. There is a significant decrease in the expected waiting 

time when there is an increase in number of servers by a 

unit. 

 

Table 2: A Comparison of Approximations of Expected Waiting Time for a G/G/c Queueing Model in Tandem 

Queueing System of Data Set 2 

Nodes Arrival / Service Process Traffic Intensity, 𝝆 
Methods 

Kgm Whitt 

 

 

 

1 

𝑐𝑎
2 1.782 0.92 

 

0.46 

 

99.38 

 

14.57 

 

481.06 

 

106.94 

 

𝜎𝑎
2 49.693 

𝑐𝑠
2 76.496 

𝜎𝑠
2 11.433 

 

 

 

2 

𝑐𝑎
2 0.096 0.72 

 

0.361 

 

0.45 

 

0.20 

 

0.07 

 

0.04 

 

𝜎𝑎
2 0.395 

𝑐𝑠
2 0.002 

𝜎𝑠
2 0.024 

 

 

 

3 

𝑐𝑎
2 3.485 0.70 

 

0.352 

 

51.37 

 

23.63 

 

5.56 

 

6.44 

 

𝜎𝑎
2 152.347 

𝑐𝑠
2 1.203 

𝜎𝑠
2 83.074 

 

From Table 2, it is observed that: 

i. There are high variabilities in the arrival and the service 

processes at stations one and three which explained the 

reason for high expected waiting time though the effect is 

more evident with Whitt approximation method. 

ii. The traffic intensity is higher in station one (𝜌 = 0.92) as 

compared to station two and three. Thus, high traffic 

intensity brings about high expected waiting time 

iii. In station two, the traffic intensity (𝜌 = 0.72) together 

with the arrival and service processes (all less than one) 

brought about minimized expected waiting time less than 

one for both approximation methods. 

iv. A unit increase in the number of servers reduced the 

expected waiting time drastically except in station three 

where there is rather an increase in waiting time for Whitt 

approximation method. 

 

Table 3: A Comparison of Approximations of Expected Waiting Time for a G/G/c Queueing Model in Tandem 

Queueing System of Data Set 3. 

Nodes Arrival / Service Process Traffic Intensity, 𝝆 
Methods 

Kgm Whitt 

1 𝑐𝑎
2 2.103 0.90 

 

0.447 

 

30.58 

 

5.41 

 

17.77 

 

4.82 

 

𝜎𝑎
2 21.659 

𝑐𝑠
2 1.107 

𝜎𝑠
2 9.671 

2 𝑐𝑎
2 0.443 0.72 

 

0.358 

 

0.18 

 

0.05 

 

0.70 

 

0.31 

 

𝜎𝑎
2 0.053 

𝑐𝑠
2 0.059 

𝜎𝑠
2 0.682 

3 𝑐𝑎
2 4.928 0.59 

 

0.293 

 

23.18 

 

13.42 

 

5.60 

 

8.12 

 

𝜎𝑎
2 125.573 

𝑐𝑠
2 1.000 

𝜎𝑠
2 7.000 

 

It is observed from Table 3, that, 

i. In station two, the arrival and service processes are less 

than one which actually brought about minimized 

expected waiting time that are very small (< 1) with the 

two approximation methods. 

ii. The traffic intensity is highest in station one and 

together with high variability in the arrival process 
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caused very high expected waiting time amongst the 

three stations (higher with Kingman approximation 

method). 

iii. An increase in the number of servers by a unit reduced 

the expected waiting time drastically except in station 

three where there is rather an increase in the expected 

waiting time for Whitt approximation method. 

iv. On the average, Whitt approximation method 

outperformed Kingman approximation method. 

In antenatal clinics, there is high traffic intensity (𝜌 → 1) in 

each which possibly resulted from the arrival and service time 

distribution (general distribution). This high traffic intensity 

and arrival and service processes (their high variability) 

significantly affect the expected waiting time (high expected 

waiting time) with the approximation methods, though the 

effect is higher with the Kingman approximation method. 

Now, increasing the number of servers by a unit across the 

three stations significantly reduced not just the traffic 

intensity but also the expected waiting time; thus, the 

customers’ (expectant mothers’) are satisfied for the service 

rendered to them. Also, on the average, Whitt's approximation 

method is preferred over the Kingman method. 

 

 

 

 

 
Figure 1: Approximation Methods and Traffic Intensity of a unit Increase of Servers Across the 

Three Stations for Data Set 1 

 

 
Figure 2: Approximation Methods and Traffic Intensity of a unit Increase of Servers Across the 

Three Stations for Data Set 2 

 

 
Figure 3: Approximation Methods and Traffic Intensity of a unit Increase of Servers Across the 

Three Stations for Data Set 3 
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The plotted graphs for the data sets clearly show that a unit 

increase in the number of servers across the three stations 

significantly minimized the expected waiting time and the 

traffic intensity, with the Whitt approximation method 

outperforming Kingman approximation method on the 

average. 

 

CONCLUSION 

This work dealt with the extension and integration of heavy 

traffic approximation methods to the health care sector, 

antenatal care in particular. It provides precise performance 

metrics predictions with varying arrival and service processes. 

The traffic intensity (𝜌)and the average waiting time were the 

performance metrics analysed under steady-state. 

There are bottlenecks at some stations in the tandem system 

where the traffic intensities are very close to unity. The results 

revealed the impact of variability in the interarrival and 

service times on system performance and high traffic intensity 

(𝜌) increases the mean waiting time in the system. But a unit 

increase in the number of servers caused a significant 

decrease in the expected waiting time. 

Furthermore, there is under-utilisation of available servers 

which resulted in inefficiency of the system, causing 

bottlenecks at the stations and consequently customers’ dis-

satisfaction. 

Therefore, with this study, the results obtained could be of 

help to the hospital management and policy makers to 

estimate delays, minimize patient waiting time without 

compromise of care quality, optimise staffing (using faster 

servers where necessary) and allocate resources more 

effectively. 

Altogether, this work provides empirical evidence on the 

efficacy of heavy-traffic approximation in complex multi-

server systems. 

Finally, the system should always have enough servers that 

are capable in terms of capacity and processing speed to 

ensure the stability of the system (𝜌 < 1) and drastically 

reduce the mean waiting time, improving the overall system 

efficiency and effectiveness. Also, the effectiveness of the 

heavy traffic approximation method in healthcare (tandem in 

nature) will encourage its adoption in other similar queueing 

systems. 
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